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Abstract. The six Painlevé transcendents PI -PV I have both applications and analytic proper-
ties that make them stand out from most other classes of special functions. Although they have been
the subject of extensive theoretical investigations for about a century, they still have a reputation
for being numerically challenging. In particular, their extensive pole fields in the complex plane
have often been perceived as ‘numerical mine fields’. In the present work, we note that the Painlevé
property in fact provides the opportunity for very fast and accurate numerical solutions throughout
such fields. When combining a Taylor/Padé-based ODE initial value solver for the pole fields with
a boundary value solver for smooth regions, numerical solutions become available across the full
complex plane. We focus here on the numerical methodology, and illustrate it for the PI equation.
In later studies, we will concentrate on mathematical aspects of both the PI and the higher Painlevé
transcendents.
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1. Introduction. The six Painlevé transcendents were discovered about 100
years ago [4], [13], [23], [24], and have since received extensive attention. They satisfy
nonlinear second order ODEs, cannot be reduced to other types special functions,
and obey the Painlevé property of all its solutions being free from movable branch
points (however, the solutions may have movable poles or movable isolated essential
singularities) [18], [21]. They arise in many branches of physics, including classical
and quantum spin models, scattering theory, self-similar solutions to nonlinear dis-
persive wave PDEs, string theory and random matrix theory. For a summary of their
applications, with extensive references, we refer to Sections 32.13 - 32.16 in the NIST
Handbook of Mathematical Functions [21].

The attention that the Painlevé functions have received over the last century has
primarily been limited to their analytic properties and applications. The numerical
computation of these functions, by contrast, has received comparatively little atten-
tion. With the exceptions of [8], [20], [22] (discussed later), numerical studies have so
far mostly focused on pole-free intervals along the real line [17], [21], [25] or on a pole-
free region in the complex plane [11]. A possible explanation for this state of affairs
is that the large pole fields in the complex plane associated with the Painlevé ODEs
may be thought of as a challenge to standard numerical methods for the integration
of ODEs.

We argue in the present work that these pole fields provide, in fact, especially
advantageous integration opportunities. A ‘pole friendly’ algorithm based on Padé
approximation is devised that is capable of integrating accurately and stably through
pole fields for distances in the 105 − 106 range. This allows numerical studies not
only of ‘near-fields’, but also of transition processes towards ‘far fields’, for which an
extensive body of asymptotic work is available [16], [21]. When the pole fields do not
cover the full region of interest in the complex plane, pole free parts can be obtained
by solving ODE boundary value problems (BVPs).

∗University of Colorado, Department of Applied Mathematics, 526 UCB, Boulder, CO 80309,
USA (fornberg@colorado.edu).

†University of Stellenbosch, Department of Mathematical Sciences, Private Box X1, Matieland
7602, South Africa (weideman@sun.ac.za).

1



F��. 1.1. Highly schematic illustration of some pole fields for the PI equation in case of real-
valued ICs at z = 0.

The first numerical initial value problem (IVP) algorithm appropriate for dealing
with poles was given by Willers in 1974 [30]. It is here generalized from a single
integration path along the real axis to networks of paths throughout regions of the
complex plane. The present study is focused on numerical issues, and uses for illus-
trations the PI equation

d2u

dz2
= 6u2 + z. (1.1)

In forthcoming studies, we will change the focus towards exploring the solution prop-
erties of both the PI and the higher Painlevé transcendents.

As a background to the present work, we note first a few analytical results for
the PI function. It follows from (1.1) that the ODE is left invariant by the variable
changes u → ω3u, z → ωz when ω5 = 1. Related to this result, the pattern of
solutions for the ODE form (at sufficiently large distances from the origin) five distinct
asymptotic sectors in the complex plane, each of angular width 2π/5. Assuming
that u(0) and u′(0) are both real (i.e. u(z) is real-valued along the real axis), the
solutions can form pole patterns similar to the very schematic illustrations in Figure
1.1. Further analytic motivations for these sectors, including their relations to the
tronquée (truncated) cases and the regularities within the pole fields, go back to [4],
and are also summarized in Section 12.3 of [16]. Within smooth areas, the left-hand
side (LHS) of (1.1) becomes negligible for increasing |z|, and the two terms in the
RHS will balance, leading to the estimate

u(z) = ±

√
−

z

6
+ o (1) . (1.2)

More detailed asymptotic expansions were noted already in [4]. However, (1.2) suffices
for the present work. In the vicinity of a singularity, local analysis yields

u(z) =
1

(z − z0)2
−

z0
10
(z − z0)

2 −
1

6
(z − z0)

3 +O(z − z0)
4 (1.3)

(with a second parameter, beyond the pole location z0, entering at the order O(z −
z0)

4). All the singularities are therefore double poles of equal strength and with zero
residue.
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In the remaining sections of this work, we first introduce the numerical pole field
solver. After combining it with a boundary value method, we generate a collection
of illustrations displaying some different types of solutions to the PI equation (1.1).
This is followed by a discussion of some numerical implementation variations, and by
some concluding remarks.

2. Padé method for solving ODE IVPs. One of the key components in the
present work is an IVP solver that is able to integrate accurately throughout pole fields
of any extent (including right up to poles at unknown locations). We first introduce
the relevant issues in the case of the standard first order ODE

y′(t) = f(t, y(t)), y(t0) = y0. (2.1)

The most basic numerical scheme for (2.1) is known as Forward Euler. This first order
accurate method is obtained by considering only the linear part of a Taylor expansion,
i.e.

y(t+ h) = y(t) + h f(t, y(t)). (2.2)

There are three main directions by which this inefficient FE scheme can be improved,
leading the classes of (i) Runge-Kutta methods, (ii) Linear multistep methods, and
(iii) Taylor expansion methods. The third of these classes forms our starting point.

2.1. Taylor series methods. The idea is to use the ODE to generate, at each
step, a much more accurate truncated Taylor expansion than (2.2)

y(t+ h) = c0 + c1h+ c2h
2 + c3h

3 + . . .+ cnh
n +O(hn+1). (2.3)

Here n is typically in the range of 10-40. A surprisingly large number of text books on
numerical methods present only a very ineffective implementation, and then dismiss
the concept altogether.

2.1.1. Inefficient version. By Taylor’s theorem, cn = y(n)(t)/n!, so all the
coefficients can be obtained by repeated differentiation of the ODE y′(t) = f(t, y(t)).
This process starts:

y′ = f

y′′ = f ∂f∂y +
∂f
∂t

y′′′ = f2 ∂
2f
∂y2 + f

{(
∂f
∂y

)2
+ 2 ∂

2f
∂t∂y

}
+
{
∂2f
∂t2 +

∂f
∂t

∂f
∂y

}

y′′′′ = f3 ∂
3f
dy3 + f2

{
3 ∂3f
∂t∂y2 + 4

∂f
∂t

∂2f
∂y2

}
+

+f

{(
∂f
∂y

)3
+ 5 ∂

2f
∂t∂y

∂f
∂y + 3

∂3f
∂t2∂y + 3

∂f
∂t

∂2f
∂y2

}
+
{
∂3f
∂t3 + 3

∂f
∂t

∂2f
∂t∂y +

∂2f
∂t2

∂f
∂y

}

The number of terms increases at a rate that quickly makes the approach impractical.

2.1.2. Efficient versions. It also follows from the ODE y′(t) = f(t, y(t)) that

dy(t+ h)

dh
= f(t+ h, y(t+ h)). (2.4)

Two effective approaches for determining the coefficients now become available:

1. Substitute (2.3) into (2.4) and equate coefficients, and
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2. At first, use only one term of (2.3), substitute into (2.4) and integrate, giving
two correct terms. For each similar step, one gains one correct coefficient in
the expansion.

In many cases, such as for the PI and the PII equations, the first approach is easy
to carry out ‘by hand’, leading to simple codes for the numerical evaluation of any
number of coefficients in (2.3). For more complex ODEs, symbolic algebra systems
can be useful. However, the second approach may then be preferable since it always
can be implemented entirely numerically in a straightforward manner [2].

2.2. Padé version of the Taylor series method. The Taylor method, like
virtually all other numerical ODE approaches, assumes that solutions can be well
approximated locally by polynomials. This assumption is violated near poles. Starting
from the Taylor method, we therefore take the additional step of converting the finite
expansion (2.3) to Padé rational form

y(t+ h) =
a0 + a1h+ a2h

2 + . . .+ aνh
ν

1 + b1h+ b2h2 + . . .+ bn−νhn−ν
+O(hn+1). (2.5)

Two mathematically equivalent but numerically different conversion strategies are
discussed in Section 5.2. We choose n even and take ν = n/2, making the numerator
and denominator degrees equal in (2.5). In this rational form, a pole in y(t + h)
located near a location t, will just introduce a zero in the denominator of (2.5).

2.2.1. Comparison between Taylor and Padé integration. We choose as
a demonstration problem

y′(t) = t2 + y2, y(0) = 0. (2.6)

The analytic solution can be expressed in terms of Bessel functions

y(t) = t J3/4(t
2/2) / J−1/4(t

2/2) ,

i.e. it has first order poles as its only singularities along the real t-axis. The 14th

order Taylor method and its (7,7) Padé counterpart, both using steps h = 4/27, are
compared in Figure 2.1. The Taylor method fails when the first pole is approached. In
contrast, the Padé algorithm steps right through any number of these. Some accuracy
is lost because, following a pole, small values have been generated by cancellation of
larger ones — a well-known recipe for losing significant digits. As described in Section
3.1, this loss is avoided in our pole field calculations by choosing continuation paths
that reach their goals by following low magnitude passages in-between poles (rather
than going directly through them).

3. Computational aspects of the Padé method when applied to 2-D pole
fields. Consider again the PI functions, defined by (1.1). Figure 3.1 shows a typical
example of a computed solution over a region surrounding the point where the initial
conditions (ICs) have been provided — here u(0) = −0.1875 and u′(0) = 0.3049. Since
these values are close but not exactly equal to those producing the tritronquée case (cf.
Figure 1.1), there are pole fields in all the five main sectors. However, in four of the
sectors, the pole fields have moved some distance away from the origin. This is in good
agreement with the pole location calculations in [20] (based on computationally quite
expensive high order and high arithmetic precision continued fraction expansions,
centered at the origin). By contrast, the present Padé-based IVP solver produced the
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F��. 2.1. Comparison between the Taylor and Padé methods for equation (2.6). Both are based
on the same local Taylor expansions to 14th order, using steps of h = 4/27 ≈ 0.15. (a) Exact
solution and numerical approximations, (b) Magnitude of the errors. The dashed vertical lines mark
the pole positions.

F��. 3.1. Magnitude of the solution u(z) to the PI equation in case of ICs u(0) = −0.1875,
u′(0) = 0.3049, displayed over the domain z = x+ iy, −10 ≤ x ≤ 10, −10 ≤ y ≤ 10.

161 × 161 array of data for Figure 3.1 in about 0.75 seconds, using MATLAB on a
standard notebook computer.

Tests on three different Windows PC notebooks, with dual core processors of
clock speeds 2.8 GHz, 2.0 GHz and 1.34 GHz, respectively, show that relative times
on different systems can, to within 10%, be estimated directly from these speeds.
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Our ‘reference computer’ for which we quote actual times is the faster of the three
(a Fujitsu 9700), when using one core only. With MATLAB’s parallel or distributed
computing tool boxes, the simple strategy of partitioning the domain (and changing a
single ‘for’ statement to a ‘parfor’ statement) gives speed-ups that become essentially
proportional to the number of cores available. For example, each pole field shown
in Figures 4.7 a-e is a 5 × 5 composite of 25 completely independent runs (each
starting from the same ICs at z = 0, and covering areas of the extent 20× 20 in the
complex plane). Similarly, Figure 4.8 is a composite of 18 independent runs. When
‘animating’ solutions as functions of the ICs (and, for the higher Painlevé equations,
also as functions of their parameters), producing each frame in such movie clips would
furthermore constitute an independent task.

We next describe some implementation details for the present algorithm and ex-
plain how it can be combined with a BVP solver to handle also situations in which
there are wide smooth bands between separate pole fields, as well as when smooth
sectors extend to infinity.

3.1. Selection of integration paths. The Painlevé property ensures that the
solution to (1.1) will remain single-valued, no matter how the integration path wanders
around in the complex plane (or divides itself into a tree-like branch pattern). As
noted above, numerical cancellations are minimized if one follows paths along which
the solution stays small in magnitude. With such integration paths, we need to reach
every one of the 161×161 = 25921 node points seen in Figure 3.1. These considerations
lead us to the following two-stage strategy:

1. Create a coarse grid across the domain (in our case with 40 × 40 = 1600
nodes) and run a path to near (but not quite up to) each of these target
points, and

2. From each end location of the path set just described, take a single step right
up to each nearby node on the fine node set.

With regard to Stage 1, Figure 3.2 illustrates a tree-like structure of paths starting at
the origin and with branches reaching close to each of the 1600 nodes on the coarse
set, using a step length h = 0.3. Initially, one of the nodes was randomly selected,
and a path from the origin to it was created as follows. For each step of length h, we
consider five choices of direction: one aiming straight at the goal and the remaining
ones aiming in directions 22.5o and 45o to either side. The step is then taken for
which the new u value is smallest in magnitude among the five choices. Since the
choices were calculated from the same Padé approximation, the additional cost of
the multiple evaluations is negligible. Once we reach within a distance of h from the
target point, this path is halted. Along such a path, we store for each discrete point
not just u and u′ but also the Padé coefficients. We next choose, again randomly,
a remaining node (target point) and repeat the process, however starting from the
closest (discrete) previously visited location (re-using its Padé expansion data). By
this strategy, paths cannot cross, and they will quickly reach within h of all target
points. In the case illustrated in Figure 3.2, about 1540 steps were needed for 1600
target points, i.e. on average less than a single step per target point. Changing h
from 0.3 to 0.5 (the case used throughout the present work) reduces the number of
steps to about 990.

Stage 2 - to step from the end of a path to its nearby node points on the fine
grid can be done based on a single Taylor / Padé expansion. The creation of these
expansions can be vectorized across all the 1600 cases. Of the computer time of 0.75
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F��. 3.2. Illustration of integration paths when using steps of length h = 0.3, starting from the
origin (solid black circle at the center) and reaching near every one of the 40 × 40 = 1600 target
points.

seconds quoted above, the two stages consume 0.41 s. and 0.34 s., respectively.
We note in Section 5.5 a situation when a minor modification to the fully random

path strategy is called for.

3.2. Numerical solution method for smooth regions. In areas where the
solution is smooth, the LHS of (1.1) becomes negligible, and the two terms in the RHS
will balance each other. Already tiny changes in u(z) will cause significant changes
in u′′(z) - an immediate cause for instability when solving an IVP. In this situation,
(1.1) is however perfectly well conditioned as a BVP. This allows us to connect an
edge of a pole field with (i) another pole field edge, (ii) the smooth far field asymptotic
approximation, or (iii) with some other value far out. In all cases, the BVP solver
will provide u′ values at the two end points. In case (iii) the u and u′ values at the
distant end locations are all that are needed as ICs for calculating the pole field that is
located beyond it. The smooth region between such pole fields can then be completed
according to (i).

3.2.1. BVP solvers. Our preferred choice for solving (1.1) as a BVP is Cheby-
shev (spectral) collocation, as described in [12], [26], [29]. With BCs u(za) = ua and
u(zb) = ub, the first step is to map the line segment between za and zb linearly to the
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canonical Chebyshev interval [−1, 1], by

z =
1

2
((zb + za) + (zb − za)t) , −1 ≤ t ≤ 1.

The ODE (1.1) is then transformed into

d2u

dt2
=
1

4
(zb − za)

2

(
6u2 +

1

2
(zb + za) +

1

2
(zb − za)t

)
. (3.1)

The second step is to introduce collocation points tj = cos(jπ/N), j = 0, . . . , N ,
which are the extrema of the Chebyshev polynomial of degree N on the interval
[−1, 1]. We denote the approximate function values on this grid by uj ≈ u(tj), and
define the (N+1)×1 vectors t = [t0, . . . , tN ]T , u = [u0, . . . , uN ]T , u2 = [u20, . . . , u

2
N ]
T ,

and 1 = [1, . . . , 1]T . The transformed ODE (3.1) can then be approximated by the
nonlinear system of equations

D2u =
1

4
(zb − za)

2
(
6u2 +

1

2
(zb + za)1+

1

2
(zb − za)t

)
, (3.2)

where D2 is the second derivative matrix associated with the nodal set t. (It represents
the operator obtained by fitting the data u by a polynomial of degree N , differentiating
the polynomial twice, and evaluating the result at the nodes t; see [12], [26], [29].)

It remains to enforce the BCs, u0 = ub and uN = ua, as described for example
in [29], Section 4, and then to solve the resulting nonlinear system. For this we use
Newton’s method, since the convergence is fast and the Jacobian is trivial to calculate.
The asymptotic solution (1.2) provides a good initial guess, since this BVP approach
is only used in regions where the second derivative is negligible. In no case were more
than six iterations needed. Solving (3.2) provides approximate solutions uj at the
Chebyshev nodes tj . We next evaluate the interpolation polynomial at our equispaced
lattice points using its barycentric form, which is both fast and numerically stable [3],
[15]. The total computer time to fill in a smooth band (161 separate BVP solutions;
one for each grid line) is generally less than a second. In contrast, it is remarked in
[11] that the use of elliptic solvers for a similar task was “computationally expensive”.

The pole field solver not only provides boundary values ua and ub, but also
derivative values u′a and u′b. This extra information provides an error diagnostic. Once
the approximate solution u has been computed by the BVP solver, derivatives at the
endpoints can be estimated via D1u, where D1 is the first derivative matrix. These
derivative values were matched with those of the pole field solver. If the agreement
is not to within some tolerance (typically set to 10−7 or 10−8), an increase in N , the
degree of the interpolant, is indicated.

To assemble the Chebyshev differentiation matrices and to perform the barycen-
tric interpolation, we have used, respectively, the MATLAB codes chebdif and
chebint, from the DMSUITE package [29].

We found another MATLAB package, Chebfun [27], to be quite convenient during
the initial explorations. It solves BVPs in essentially the same way as described here,
but it offers adaptive sampling to reach a specified accuracy. An automated deflation
strategy for computing multiple solutions (cf. Section 4.4) is under development at
the time of writing. Computer algebra systems, like Maple and Mathematica, are
particularly effective for solving nonlinear BVPs when extended precision arithmetic
is required. For example, the tritronquée parameters given in (4.1) were obtained with
a 32 decimal digit calculation in Maple. The conveniences offered by Chebfun and
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F��. 3.3. The approximation (3.3) applied to a numerical near-tritronquée solution in the
vicinity of the origin (cf. Figures 1.1c and 3.1). The level curve 0.001 (solid line) is an example of
a suitable pole field edge description.

Maple come, however, with a sizeable overhead in computational cost. As a result,
most BVP calculations in this paper used the direct application of the Chebyshev-
Newton method, as described above.

3.2.2. Pole field edge detection. The strategy outlined in Section 3.2 requires
us to be able to automatically detect ‘edges’ of pole fields. Writing z = x + i y, the
meromorphic function u(z) = u(x, y) obeys, away from its poles, Laplace’s equation
∂2u
∂x2 +

∂2u
∂y2 = 0. The residual when applying the 5-point stencil

∆u ≈




1

1 −4 1
1



 u

h2
= O(h2) (3.3)

will feature a proportionality constant in the O(h2) that is much smaller where u(z) is
smooth (i.e. away from pole fields compared to within pole fields). Figure 3.3 shows
log10|∆u| when (3.3) has been applied to a numerical solution near the tritronquée
case. It is easy to select a contour level (here 0.001) that gives a suitable pole field
edge description. It is typical that low level ‘ridges’ appear within the flat areas, as
visible here near the bottom left corner. These irregularities are caused by the fact
that different u entries in (3.3) may have been obtained following entirely different
paths through the complex plane, and then been amplified by the division by h2 in
(3.3). Since our IVP solver is stable within and near the pole fields, these irregularities
will not appear in regions that are of concern in the present context.

4. Some further illustrations of PI solutions. In this section we test the
performance and reliability of our method against some important special cases of the
PI equation.
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F��. 4.1. A near-tritronquée case calculated by the steps (i) use a BVP solver over [−20i, 20i]
to obtain values for u and u′ at z = 0 and z = 20i (ii) use this data to separately run out the two
pole fields, (iii) fill in the area between pole field edges by further BVP solutions.

4.1. The tritronquée case. Figure 4.1 illustrates a case much closer than the
one shown in Figure 3.1 to the limiting case, for which the upper and lower (not
shown) pole fields would have moved out to infinity. The upper end of the solid
line marks the location z = +20i. The PI equation (1.1) was formulated as a BVP
between this point and z = −20i, using as end data the leading term of (1.2) (an
approach previously used in [11]). From this solution, we obtain in particular u(z)
and u′(z) at z = 20i and at z = 0. Each of these points can then form starting points
for the Padé pole field integrator, allowing accurate calculations of the two pole fields
shown. The complete solution (accurate to better than 10−10) is then obtained by use
of the pole field edge detection algorithm and filling in the smooth band in-between
using the Chebyshev-Newton BVP solver.

By placing the BVP’s endpoints at ±20i and using an extended precision BVP
10
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F��. 4.2. Solutions along the real axis obeying u(0) = 0: (a) One of the tronquée cases together
with two solitions for similar values for u′(0) near one of the tronquée cases, (b) The two tronquée

cases. In both subplots, the dotted curves correspond to the leading term ±
√
−z/6 in (1.2).

solver in Maple, we find for the tritronquée solution

u(0) ≈ −0.1875543083404949, u′(0) ≈ 0.3049055602612289 (4.1)

(cf. approximations previously provided in [17], [20]). Already when solving the BVP
over [−20i, 20i], using only the rather crude leading term approximation of (1.2), these
two values above are obtained to an accuracy of better than 10−20, indicating that
the right pole field in Figure 4.1 is essentially equal to its tritronquée form. The upper
pole field is by no means unique, however, and it is here determined by arbitrarily
having assigned the value of u(20i) from (1.2).

4.2. NIST Handbook example. Figures 4.2 a,b (similar to Figures 32.3.3 and
32.3.4 in [21]) illustrate along the real axis tronquée and near-tronquée solutions for
which u(0) = 0. Figures 4.3 and 4.4 show the extensions to the complex plane of the
two near-tronquée cases in Figure 4.2 a. The thick line along the real axis in each
of these two figures correspond to the dashed and dot-dashed curves in Figure 4.2 a.
A short cross-line along the imaginary axis indicates the location of the origin. As
the value of u′(0) approaches the tronquée case from below, the left pole field seen
in Figure 4.3 is pushed infinitely far out to the left and it then returns again with
the key difference that, on the return, there is a row of poles along the negative real
axis (rather than the negative real axis passing between two adjacent rows of poles).
During this process, there are no noticeable changes occurring in the right side pole
field.

4.3. Overview of tronquée solutions. The tronquée solutions that were il-
lustrated (along the real axis only) in Figure 4.2 b are just two out of infinitely many
such cases for which u(0) = 0 (however the only ones without some poles also just
to the left of the origin). Figure 4.5 shows, in an (u(0), u′(0))-plane, all the ICs that
produce tronquée solutions. The two cases just mentioned correspond to the inter-
sections between the innermost curve and the vertical axis (defined by u(0) = 0). We
discuss at the end of Section 4.4 a convenient way of generating Figure 4.5.

4.4. Creation of a smooth band far out in left half-plane. Similarly to
how we used the BVP solver along a section of the imaginary axis in Section 4.1, we
can do the same along a section of the negative real axis. If we arbitrarily decide on
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F��. 4.3. NIST Handbook example, u(0) = 0, u′(0) = 1.8518.

z ∈ [−18,−14] and use as initial guess the values u =
√
−z/6 apart from a too large

value at z = −18 and a too small one at z = 14, as shown by circles in Figure 4.6 a,
the Chebyshev-Newton scheme immediately converges to the solution shown by the
solid line. Simply reading off the resulting value for u′(−18) and u′(−14) allows us to
run out the two pole fields and, again using the BVP solver, stably fill in the smooth
band in-between, with the result seen in the main part of the figure. Choosing a u
value at z = −18 lower than

√
−z/6 similarly produces a left pole field without poles

further out along the negative real axis, and choosing a u value at z = −14 higher
than

√
−z/6 a right pole field with a front-row pole on the real axis. All together, we

can thus combine four different types of solutions with the same width of the smooth
band. Tronquée solutions with the right pole field extending far along the negative
real axis were analyzed already in [4]. There does not appear to be any restrictions on
where bands of this type can be placed in the left half-plane. In the right half-plane,
the situation is different since, along the positive real axis, the two terms in the RHS
of (1.1) will never approximately cancel each other.

This idea for creating smooth bands was used to produce the tronquée display in
Figure 4.5. We generated smooth bands that extend from z = −∞ and up to some
point that is moved to the right along the z-axis and, during this process, recorded
the values that the pole field solver gives for u(0) and u′(0).

4.5. Transitions in pole field patterns. Asymptotic theory requires that,
sufficiently far out from the origin, the PI solutions feature the sectorial structure
indicated in Figure 1.1, with the sector boundaries as shown (independently of whether
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F��. 4.4. NIST Handbook example, u(0) = 0, u′(0) = 1.8519.

F��. 4.5. Initial conditions u(0), u′(0) that lead to tronquée solutions. For curves marked as
solid lines, the first nontrivial feature encountered when descending the real z-axis is a gap between
two poles, else dashed if it is a pole. An isolated dot marks the tritronquée case.
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F��. 4.6. Solution associated with the BVP described in Section 4.4.

the ICs at z = 0 are real or not). Since the solutions locally around the origin can be of
different form (for example with a six-fold rather than a five-fold sector pattern if both
u(0) and u′(0) are large in magnitude), some forms of transitions must occur. Figures
4.7 a-f provide some illustrations. Two cases agree with pole fields already displayed;
subplot (b) with Figure 4.3 and subplot (e) with Figure 3.1. We note that, with
increasing distances from the origin, the pole fields tend to become denser (consistent
with the estimate that every PI solution will have O(R5/2) poles within a radius of R
from the origin [16]), and the smooth bands between them become narrower. Figure
4.8 illustrates that changes in pole patterns need neither be gradual, nor be associated
with well defined smooth bands. With the ICs u(0) = −5, u′(0) = 0, a sharp pattern
transition is visible near Re(z) = −60.

5. Discussion of implementation options. Several choices need to be made
when converting a numerical concept into efficient code. Some of these (such as
the order of accuracy in the Padé-based integrator) relate mostly to the numerical
algorithm itself, whereas other choices depend more on the software system that is
used for the numerical implementation.

5.1. Choice of order for the Padé integrator. The next two subsections
motivate our standard choice of order = 30 (i.e. a (15,15) Padé expansion) together
with a step size of h = 0.5.

5.1.1. Test problem - Weierstrass ℘-function. In order to obtain a test
problem with the same numerical issues as (1.1) within pole fields, but with a known
solution, we drop the z-term and obtain the ODE

d2u

dz2
= 6u2 , (5.1)

for which the general solution is given by the Weierstrass ℘-function [13, Ch. 23]

u(z) = ℘(z + c1, 0, c2). (5.2)

This is an elliptic (doubly periodic meromorphic) function with second order poles on
a rhombic lattice composed of equilateral triangles. We pick c1 = −1, c2 = 2, which
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F��. 4.7. Pole locations displayed over the region [-50,50]x[-50,50] for six different choices of
initial conditions at z = 0. For the tritronquée case (subplot f ), see (4.1) for the values of u(0) and
u′(0).
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F��. 4.8. Pole locations displayed over the region [-90,30]x[-30,30] in the case of ICs u(0) = −5,
u′(0) = 0.

0 5 10 15 20 25 30

-2

0

2

F��. 5.1. Poles of the Weierstrass function (5.2) (large dots) along with the path taken by the
Padé integrator (order = 30, h = 0.5). The absolute error at x = 30 is 8.34 · 10−14 and the relative
error (also shown in.Table 5.1) is 7.62 · 10−14.

determines the initial conditions

u(0) ≈ 1.071822516416917, u′(0) ≈ 1.710337353176786.

On the real axis, the poles are located at x = 1 + 2ωk, k = 0,±1,±2, . . ., where
ω = Γ(13 )

3/(213/6π) ≈ 1.363.
We compute below, using numerical ODE solvers, the solutions at x = 30 (medium

range) and at x = 104 (long range), for which the reference values are

u(30) = 1.095098255959744, u(104) = 21.02530339471055. (5.3)

For some of the higher Painlevé transcendents there may be no ‘companion’ solu-
tion, like the Weierstrass ℘-function in the case of PI . In those cases, accuracy should
be checked by alternate means. One strategy we recommend is to compute a pole field
with real initial data on the real axis. The theoretical solution in the upper and lower
half-planes should be identical (up to conjugation) but, because of the random nature
of our path selection algorithm, this will not be the case for the numerical solution.
The difference between the upper and lower half-plane solutions gives a reasonable
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F��. 5.2. (a) Accuracy of the Padé integrator for the test calculation over [0, 30] as function of
h and order. The surface is truncated where the relative error exceeds 10−1. (b) Contour lines for
equal accuracy (solid lines; level values displayed along top and right edges) and for equal computer
time (dashed lines; level values displayed along the left edge), indicating a particularly favorable
region around order = 30 and h = 0.5. The three thicker contour lines for equal accuracy in this
subplot (at levels 10−2, 10−6 and 10−10) correspond to the three level curves shown in part (a).

estimate for the numerical error and is good enough for determining practical choices
of the parameters order and h. An alternative is to run a pole field twice in succession
with exactly the same initial data (not necessarily real). Again, the random nature
of the pole field algorithm ensures that the difference between the two solutions can
serve as a practical accuracy indicator.

5.1.2. Accuracy and time comparisons. Figure 5.1 shows the pole pattern
for the test case just described, and also the integration path taken by the Padé
integrator in the ‘medium range’ test case. Figure 5.2a shows how the numerical
error for the test problem above, measured at z = 30, varies with the two parameters
order and h. The trade-off for increasing order and decreasing h is increased computer
time. Figure 5.2b displays contour lines for both relative computer times and relative
errors. For best clarity, some fine-scale ‘jitter’ (visible in the raw data in Figure
5.2a) was smoothed out when we created these contours. For conversion to actual
computer times, the relative time ”1” corresponds on our reference computer to 0.020
seconds. The intersections of the different contours suggest that our standard choice
of order = 30 and h = 0.5 represents a generally favorable combination of the two
measures.

5.2. Toeplitz-based implementation vs. the ǫ-algorithm. There are sev-
eral methods available for computing Padé approximations (2.5) from truncated Tay-
lor expansions (2.3). The most direct is to multiply both expressions with the de-
nominator in (2.5) and then equate coefficients. The coefficients b1, . . . , bν for the
denominator then follow from solving






cν cν−1 . . . c1
cν+1 cν c2

...
. . .

...
c2ν−1 c2ν−2 cν











b1
b2
...
bν





= −






cν+1
cν+2

...
c2ν






, (5.4)
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after which the numerator is obtained from a0 = c0 followed by





a1
a2
...
aν





=






c0 0 . . . 0
c1 c0 0
...

. . .
...

cν−1 cν−2 c0











b1
b2
...
bν





+






c1
c2
...
cν






. (5.5)

Opportunities that could possibly be exploited in Fortran or C codes, but which
are unlikely to offer any advantages in MATLAB for the current small system sizes,
include:

• Reversing the order of the unknowns in (5.4), giving a symmetric (although
not generally positive definite) linear system.

• Using ‘fast’ Toeplitz (or Hankel) solvers, see e.g. [28]. Although, in theory,
the operation count is reduced from O(ν3) to O(ν2) or faster, savings are
unlikely to be seen for the relatively small present values of ν (in particular
in view of MATLAB’s very efficient implementation of the backslash (“\”)
operator for general linear systems).

It is well known that the condition number of the linear system (5.4) can grow
rapidly with increasing ν [1]. In spite of this, one typically obtains a rational function
that is far more accurate than the coefficients of the denominator polynomial. Partial
explanations and further discussions of this are given in [5], [19]. Especially since we
are using only matrices of moderate size, we have not found the ill-conditioning to be
a concern.

In rare cases, it can happen that (5.4) becomes outright singular. In the present
context, this has only been observed in cases where the Taylor coefficients are very
rapidly decreasing in size (or a number of them become exactly zero). When this oc-
curs, we remove the last row of (5.4). Matlab’s “\” solver will then give the solution to
the underdetermined system that has the smallest norm, thereby restoring numerical
stability. Although this version actually runs faster than using a square system, we
did not use it routinely since it slightly reduces the accuracy in the opposite extreme
case (with very rapidly growing Taylor coefficients, as encountered near poles).

A different option is to use the ǫ—algorithm (or the essentially equivalent η—
algorithm, used in [30]). The Padé approximation can then be evaluated in O(ν2)
operations directly from the corresponding Taylor expansion [14], [31]. However, there
is no built-in version in MATLAB of the types of recursions involved, and tests showed
that a ‘for loop’-based implementation is about 10 times slower for the present prob-
lem sizes (when taking into account that separate evaluations are needed for u(z+h)
and u′(z+h), whereas the Toeplitz approach can compute the derivative by the quo-
tient rule of calculus). It should be noted that the ǫ- and η- algorithms, in which the
system (5.4) is never formed, do not escape ill-conditioning issues. These algorithms
are based on quotient-difference formulas, and the differencing of quantities of nearly
equal magnitude causes instabilities.

Since we use MATLAB, our method of choice for computing Padé approxima-
tions has been the Toeplitz approach and solving the system (5.4) with the backslash
operator.

5.3. Choice of directions for the ODE steps. The original ‘pole vaulting’
idea, proposed in [8], involved making semicircular or rectangular temporary path
diversions into the complex plane. The present work extends the idea in three fun-
damental ways: (i) use of a ‘pole friendly’ Padé integrator, (ii) not using any rigid
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choices for the diversion paths, but instead use a freely branching network of paths
throughout the complex plane, and (iii) targeting the paths towards whole regions in
the complex plane rather than only towards other real axis locations. A key issue that
arises is how to choose the direction to take for each step. Our strategy for this was
described in Section 3: evaluate in five directions all roughly aiming towards the goal
and select the lowest choice in terms of |u(z)| (cf. additional discussion in Section
5.4.1).

5.4. Comparisons between some different ODE solvers. The tests in this
section compare our Padé integrator against other ODE solvers. Since the circum-
stances are quite different for the two ‘stages’ (cf. Section 3.1), we discuss them
separately. In typical pole field calculations, we noted above that the computer times
for the two stages were somewhat comparable when using the Padé method. We will
see here that a high order Runge-Kutta-Nyström (RKN) method can be competitive
for Stage 1, but that the Padé approach is far superior for Stage 2.

5.4.1. Stage 1: Integration along ‘valleys’, and near a pole at a known
location. We consider again the simplified ODE (5.1). The path selection strategy
described in Section 3.1 remains unchanged, but on each segment of length h, a
standard ODE solver is used rather than the Padé integrator. As alternate solvers
to compare against, we chose MATLAB’s standard ode45 solver and a 12th order
Runge-Kutta-Nyström method (RKN12) [9], [10], respectively.

In the RKN12 method, a step size h1 < h is used, where h1 = h/M1. That is,
one step of the Padé integrator is emulated by M1 steps of the RKN12 method. In
the cases where the solution is required high up on the wall of a pole, however, it
becomes necessary to decrease the RKN12 step size for the final ascent step in order
to preserve accuracy. In that case, we use a step size h2 = d/M2, where M2 ≫ M1

and d is the length of the final path segment.
With the Padé integrator, the cost penalty is very small for integrating in five

directions (rather than only in one direction), in order to select an approximate min-
imum modulus direction for the next step. For the RKN12 method we could emulate
this to some degree, by vectorizing the MATLAB code so that it integrates in all five
directions simultaneously. This is not possible with the ode45 code and, for a fair
comparison, we simply reduced the computational times recorded in Table 5.1 by a
factor of five.

Relatedly, one could modify the path selection algorithm so that the approximate
minimum modulus direction is determined without actually integrating the ODE, as
alluded to at the end of Section 5.3. Such a strategy for finding the step direction
at z = z0 might be the preferred choice when the Padé algorithm is implemented
in Fortran or C. We have implemented it as follows: Consider first the same 90o

wedge as described in Section 3.1. Rather than integrating along five evenly spaced
rays in this wedge, we compute instead the steepest descent direction for |u(z)|, i.e.
θ = arg(−u(z0)/u

′(z0)). If this direction falls inside the wedge, we accept it as the
direction of the next step. If not, we choose the edge of the wedge closest to this
steepest descent direction as the step direction. When combined with the RKN12
method, this method is denoted RKN12† in Table 5.1.

Table 5.1 shows relative errors at three values of z, namely (a) z = 30 (medium
range, low valley run; target point seen in Fig. 5.1), (b) z = 104 (long range, low
valley run), and (c) z = 28.261 (medium range, but with the end point high up on a
pole ‘wall’; the rightmost real pole in Fig. 5.1). The reference values for (a) and (b)
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(a) z = 30 (b) z = 104 (c) z = 28.261
Rel. Err. CPU Time Rel. Err. CPU Time Rel. Err. CPU Time

Padé 7.62(−14) 0.020 2.34(−10) 26.5 7.92(−10) 0.018
RKN12 1.74(−13) 0.023 1.44(−09) 38.0 9.61(−10) 0.12
RKN12† 1.02(−13) 0.020 4.11(−09) 15.6 1.71(−09) 0.11
ode45 1.47(−11) 1.36 – – 4.30(−08) 1.44

T���� 5.1

Relative error and cpu times for various methods for computing ℘(z − 1, 0, 2). The RKN12
parameters are (a) M1 =M2 = 5, (b) M1 =M2 = 5, (c) M1 = 5,M2 = 3000, and the absolute and
relative error tolerances of ode45 are both set to 10−12.

were given in (5.3). For case (c), we have

u(28.261) = 9.876953517025014× 106.

For the Padé integrator, we used in all cases h = 0.5 and order = 30, as discussed
in Section 5.1.2. For the RKN12 and ode45 methods we used h = 0.5 as well. We
experimented with the parameters M1 and M2 in the RKN12 methods in order to
obtain roughly the same accuracy as with the Padé method. These values, as well as
the error tolerances for ode45, are listed in the caption of the table. For the timing
results given in Table 5.1, we took the median cpu time over 100 repetitions of the
test.

The numerical results show that ode45’s computational times exceed those of the
other methods by orders of magnitude, which is the reason it is not recorded in the
long valley run in Table 5.1(b). In addition, it has difficulties meeting the specified
error tolerances, especially near a pole, as seen in Table 5.1(c).

The Padé and the two RKN12 methods featured comparable speeds and accura-
cies in the low valley runs, but the Padé method was notably faster in the vicinity of
a single pole. It should be kept in mind that in Table 5.1(c) it was known a priori
that the target was near a pole, and hence the value of M2 could be increased in an
optimal manner.

Symplectic ODE schemes are also applicable because the PI equation can be
expressed as a Hamiltonian system; see [21], Section 32.6. We tested the Störmer-
Verlet scheme, but found it not to be competitive, owing to its low (second) order of
convergence. There exist higher order symplectic Runge-Kutta-Nyström schemes but,
to quote from the abstract of [6]: “The authors construct and test symplectic, explicit
Runge-Kutta-Nyström (RKN) methods of order 8. The outcome of the investigation
is that existing high-order, symplectic RKN formulae require so many evaluations per
step that they are much less efficient than conventional eighth-order nonsymplectic,
variable-step-size integrators even for low accuracy.” Finally, symplectic schemes
require fixed step sizes, whereas our path strategy requires frequent direction changes,
thereby violating the conditions for symplecticness.

5.4.2. Stage 2: Evaluations at lattice points, with poles present at
unknown locations. In this case, described as ‘Stage 2’ in Section 3.1, the advantage
of the Padé approach becomes overwhelming. For each of the 40× 40 = 1600 ‘Stage
1’ end locations, one single Padé step suffices to reach its associated lattice points on
the fine grid - with no tests needed to check for nearby poles. The necessary Taylor
and Padé expansions can be computed using vector operations of that length (1600).
While around 900 Padé steps in ‘Stage 1’ take about 0.4 seconds, over 25000 Padé
steps in ‘Stage 2’ are completed in less time than that. In contrast, the RKN12 (or any
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other) approach cannot be vectorized similarly, since start and end points for the last
step might be on the opposite side of a pole, necessitating case-by-case tests followed
by local path and step size adjustments. Instead of greatly improving in speed, each
step would now be significantly slowed down. Hence, we did not write the code to
apply any alternative to the Padé method for ‘Stage 2’.

5.5. ‘Tuning’ of random path selection strategy. In cases where both a
pole field(s) and a smooth area are present in the domain of interest, it is important
to prevent the pole field solver from wandering into the smooth region and then
stepping back again into the same pole field. As noted above, smooth regions are
unstable regions for any IVP solver, and the associated loss of accuracy ought not be
carried back into the pole field. One way to prevent this is to force the path selection
algorithm to complete pole fields before stepping into smooth regions. In the present
test cases, we implemented this ‘manually’ after having inspected, in preliminary
test calculations, where the pole field edges appeared. However, with the pole field
edge detection procedure described in Section 3.2.2, this process can readily be fully
automated.

6. Conclusions. In this study we have demonstrated that the pole fields of
Painlevé-type equations offer excellent opportunities for accurate and computationally
very fast numerical solutions. When supplemented with appropriate BVP solvers,
accurate and fast computational solutions become available also across pole-free areas.
Although we have here only presented results for the PI equation, the numerical
approach has been found to work equally well in preliminary computations with the
PII equation. We have every reason to believe this will be the case also for the
PIII − PV I equations.

The present approach is based on a very general ‘pole vaulting’ strategy com-
bined with the use of a Taylor/Padé-based IVP solver. Comparisons against some
alternative approaches (such as different IVP solvers, different ways to convert Taylor
expansions to Padé form, etc.) show that, while some variations also might work
well in certain cases, the chosen method constitutes a simple and highly competitive
overall approach — indeed the first one to permit accurate numerical solutions across
extended regions of the complex plane.

We remark that an entirely different approach to solving the Painlevé II equa-
tion was recently presented in [22]. Based on a Riemann-Hilbert formulation of the
problem, this approach evaluates integrals rather than solves differential equations.
The displayed computed solutions include some poles, but are limited to relatively
small values of |x| (the interval [-8,8]), as the author reported a loss of accuracy and
a deterioration of condition number as |x| increases.

There are many opportunities for future work along the lines of the present study.
These include:

• Compare numerical calculations against available theoretical results for the
different Painlevé equations.

• Explore the Painlevé equations for yet unseen solution features.
• Create animations of how the Painlevé solutions evolve when parameters

and/or initial conditions are varied.
• Develop a general purpose software package for Painlevé-type equations.
• Utilize the random path feature of the present scheme for numerically test-

ing whether ODEs (maybe of higher order, and/or systems of ODEs) have
the Painlevé property (based on the principle that different runs, following
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different continuation paths, would give different values if branch points are
present).
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