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Supplementary notes to our textbook (Hunter and Nachtergaele). These notes generally follow
Kreyszig’s book. The reason for these notes is that this is a simpler treatment that is easier
to follow; the simplicity is because we generally do not consider uncountable nets, but rather
only sequences (which are countable). I have tried to identify the theorems from both books;
theorems/lemmas with numbers like 3.3-7 are from Kreyszig.
Note: there are two versions of these notes, with and without proofs. The version without

proofs will be distributed to the class initially, and the version with proofs will be distributed
later (after any potential homework assignments, since some of the proofs maybe assigned as
homework). This version does not have proofs.

1 Basic Definitions
NOTE: Kreyszig defines inner products to be linear in the first term, and conjugate linear in the second
term, so 〈αx, y〉 = α〈x, y〉 = 〈x, ᾱy〉. In contrast, Hunter and Nachtergaele define the inner product to
be linear in the second term, and conjugate linear in the first term, so 〈ᾱx, y〉 = α〈x, y〉 = 〈x, αy〉. We
will follow the convention of Hunter and Nachtergaele, so I have re-written the theorems from Kreyszig
accordingly whenever the order is important. Of course when working with the real field, order is completely
unimportant.
Let X be an inner product space. Then we can define a norm on X by

‖x‖ =
√
〈x, x〉, x ∈ X.

Thus, X is also a vector space (or normed linear space), and we can discuss completeness on X.

Definition 1. A Hilbert space, typically denoted H, is a complete inner product space. One must specify
the field F , and we will always assume it is either R or C (note: the field cannot be arbitrary in a Hilbert
space — e.g., finite fields do not work).

Definition 2. Let X and Y be inner product spaces over the field F . A mapping T : X → Y is an
isomorphism if it is an invertible (hence one-to-one) linear transformation from X onto Y such that

〈Tx, Ty〉 = 〈x, y〉, x, y ∈ X.

In this case, X and Y are said to be isomorphic.

The above isomorphism definition is in Hunter and Nachtergaele, but not until §8 (cf. Def. 8.28).

Lemma 3 (Lemma 3.3-7). Let M be a non-empty subset of a Hilbert space H. Then the span(M) is dense
in H if and only if M⊥ = {0}.
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2 Orthonormal sets
A first result is exercise 6.6 in Hunter/Nachtergaele (or lemma 3.4-2 in Kreyszig): vectors in an orthogonal
set are linearly independent.

Theorem 4 (Thm. 3.4-6). (Bessel inequality) Let (ek) be an orthonormal sequence in an inner product space
X. For every x ∈ X, we have

∞∑
k=1
|〈ek, x〉|2 ≤ ‖x‖2.

Definition 5. Let (ek) be an orthonormal sequence in an inner product space X. Let x ∈ X. The quantities
〈ek, x〉 are called the Fourier coefficients of x with respect to the orthonormal sequence (ek).

Now we will discuss the convergence of the following Fourier series:
∞∑

k=1
〈ek, x〉ek.

Theorem 6 (Thm. 3.5-2). Let (ek) be an orthonormal sequence in a Hilbert space H. Then:

(a) The series
∑∞

k=1 αkek converges if and only if the series
∑∞

k=1 |αk|2 converges.

(b) If the series
∑∞

k=1 αkek converges, we write x =
∑∞

k=1 αkek, then we have αk = 〈ek, x〉, and conse-
quently,

x =
∞∑

k=1
〈ek, x〉ek.

(c) For any x ∈ H, the series
∑∞

k=1〈ek, x〉ek converges. (Note that the sum may not equal to x.)

In the above Theorem 6(c), we know that the sum may not be x itself. To ensure the sum is x, we need
to assume that (ek) is a total orthonormal set which is defined as follows.

Definition 7. Let X be an inner product space and let M be a subset. Then M is called total if span(M) =
X.

Definition 8. A total orthonormal set in an inner product space is called an orthonormal basis. N.B.
Other authors, such as Reed and Simon, define an orthonormal basis as a maximal orthonormal set, e.g.,
an orthonormal set which is not properly contained in any other orthonormal set. The two definitions are
equivalent (Hunter and Nachtergaele’s theorem).

Theorem 9 (Thm. 4.1-8). Every Hilbert space contains a total orthonormal set. (Furthermore, all total
orthonormal sets in a Hilbert space H 6= {0} have the same cardinality, which is known as the Hilbert
dimension).

See Kreyzsig, where he states this without proof in §3.6 and proves it in §4.1. The corresponding result
in Hunter/Nachtergaele is Theorem 6.29. The proof requires the axiom of choice or Zorn’s lemma.

Theorem 10 (Thm. 3.6-2). Let M be a subset of an inner product space X. Then:

(a) If M is total in X, then x ⊥M implies x = 0.

(b) Assume that X is complete. If x ⊥M implies x = 0, then M is total in X.

Lemma 11 (Lemma 3.5-3). Let X be an inner product space and let x ∈ X. Let (ek), k ∈ I, be an
orthonormal set in X. Then at most countably many of the Fourier coefficients 〈ek, x〉 are non-zero. (This
lemma is the key to Kreyszig’s simpler approach to non-separable Hilbert spaces)
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Let (ek), k ∈ I, be an orthonormal set in an inner product space X. Let x ∈ X. The above lemma
shows that the sum

∑
k |〈ek, x〉|2 is a countable sum. Hence, Bessel’s inequality can be applied to conclude∑

k |〈ek, x〉|2 ≤ ‖x‖2 in this case.
Now we have the following criterion for totality.

Theorem 12 (Thm. 3.6-3). Let M be an orthonormal set in a Hilbert space H. Then M is total in H if
and only if for all x ∈ H, the following Parseval relation holds (where we are summing over the non-zero
terms only) ∑

k

|〈ek, x〉|2 = ‖x‖2.

Now we discuss Hilbert spaces that contain countable orthonormal sets. Note: the following theorem is
the same as exercise 6.10 in Hunter/Nachtergaele (“A Hilbert space is a separable metric space iff it has a
countable orthonormal basis”):

Theorem 13 (Thm. 3.6-4). Let H be a Hilbert space.

1. If H is separable, every orthonormal set in H is countable.

2. If H contains an orthonormal sequence which is total in H, then H is separable.

And the major result of Hilbert space theory is the following:

Theorem 14 (Thm. 3.6-5). Two Hilbert spaces H and H′, over the same field (R or C), are isomorphic if
and only if they have the same (Hilbert) dimension.

3 Advanced definitions
The following is taken from Combettes and Bauschke’s “Convex Analysis and Monotone Theory in Hilbert
Spaces”. LetM be a nonempty set and let � a binary relation onM×M . Consider the following statements,
and for all statements, let a and b be any arbitrary element of M , then

1. a � a.

2. (∀c ∈M),
(
a � b and b � c

)
=⇒ a � c.

3. (∃c ∈M), a � c and b � c.

4.
(
a � b and b � a

)
=⇒ a = b.

5. a � b or b � a.

if (1), (2) and (3) hold, then we call (M,�) a directed set. If (1), (2) and (4), we call (M,�) a partially
ordered set. A partially ordered set with the property (5) is a totally ordered set (or a chain).
This allows us to define Zorn’s lemma, and to talk about nets.

3.1 Nets
From §1.4 in Combettes/Bauschke, who follow §2 in Kelley’s classic topology text “General Topology” (1955).
The idea is to generalize the notion of a sequence, so that in this generalized notion, continuous is always
the same as sequentially continuous (with the definition of sequentially continuous suitably modified) in all
topologies. The theory of nets is due to Moore and Smith (1922); a similar theory that generalizes sequences,
using the notion of a filter, is due to Cartan in 1937. Neither theory will be relevant for our class.
Let (A,�) be a directed set. We write b � a to mean a � b. Let X be a nonempty set. A net or

generalized sequence in X indexed by A is denoted by (xa)a∈A (or just (xa) if A is clear from context).
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For example, taking (N,≤), we see that every sequence is a net. Not every net is a sequence, since we may
have an uncountable index set A.
Let (xa) be a net in X, and let Y ⊂ X. We say that (xa) is eventually in Y if there is some c ∈ A such

that for all a ∈ A, a � c =⇒ xa ∈ Y . We say the net is frequently in Y if for all c ∈ A, there is some
a ∈ A such that a � c and xa ∈ Y .

3.2 Zorn’s lemma
We follow Kreyszig again.

Definition 15 (Chain). A chain, or totally ordered set, is a partially ordered set such that every two
elements are comparable.

An upper bound of a subset W of a partially ordered set M is an element u ∈ M such that x � u for
every x ∈W . Such an element need not exist. A maximal element of M is some m ∈M such that m � x
implies m = x. Again, such an element need not exist, and if it does, it need not be an upper bound.
Note the funny definition of a maximal element, which is not the same as defining a greatest element

(an element m such that x � m for all x ∈W ; i.e., an upper bound that lives within the set). These notions
are not the same, since for a maximal element, we may not be able to compare x � m (or m � x) for some
x. If the set is totally ordered, then maximal and greatest elements are the same concept.
Similarly we can define a least element. A well-ordered set is a totally ordered set with the property

that every subset has a least element. Zermelo’s theorem says that every set can be well-ordered; that is,
we can define some � to make it a well-ordered set. This is equivalent to the axiom of choice, and highly
counter-intuitive.
Here are four common partial orderings:

1. The usual ordering ≤, on subsets of the real numbers (e.g., arbitrary subsets, or integers or Q or N);
this is also a total ordering. Note that C does not have a canonical total ordering.

2. The ordering on sets of sets, defined by set inclusion ⊂. E.g., we say A � B if A ⊂ B. For example, if
we have A = {1, 2} and B = {2, 3}, then neither A ⊂ B nor B ⊂ A, so we do not have a total ordering.
As an example, let M = {{a}, {b}, {a, b}}, then {a, b} is both an upper bound and a maximal element.
If M = {{a}, {b}, {c}, {a, b}}, then there is no upper bound, and there are two maximal elements,
namely {c} and {a, b}.

3. The ordering induced by the positive semi-definite (PSD) cone. We work on the space of symmetric
matrices, and we say 0 � A if A is a PSD matrix, and we write B � A if 0 � A− B, i.e., if A− B is

PSD. Consider a matrix A =
(

1 0
0 0

)
and B =

(
0 0
0 −1

)
, so then neither A − B nor B − A is PSD,

so this is not a total ordering. However, it is a directed set, since for any two matrices A and B, we
can alway find a third matrix C such that C −A and C −B are both PSD.

4. The ordering on Rn where (x1, . . . , xn) � (y1, . . . , yn) if xi ≤ yi for all i.

The following “lemma” implies, and is implied by, the axiom of choice, so it is often taken to be synonymous
with it.

Lemma 16 (Zorn’s lemma, 4.1-6). Let M 6= ∅ be a partially ordered set, and suppose every chain C ⊂ M
has an upper bound, then M has at least one maximal element.

Theorem 17 (Hamel basis, 4.1-7). Every vector space X 6= {0} has a Hamel basis.
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