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Abstract. If the initial and boundary data for a partial differential equation (PDE) do not
obey an infinite set of compatibility conditions, singularities will arise in its solutions. For dissipative
equations, these singularities are well localized in both time and space, and an effective numerical
remedy is available for accurate computation of initial transients. This study analyzes the nature of
similar corner discrepancies for dispersive equations, such as ut − uxxx = 0 and iut − uxx = 0.
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1. Introduction. Solutions to initial-boundary value problems (IBVPs) will fea-
ture “corner singularities” in the space-time domain where initial and boundary data
meet, unless these two data sets are connected by an infinite number of compatibility
conditions [2]. Since the two data sets usually arise from different considerations,
these singularities are almost always present. Although the issue has been analyzed
at least since the 1950s (as surveyed in [2] and [3]), the focus has mostly been the-
oretical rather than numerical. For dissipative equations, the irregularities that are
caused by these corner singularities are short-lived in time and remain local in space.
These features allowed for the development of a highly effective strategy for restoring
full numerical accuracy with little extra computational cost, as described in [4]. For
dispersive PDEs, the irregularities do not stay local in space, and it depends on the
equation whether or not they will be short-lived in time. Methods for effective numeri-
cal treatment will likely vary from equation to equation. The goal of the present paper
is to give illustrating examples of dispersive corner singularities, largely by means of
finding corner basis functions, which illuminate the mixing of temporal and/or spatial
scales that occurs initially. If the boundaries are introduced to the problem only for
the purpose of truncating what otherwise would have been an infinite domain, the
preferred strategy would quite certainly be to create artificial boundary conditions in
such a way that these space-time domain corner singularities do not arise.

Section 2 introduces the concept of corner basis functions, first for the well-known
model equations ut +ux = 0 and ut−uxx = 0. It is shown how corner basis functions
describe the nature of the corner singularities for these equations. Since the general
character of solutions to dispersive equations may be less familiar, section 3 starts
with some illustrative solutions for the linearized KdV equation, ut − uxxx = 0, and
then proceeds with establishing its corner basis functions. Section 4 contains a similar
discussion for the linear Schrödinger equation, iut − uxx = 0. Based on these corner
basis functions, we discuss in section 5 the character of IBV solutions for the two
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dispersive equations just mentioned. The final section offers some concluding remarks,
summarizing the nature of corner singularities for PDEs of the type ut ± unx = 0,
n = 1, 2, 3, . . . , in terms of corner basis functions.

2. Corner basis functions for ut + ux = 0 and ut − uxx = 0. The quarter
plane problem (x > 0, t > 0)

PDE: ut + ux = 0,

IC: u(x, 0) = f(x),

BC: u(0, t) = g(t)

(2.1)

has the analytic solution

u(x, t) =

{
f(x− t), x > t,

g(t− x), x < t.
(2.2)

Assuming that f(x) and g(t) are smooth functions, the solution (2.2) is smooth for
all times if and only if an infinite sequence of compatibility conditions holds in the
corner at x = 0, t = 0 [2], [3]:

g(0) − f(0) = 0, continuity

gt(0) + fx(0) = 0, PDE

gtt(0) − fxx(0) = 0, differentiated versions of the PDE

gttt(0) + fxxx(0) = 0, ↓
...

gnt(0) + (−1)n+1fnt(0) = 0.

(2.3)

If we are given a problem (2.1) for which any of the equalities in (2.3) fail to hold, one
strategy for transforming the problem to one with a smooth solution (better suited for
most numerical methods) is to create an explicitly known function s(x, t) which also
satisfies the PDE and which possesses an identical corner singularity. To construct
s(x, t), we introduce the concept of corner basis functions un(x, t) with the properties

(i) un(x, t) satisfies the PDE away from the corner,(2.4)

(ii) un(x, 0) ≡ 0,

(iii)
1

n!

∂jun(0, t)

∂tj
=

{
1 for j = k,
0 for j �= k.

The corner basis functions are derived by Taylor expanding the boundary condition
(BC) in time and then for each term in the expansion solving the PDE with zero
initial condition (IC), as shown below in the case of (2.1).

u0(x, t) =

{
0, x > t,
1, x < t,

u1(x, t) =

{
0, x > t,
t− x, x < t,

u2(x, t) =

{
0, x > t,
(t− x)2, x < t,

· · · ,

(2.5)
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i.e.,

un(x, t) =

{
0, x > t,

(t− x)n, x < t,
n = 0, 1, 2, . . . .

If the right-hand sides of (2.3) were not equal to 0, 0, 0, 0, . . . but instead equal
to r0, r1, r2, r3, . . . , the function

s(x, t) = r0 u0(x, t) +
r1
1!

u1(x, t) +
r2
2!

u2(x, t) +
r3
3!

u3(x, t) + · · ·(2.6)

would have exactly the same corner singularity as the solution u(x, t). Standard
numerical methods can then be applied to the difference function

v(x, t) = u(x, t) − s(x, t),(2.7)

which is infinitely smooth and well suited for numerics (satisfying the same PDE
and IC, and having known BCs). However, in practice, we are limited to machine
precision and thus need to use only a finite number p of compatibility conditions,
corresponding to a truncated version of (2.6). The difference in (2.7) will be of size
O(tp), the first neglected term in the expansion s(x, t). For small t, we can make this
difference arbitrarily small by choosing p sufficiently large.

This idea of creating corner singularity functions un(x, t), n = 0, 1, 2, . . . , and
then subtracting a combination of them is of no particular utility for (2.1) since the
analytic solution (2.2) is almost as simple algebraically as are the corner functions
(2.5). Furthermore, the corner irregularity will persist for all times. If (2.1) is gener-
alized to variable coefficients, the singularity will travel along a curved characteristic
path, and cancellation based solely on corner information is not feasible.

Turning to the heat equation, it may at first appear that corner corrections are
not needed. Figures 2.1(a), (b) show the analytic solution to the IBVP

PDE: ut − uxx = 0,

IC: u(x, 0) = 0, 0 ≤ x ≤ 1,

BCs:

{
u(0, t) = sin 2πt,

ux(1, t) = 0,
t > 0,

(2.8)

over 0 ≤ x ≤ 1, 0 ≤ t ≤ 1 and 0 ≤ x ≤ 10−3, 0 ≤ t ≤ 10−3, respectively. No matter
how much we zoom in on the area near the origin, the solution surface will graphically
look indistinguishable from the one shown to the right (Figure 2.1(b)).

However, this apparent regularity of the solution near the origin is severely mis-
leading. The seemingly smooth solution in fact features a sharp irregularity, as the
plot over 0 ≤ x ≤ 1, 0 ≤ t ≤ 10−3 in Figure 2.2(a) reveals.

A 21-node numerical Chebyshev solution (implemented without grid clustering at
the right boundary, cf. [6, section 5.1, Example 3], and using a fourth-order Runge–
Kutta method in time) will feature errors of the order 10−4 near the origin during
the first moments, due to the fact that the PDE is not satisfied in the corner (0, 0) by
the solution. This numerical observation is theoretically proven in [3]. At later times,
the error decreases to around 10−12. In Figure 2.2(b), the numerical corner error has
already decayed to around 10−6 by the first displayed time level.
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Fig. 2.1. Analytic solution to the IBV problem (2.8) shown over (a) 0 ≤ x ≤ 1, 0 ≤ t ≤ 1 and
(b) 0 ≤ x ≤ 10−3, 0 ≤ t ≤ 10−3.
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Fig. 2.2. (a) Analytic solution to IBV problem (2.8). (b) Error in Chebyshev numerical solu-
tion. Both are shown over 0 ≤ x ≤ 1, 0 ≤ t ≤ 10−3 and displayed on a grid that is quadratically
refined at the left edge.

Although corner irregularities for the heat equation persist only a very short
time, corrections for them are needed in order to obtain an accurate solution of initial
transients. For the constant coefficient case

PDE: ut − uxx = 0,

IC: u(x, 0) = f(x), x > 0,

BC: u(0, t) = g(t), t > 0,

(2.9)

we need to replace the compatibility conditions (2.3) by

g(0) − f(0) = 0, continuity

gt(0) − fxx(0) = 0, PDE

gtt(0) − fxxxx(0) = 0, differentiated versions of the PDE

. . . , ↓
gnt(0) − f(2n)x(0) = 0,
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and the corner functions (2.5) by

u0(x, t) = Erfc
(

x
2
√
t

)
,

u1(x, t) = −
√

t
π x e−x2/(4t) +

(
t + x2

2

)
Erfc

(
x

2
√
t

)
,

u2(x, t) = − 1
6

√
t
π x (10 t + x2) e−x2/(4t) +

(
t2 + t x2 + x4

12

)
Erfc

(
x

2
√
t

)
,

u3(x, t) = − 1
60

√
t
π x (132 t2 + 28 t x2 + x4) e−x2/(4t)

+
(
t3 + 3

2 t
2x2 + 1

4 t x
4 + x6

120

)
Erfc

(
x

2
√
t

)
,

. . . .

(2.10)

These functions all satisfy the PDE with the IC and BC un(x, 0) = 0, un(0, t) =
tn, n = 0, 1, 2, . . . .

One way to derive (2.10) is to note that the change of variables ξ = x√
t
, τ = log t

transforms ut − uxx = 0 into uτ = uξξ + ξ
2uξ. The u0(x, t) solution corresponds to an

equilibrium solution of the transformed PDE. With the BCs u(0) = 1, u(∞) = 0 we

find u(ξ) = Erfc( ξ
2 ) (= 1 − 2√

π

∫ ξ/2

0
e−ς2dς), and consequently u0(x, t) = Erfc( x

2
√
t
).

The subsequent corner functions can then (like for all other PDEs) be generated
recursively:

un(x, t) = n

∫ t

0

un−1(x, t) dt, n = 1, 2, . . . .(2.11)

Alternatively, we can obtain a general expression for all the un(x, t) functions in
terms of Kummer’s confluent 1F1 hypergeometric functions:

un(x, t) = tn
{

1F1(−n, 1
2 ,−x2

4t ) − x Γ(n+1)√
t Γ(n+ 1

2 ) 1F1( 1
2 − n, 3

2 ,−x2

4t )
}
, n = 0, 1, 2, . . . .

(2.12)

To arrive at (2.12), we generalize the observation above regarding the u0(x, t) corner

function by noting that un(x,t)
tn becomes a function of one variable ξ = x√

t
only, which

we write as un(ξ). From its definition and the governing PDE, this function will need
to satisfy

(un)ξξ +
ξ

2
(un)ξ − n un = 0 with

{
un(0) = 1,

un(∞) = 0.

The general solution to the ODE can be written

un(ξ) = c1 1F1(−n, 1
2 ,− ξ2

4 ) + c2 ξ 1F1( 1
2 − n, 3

2 ,− ξ2

4 ).

The condition un(0) = 1 says that c1 = 1, and leading order asymptotics of the

1F1 functions (see [1]) demonstrate that cancellation of growths as ξ → ∞ requires
c2
c1

= − Γ(n+1)

Γ(n+ 1
2 )

.

Figure 2.3 shows u0(x, t), u1(x, t), and u2(x, t) displayed over two different time
intervals. The irregularity remains local in both time and space. For dissipative
equations like (2.9), corner functions form a very effective means of improving the
accuracy of numerical calculations since, as is shown in [4],
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Fig. 2.3. The corner functions u0(x, t), u1(x, t), and u2(x, t) for the heat equation ut−uxx = 0,
shown over 0 ≤ x ≤ 1 and (left column) 0 ≤ t ≤ 1, (right column) 0 ≤ t ≤ 0.001. The grid is again
quadratically refined towards the left edge.

1. only 3–4 correction functions typically suffice for correction to machine pre-
cision, and

2. generalizations to variable coefficients are straightforward.

3. Illustrative solutions and corner functions for ut − uxxx = 0. Similar
to the heat equation, IBV solutions to the linearized KdV equation

ut − uxxx = 0(3.1)

will typically feature two scales: (1) a slow, long-term part and (2) a high-frequency
part emanating from the corners and described by corner basis functions. Initially,
the high-frequency part of the solution is of infinitesimal size but then expands to
cover the whole domain. To illustrate the first part and to provide a background for
discussing the latter part, we first consider different half-plane problems containing
only slow long-term scales.

3.1. Traveling wave solutions in different half-planes.

3.1.1. The upper half-plane (t > 0). With the IC

IC: u(x, 0) = cos(kx),(3.2)

the solution of (3.1) becomes

solution: u(x, t) = cos(kx− k3t).(3.3)
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Fig. 3.1. Upper half-plane solution to ut − uxxx = 0 with IC u(x, 0) = cos(x).

This is a single Fourier mode whose phase speed increases with the wave number k
as c = k2. We can note that all waves travel to the right, as shown in Figure 3.1 for
k = 1.

3.1.2. The right half-plane (x > 0). For the equation (3.1) we need to impose
two BCs on the left side (taken to be x = 0). Two cases can be noted. The first case
has a sinusoidal forcing on the boundary, with the first derivative ux(0, t) = 0.

Case 1.

BCs:

{
u(0, t) = sin(k3t),

ux(0, t) = 0,

solution: u(x, t) = 1√
3

[
cos(kx− k3t + π

3 ) − e−
√

3
2 kx cos( 1

2kx + k3t + π
3 )
]
.

In the second case, the solution is zero and it is the first derivative that has a
sinusoidal forcing:

Case 2.

BCs:

{
u(0, t) = 0,

ux(0, t) = sin(k3t),

solution: u(x, t) = 1√
3 k

[
cos(kx− k3t + π

6 ) − e−
√

3
2 kx cos( 1

2kx + k3t− π
6 )
]
.

Figures 3.2 and 3.3 show Cases 1 and 2, respectively. We notice in Figure 3.2
how the crests of the waves emerge perpendicularly to the left boundary in order
to accommodate the zero first derivative BC. Similarly, Figure 3.3 shows how the
waves again are deformed near the boundary, this time to accommodate the condition
u(0, t) = 0. As these two cases demonstrate, forcing the left boundary with a Fourier
mode will produce outgoing waves with the same wave number, differing between
the two cases only in amplitude and phase shift. It is therefore possible to create a
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Fig. 3.2. Solution to the right half-plane problem for ut − uxxx = 0 with the left BCs u(0, t) =
sin t, ux(0, t) = 0.
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Fig. 3.3. Solution to the right half-plane problem for ut − uxxx = 0 with left BCs u(0, t) =
0, ux(0, t) = sin t.

BC so that the outgoing waves cancel, and only the exponential decay to the right
remains. However, this is a very special case; sinusoidal forcing will in general produce
sinusoidal waves traveling to the right.

3.1.3. The left half-plane (x < 0). For the right half-plane problems, we
considered forcing on the left side. We now consider forcing on the right side, requiring
only one BC for the PDE:

BC: u(0, t) = sin(k3t),

solution: u(x, t) = e
√

3
2 kx sin( 1

2kx + k3t).

There can be no waves traveling to the left for (3.1), and the solution therefore decays
exponentially away from the boundary, as is seen in Figure 3.4. This also implies that



554 NATASHA FLYER AND BENGT FORNBERG

−20
−15

−10
−5

0
0

10

20

30

40

−1

0

1

t

x

Fig. 3.4. Solution to the left half-plane problem for ut − uxxx = 0 with forcing u(0, t) = sin t
on the right boundary.

when waves arrive from the left to a right boundary, there can be no reflection, but
only decay. With incoming waves of the form u(x, t) = cos(kx − k3t), closed form
solutions for the cases with Neumann and Dirichlet right BCs become as follows.

Case 1.

BC: ux(0, t) = 0,

solution: u(x, t) = cos(kx− k3t) + e
√

3
2 kx cos( 1

2kx + k3t + π
3 ).

Case 2.

BC: u(0, t) = 0,

solution: u(x, t) = cos(kx− k3t) − e
√

3
2 kx cos( 1

2kx + k3t).

These solutions are shown in Figures 3.5 and 3.6.
In both cases, the incoming wave from the left undergoes a transition near the

right boundary in order to accommodate the BCs at the right edge. The half-plane
solutions for (3.1) can be summed up as waves traveling solely to the right, with at
most a thin transition region at a right-hand boundary. The character of these half-
plane solutions set the stage for solving the quarter-plane problem, leading us to sets
of left and right corner basis functions.

3.2. Left corner functions. Since (3.1) needs two BCs to the left, we need to
obtain two independent sets of corner functions un(x, t) and vn(x, t). These functions
should all obey the PDE, the IC un(x, 0) = vn(x, 0) = 0, and the BCs

{
un(0, t) = tn, ∂

∂xun(0, t) = 0,

vn(0, t) = 0, ∂
∂xvn(0, t) = tn,

n = 0, 1, 2, . . . .

Following the approach which led us to the corner functions (2.12) for the heat
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Fig. 3.5. Solution to the left half-plane problem for ut − uxxx = 0 with incoming sinusoidal
wave and right BC ux(0, t) = 0.
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Fig. 3.6. Solution to the left half-plane problem for ut − uxxx = 0 with incoming sinusoidal
wave and right BC u(0, t) = 0.

equation, we note that un(x,t)
tn = un(ξ) and vn(x,t)

tn+1/3 = vn(ξ) both are functions of
ξ = x

3√t
only, satisfying

(un)ξξξ +
ξ

3
(un)ξ − n un = 0, {un(0) = 1, (un)ξ(0) = 0, un(∞) = 0}

and

(vn)ξξξ +
ξ

3
(vn)ξ − (n + 1

3 ) vn = 0, {vn(0) = 0, (vn)ξ(0) = 1, vn(∞) = 0},
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Fig. 3.7. First three corner functions un(x, t) for ut − uxxx = 0, displayed over 0 ≤ t ≤ 0.1
and 0 ≤ t ≤ 0.001 (left and right column, respectively).

respectively, leading to the general expressions for the corner functions:

un(x, t) = tn
{

1F2(−n, { 1
3 ,

2
3},− x3

27t ) − x2

2t2/3

Γ(n+1)

Γ(n+ 1
3 ) 1F2( 2

3 − n, { 4
3 ,

5
3},− x3

27t )
}
,

n = 0, 1, 2, . . . ,

and

vn(x, t) = tn+ 1
3

{
1F2(−n, { 2

3 ,
4
3},− x3

27t ) − x2

2t2/3

Γ(n+1)

Γ(n+ 2
3 ) 1F2( 1

3 − n, { 4
3 ,

5
3},− x3

27t )
}
,

n = 0, 1, 2, . . . .

Figures 3.7 and 3.8 display the first three corner functions of each of the two types.

3.3. Right corner functions. Since the PDE is incapable of transporting any
waves to the left, waves reaching a right side boundary will get absorbed no matter
what BC is used there. As a consequence, the right corner functions on the domain
x < 0, t > 0 will be nonoscillatory and reminiscent of the ones for the heat equation.
Denoting these by wn(x, t), n = 0, 1, 2, . . . , we find by the same means as in the
previous section

wn(x, t) = tn
{

1F2(−n, { 1
3 ,

2
3},− x3

27t ) + x
t1/3

Γ(n+1)

Γ(n+ 2
3 ) 1F2( 1

3 − n, { 2
3 ,

4
3},− x3

27t )

+ (−1)n
√

3
4π

x2

t2/3 Γ(n + 1) Γ( 2
3 − n) 1F2( 2

3 − n, { 4
3 ,

5
3},− x3

27t )
}
, n = 0, 1, 2, . . . .
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Fig. 3.8. First three corner functions vn(x, t) for ut − uxxx = 0, displayed over 0 ≤ t ≤ 0.1
and 0 ≤ t ≤ 0.001 (left and right column, respectively).
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Fig. 3.9. The right corner functions w0(x, t) and w1(x, t) to ut − uxxx = 0.

Figure 3.9 displays the first two wn(x, t)-functions.
For all the corner functions we have derived (un(x, t) for the heat equation and

un(x, t), vn(x, t), wn(x, t) for the linearized KdV equation), the first hypergeometric
function has −n as its first parameter. This implies that, for n = 0, 1, 2, . . . , its
usually infinite Taylor series truncates to become a finite degree polynomial.

To conclude this discussion of right corner functions, we note that a general
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solution to (3.1) with

IC: u(x, 0) = f(x), x < 0,

BC: u(0, t) = g(t), t > 0,

can be expressed in terms of coupled contour principal value integrals [5].

4. Corner analysis for iut − uxx = 0. The next example we consider is the
linear Schrödinger equation

iut − uxx = 0.(4.1)

Although this also is a dispersive PDE, it will be shown that the character of IBV
solutions for this equation is fundamentally different than for the linear KdV equation
(3.1). Like the diffusion equation ut − uxx = 0, equation (4.1) requires only one BC
on each side. Also, since the analysis is similar to that for the diffusion equation, we
will here not consider any introductory half-plane problems.

4.1. Corner functions. Since iut−uxx = 0 differs from the heat equation only
by a factor of i, the same similarity transformation ξ = x√

t
and τ = log t will again

lead us to the corner functions. Substituting these transformations into iut−uxx = 0
yields

iuτ − iξ

2
uξ − uξξ = 0.(4.2)

The equilibrium solution satisfies

uξξ +
iξ

2
uξ = 0,

leading to

u0(x, t) = Erfc

(√
i

x

2
√
t

)
=

1 + i√
2π

∫ ∞

x√
t

e−i η2

4 dη.(4.3)

Separating (4.3) into real and imaginary parts results in

u0(x, t) = 1 − S

(
x√
2πt

)
− C

(
x√
2πt

)
+ i

[
S

(
x√
2πt

)
− C

(
x√
2πt

)]
,

where S and C are the Fresnel sine,
∫ z

0
sin(πt2/2)dt, and cosine,

∫ z

0
cos(πt2/2)dt,

functions. Higher-order corner functions are again most easily expressed in terms of
hypergeometric functions. In analogy to (2.12), we obtain

un(x, t) = tn
{

1F1(−n, 1
2 ,

−ix2

4t ) − x
√
i√
t

Γ(n+1)

Γ(n+ 1
2 ) 1

F1( 1
2 − n, 3

2 ,
−ix2

4t )
}
, n = 0, 1, . . . ,

which satisfies (4.1) with IC u(x, 0) = 0 and the BCs u(0, t) = tn, u(∞, t) = 0.
The real and imaginary parts of the corner functions u0(x, t) and u1(x, t) are

plotted in Figure 4.1.
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Fig. 4.1. Real and imaginary part of the first two corner functions u0 and u1 to iut − uxx = 0.

5. Qualitative solution features in the case of two boundaries. In this
section, the properties of ut − uxxx = 0 are contrasted with those of iut − uxx = 0.
In the former case (ut − uxxx = 0), high-frequency waves race across the interval and
become absorbed at the opposite boundary. Like for the heat equation, the solutions
are infinitely differentiable for all t > 0. In the latter case (iut−uxx = 0), the waves are
reflected off the boundaries for all times, resulting in a solution that is several times
differentiable only for rare values of t > 0 (when recurrences to the IC happen to
occur). This lack of smoothness has severe impact on the accuracy of straightforward
numerical calculations.

5.1. Features of the solution to ut − uxxx = 0 in the case of two bound-
aries. Although the IBV problem

PDE: ut − uxxx = 0,

IC: u(x, 0) = 0, 0 < x ≤ 1,

BCs: u(0, t) = f(t), ux(0, t) = g(t), u(1, t) = 0, t > 0,

(5.1)

does not appear to admit a simple closed form solution for general functions f(t) and
g(t), it can be verified that the function

u(x, t) =
3

2π

∫ ∞

0

e
1
2 rx−r3t

r
sin

(√
3

2
r(x− 1)

)(
e−3r/2 + 2 cos

(√
3

2
r

))
dr(5.2)

satisfies it for some particular choice of f(t) and g(t). We note the following:
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Fig. 5.1. Solution u(x, t) (5.2) to the IBV problem for ut − uxxx = 0, displayed for time
0 ≤ t ≤ 10−3.

• limt→0+ u(x, t) = 0 for 0 < x ≤ 1 (although the integral for u(x, t) diverges if
t = 0 is substituted directly into it).

• The function f(t) (as obtained from (5.2)) is not identically equal to one
although it satisfies f(0) = 1 and fk(0) = 0, k = 1, 2, . . . .

Figure 5.1 shows u(x, t) for 0 ≤ t ≤ 10−3, illustrating how high-frequency waves
emerge out of the singular corner and then get absorbed (with no reflections) at the
right edge.

5.2. Features of the solution to iut − uxx = 0 in the case of two bound-
aries. Consider the IBV problem

PDE: iut − uxx = 0,

IC: u(x, 0) = 0, 0 ≤ x ≤ 1,

BCs: u(0, t) = sin t, u(1, t) = 0, t > 0.

(5.3)

The long-term solution

uL(x, t) =
i

2

(
eit

sin(1 − x)

sin 1
− e−it sinh(1 − x)

sinh 1

)

satisfies the PDE and the BCs. The fast scale solution, emanating from the corner, is

uT (x, t) = u(x, t) − uL (x, t)
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Fig. 5.2. Full solution u(x, t), long-term solution uL(x, t), and transient solution uT (x, t) for
(5.3).

and will again need to satisfy the PDE but with different IC and BC:

IC: uT (x, 0) = − i
2

(
sin(1−x)

sin 1 − sinh(1−x)
sinh 1

)
, 0 ≤ x ≤ 1,

BC: uT (0, t) = uT (1, t) = 0, t > 0.

It can be written as a simple sine series expansion:

uT (x, t) = 2πi

∞∑
k=1

k

1 − (kπ)4
ei(kπ)2t sin kπx.(5.4)

Figure 5.2 shows the real and imaginary parts of the u(x, t), uL(x, t), and uT (x, t).
Figure 5.3 shows the full solution over a short time interval, revealing

1. emanating waves from the corner, as described by the un(x, t) corner functions
(cf. Figure 4.1) and

2. the reflection of all waves at the boundaries.
The latter fact means that, in contrast to the heat equation, ut − uxx = 0, or the
linear KdV equation, ut−uxxx = 0, the solution will not become smoother with time.

Indeed, (5.4) shows that ∂4u
∂x4 and ∂2u

∂t2 will fail to exist at almost all x and t. Unless
(5.3) is modified to contain some form of dissipation (interior or at the boundaries),
accurate numerical solutions would appear to be quite difficult to obtain.
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6. Concluding remarks. Since the initial data and the boundary data for
PDEs typically arise from different considerations, discrepancies will almost always
occur in the corners of the time-space domain. Unless infinitely many compatibility
conditions hold in the corners, the solutions will feature singularities which may or
may not remain local in time and space. With modern high-order or spectral meth-
ods, these discrepancies are often the dominant source of numerical error. It is thus
essential to

1. identify and understand the nature of the corner singularities for the IBV
problem being solved, and

2. devise numerical remedies to restore expected levels of accuracy.
Both issues have been addressed for second-order convective-diffusive equations in

[4]. This study has focused on the first point above for dispersive equations, showing
that the concept of corner basis functions, introduced in [4], is critical in understanding
the nature of the singularities.

To summarize the different characters of the corner singularities for the PDEs
considered, analytic expressions for the first corner basis function, u0(x, t), are given
in Table 6.1 and are graphically contrasted over two different time intervals in Figure
6.1. The analytical form of the corner basis functions for the general PDE ut±unx = 0,
n = 1, 2, 3, . . . , has also been included in the table. The constants ck are determined
by the BC u0(0, t) = 1 and all higher derivative BCs equal to zero. The dissipative
case ut − u4x = 0 is also illustrated.
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Table 6.1
Analytic expressions for the u0(x, t) corner functions for some PDEs of the form ut ± unx = 0.

Equation Elementary
form

Hypergeometric
form

ut − ux = 0 0 if x > t
1 if x < t

—–

ut − uxx = 0 Erfc

(
x

2
√
t

)
1− x√

πt
1F1

(
1
2
, 3
2
,−x2

4t

)
ut − uxxx = 0 —– 1 −

√
3 Γ( 2

3
) x2

4π t2/3 1F2

(
2
3
,
{
4
3
, 5
3

}
,− x3

27t

)

ut + u4x = 0 —–
1 − 1

2
√
π

x2

t2/4 1F3

(
2
4
,
{
3
4
, 5
4
, 6
4

}
, x4

256t

)
+

Γ( 3
4
)

6π
x3

t3/4 1F3

(
3
4
,
{
5
4
, 6
4
, 7
4

}
, x4

256t

)
...

...
...

ut ± unx = 0 —–

∑n−1

k=0

[
ck

xk

tk/n

× 1Fn−1

(
k
n
,
{

k+1
n

, k+2
n

, . . . , k+n
n

}
,±xn/t

nn

)]
,

where the ck are constants; the entry = 1 is

omitted in the sequence
{

k+1
n

, k+2
n

, . . . , k+n
n

}
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Fig. 6.1. The u0(x, t) corner functions for the equations, ut ± unx = 0, n = 1, . . . , 4, and
iut − uxx = 0 (real part).
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The nature of the corner singularities for each PDE is different, including prop-
agation of the discontinuity throughout the domain, dissipation of it locally, and
high-frequency oscillations which either get absorbed or reflected at boundaries. In
subsequent studies, numerical techniques for restoring accuracy of high-order and
spectral methods for dispersive IBV problems will be explored.
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