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Optimal control of excitable systems near criticality
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Experiments suggest that the cerebral cortex gains several functional advantages by operating in a dynamical
regime near the critical point of a phase transition. However, a long-standing criticism of this hypothesis is
that critical dynamics are rather noisy, which might be detrimental to aspects of brain function that require
precision. If the cortex does operate near criticality, how might it mitigate the noisy fluctuations? One possibility
is that other parts of the brain may act to control the fluctuations and reduce cortical noise. To better understand
basic aspects of controlling neural activity fluctuations, here we numerically and analytically study a network of
binary neurons. We determine how the efficacy of controlling the population firing rate depends on proximity to
criticality as well as different structural properties of the network. We find that control is most effective—errors
are minimal for the widest range of target firing rates—near criticality. Optimal control is slightly away from
criticality for networks with heterogeneous degree distributions. Thus, while criticality is the noisiest dynamical
regime, it is also the regime that is easiest to control, which may offer a way to mitigate the noise.

DOI: 10.1103/PhysRevResearch.2.033450

I. INTRODUCTION

A large body of experimental evidence supports the hy-
pothesis that the cerebral cortex operates at, or very near,
the critical point of a phase transition [1–5]. Consequently,
many efforts have been made to identify and understand the
functional benefits of operating in this regime [6], including
maximized dynamic range [7–9] and maximized information
transmission and capacity [10–12]. Both experiments and
models have shown that networks operating in the critical
regime visit the largest variety of microscopic and macro-
scopic states [10,13,14]. It has been hypothesized that these
states could be harnessed by the network to encode and trans-
fer information [15]. In this paper, we identify a way that
criticality may be beneficial in neural systems. We show that,
at criticality, the activity of the system can be controlled with
minimal error over the largest range of activity levels. In ad-
dition, by analytically treating the network’s deviations from
linear dynamics, we show that heterogeneity in the network’s
degree distribution reduces this controllable range consider-
ably. Understanding the controllability of a neural system
may be important for designing effective therapeutic brain
stimulation, closed-loop brain-machine interface systems, and
understanding basic experimental studies of optogenetic con-
trol of neural activity [16,17].
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There has been a significant amount of work in quan-
tifying the controllability of functional brain networks and
networked dynamical systems. The main methodology for
studying control of brain networks has been to assume an
approximate linear evolution model for the node state vector
st on a network derived from functional Magnetic Resonance
Imaging (fMRI) experiments (e.g., [18]) or from complete
connectomes [19] of the form st+1 = Ast + u, where u is the
control signal and A encodes the network connections. Using
established results from control theory, one can determine
the ability of the control signal to drive the state vector to a
desired state. Such analyses have provided valuable insights,
such as the role of specific brain regions in driving transitions
between different states of brain activity [18], the functional
role of individual neurons in controlling the locomotion of
Caenorhabditis elegans [19], and the role of large-scale net-
work topology on the efficiency of this type of control [20]
(for a review and other applications, see [21]). Other examples
of control of networked systems include pinning control of
synchronization [22] and synthetic rescue in metabolic net-
works [23]. For a review of control in complex networks,
see [24]. In the models that assume a linearized evolution
of the node state vector, the Perron-Frobenius eigenvalue of
the matrix A, λ, is typically assumed to be fixed at a value
less than 1 to guarantee stability of the uncontrolled system.
In contrast, here we are specifically interested in the relation
between control performance and the proximity of the system
to the critical state where activity is neither amplified nor
damped, i.e., to λ = 1, and therefore, we consider λ as our
main parameter of interest. In addition, we consider nonlinear
evolution of the form st+1 = σ (Ast + u), where σ is a nonlin-
ear function. Finally, we note that our interest in this paper is
not on the ability of the control signal to drive the state vector

2643-1564/2020/2(3)/033450(7) 033450-1 Published by the American Physical Society

https://orcid.org/0000-0003-0679-1766
https://orcid.org/0000-0001-5273-5234
https://orcid.org/0000-0002-2665-2256
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033450&domain=pdf&date_stamp=2020-09-21
https://doi.org/10.1103/PhysRevResearch.2.033450
https://creativecommons.org/licenses/by/4.0/


FINLINSON, SHEW, LARREMORE, AND RESTREPO PHYSICAL REVIEW RESEARCH 2, 033450 (2020)

to a target state but in minimizing the error when trying to
maintain a macroscopic variable (e.g., a scalar function of the
state vector) as close as possible to a desired value.

The structure of this paper is as follows. In Sec. II we
present our model and the control task. In Sec. III we present
the analysis of the control error for both the linear and non-
linear regimes. In Sec. IV we study the stability of the control
scheme, and in Sec. V we present our conclusions.

II. MODEL

We first introduce the model without control. Following
Refs. [7,13,14], we consider a network of N discrete-state
excitable nodes. At each time step t , each node m may be
active or inactive, corresponding to a node variable st

m with
a value of 1 or 0, respectively. The nodes are coupled via a
directed, weighted, and signed network with adjacency ma-
trix A, such that Anm represents the strength of interaction
from active node m to node n. These values are non-negative
(nonpositive) whenever node m is excitatory (inhibitory), and
networks are assumed to consist of 20% inhibitory nodes. The
dynamics are probabilistic, with node n becoming active at
time step t + 1 with probability σ (

∑N
m=1 Anmst

m), where σ is
a piecewise linear transfer function defined as σ (x) = 0 for
x < 0, σ (x) = x for 0 � x � 1, and σ (x) = 1 for x > 1. In
such systems, the largest eigenvalue λ of the adjacency matrix
A determines whether the system is in a regime of low activity
(λ < 1) or high activity (λ > 1) or at criticality, the boundary
between high and low activity regimes (λ = 1). In past work,
this model (or slight variations of it) has been used to explain
how the rich population dynamics of cortical neural networks
depends on changes in excitatory and inhibitory interactions
and several aspects of how such networks process and adapt
to changing external stimuli [3,5,8–10].

We now introduce control to the dynamics and analyze
how its effectiveness depends on the network’s topology and
principal eigenvalue λ. To this end, we consider a modified
evolution equation,

st+1
n =1 w.p. σ

[
N∑

m=1

Anmst
m+μn

(
Ŝ −

N∑
m=1

bmst
m

)]
(1)

and st+1
n = 0 otherwise. The term μn(Ŝ − ∑N

m=1 bmst
m) repre-

sents an external proportional control signal which attempts to
bring the global variable S = ∑N

m=1 bmst
m to a target value Ŝ,

where bn represents the weight given to node n in the global
activity S. For example, this control term in the model may
be interpreted as optogenetic control mechanisms in recent
experiments [16]. The dependence of the control term μn on
n allows one to include the effects of natural heterogeneities,
experimental constraints, or targeted application of the control
signal. Similarly, the dependence of the weights bn on the
node n allows for the possibility that the measured nodal
activities are given different weights or that one controls the
activity of a subset of nodes.

There has been a significant amount of previous work on
studying the control of brain dynamics from the point of view
of classical control theory [21]. For example, by assuming
linear dynamics on functional brain networks, one can study
the question of whether or not these networks are globally

controllable, i.e., whether the dynamical state of the network
can be steered to any desired state in finite time by a control
signal [18]. In contrast, here we consider only the problem of
keeping a macroscopic variable close to a desired target value.
Purposefully, this task is simpler than those considered in
those previous works; this simplicity allows us to focus on the
effects of the nonlinearity, the network’s degree distribution,
and the excitation-inhibition balance.

III. ANALYSIS OF CONTROL ERROR

A. Linear regime

As a first step, we will ignore the nonlinearities of the
function σ by assuming that its argument is always between 0
and 1, the regime in which σ (x) = x. Later, we will discuss the
conditions under which this assumption is valid and consider
the effects of the nonlinearity.

In this linear regime, each node’s expected activity pt
n ≡

E [st
n], taken over the stochastic dynamics, is, at steady state,

p = Ap + m(Ŝ − b�p), (2)

where we have introduced vectors m, b, and p with entries
μn, bn, and pn, respectively. This can be solved for p using the
Sherman-Morrison inversion formula to get

p =
(

(I − A)−1 − (I − A)−1mb�(I − A)−1

1 + b�(I − A)−1m

)
Ŝm.

Defining c = (I − A)−1m simplifies this equation to

p = Ŝc
(

1 − b�c
1 + b�c

)
= Ŝc

1 + b�c
. (3)

Equation (3) predicts the steady-state averages of nodal ac-
tivity pn = E [st

n] in terms of c and therefore in terms of the
network A and the control vector m.

Our goal is to determine how control error depends on
the network’s degree distribution and proximity to the critical
point λ=1. We begin with analytical predictions and then test
these predictions with numerical simulations.

We first assume that the in- and out-degrees, kout
n =∑N

m=1 Amn and kin
n = ∑N

m=1 Anm, and the largest eigenvalue
λ are specified. Then we consider the “annealed network”
approximation [25–27] where we replace A by an aver-
aged adjacency matrix Ā which preserves the eigenvalue λ

and the degree distribution in the sense that
∑N

m=1 Ānm ∝
kin

n ,
∑N

m=1 Āmn ∝ kout
n . Such a matrix is Ā = λkink�

out/k�
outkin,

which has the eigenvector kin with eigenvalue λ. Using this
matrix, we effectively average over the ensemble of networks
with largest eigenvalue λ and the desired degree distributions.
This approximation assumes that there is no assortative mix-
ing, community structure, or other additional structure in the
network. While these features are always present to some
extent in real-world networks, we focus here on the simplest
case in which they are absent.

Replacing A with Ā in the definition of c and using the
Sherman-Morrison inversion formula again, we get

c =
(

I + λkink�
out

(1 − λ)k�
outkin

)
m. (4)
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FIG. 1. (a) Network activity St as a function of t for three values
of λ as indicated, with and without control. Control is turned on at
t = 15, 000, with target Ŝ = 0.5 (dashed line), using an Erdös-Rényi
network of size N = 5000 and mean degree of 200 with m = 1

2 1 and
b = 1

N 1. (b) Absolute control error obtained numerically from direct
evolution of Eq. (1) (symbols) and theoretically from Eq. (6) (solid
lines) for networks with different correlations (see text).

We quantify control error as the expected relative error

R = (b�p − Ŝ)/Ŝ. (5)

Substituting Eq. (3) for p, we find R = −1/(1 + b�c). Then,
inserting Eq. (4) for c yields

R(λ) = (λ − 1)

(1 − λ)(1 + b�m) + λ
b�kink�

outm
k�

outkin

. (6)

This equation makes two key predictions for the control
error R based on the network’s degree distribution (kin, kout ),
the control vector m, the nodal weights b, and the principal
eigenvalue λ. First, Eq. (6) predicts that control error is min-
imized to R = 0 whenever λ = 1, independent of the target
Ŝ. Second, Eq. (6) predicts that when λ �= 1, the magnitude
of the nonzero control error depends on correlations between
the in- and out-degrees of the nodes, the weights b, and the
nodal control strengths m. We confirm these predictions via
simulation by varying both the principal eigenvalue of the
network adjacency matrix and the correlation between in- and
out-degree sequences. Figure 1(a) illustrates the effects of λ

on dynamics with and without control, with sample time series

of network activity St = ∑N
n=1 st

n/N for simulated dynamics
with λ = 0.98, 1.0, and 1.02 on directed Erdös-Rényi random
networks (simulation details are given in the caption). Fig-
ure 1(b) shows the accuracy of Eq. (6) (solid lines) compared
to simulations (squares and triangles) in which we systemati-
cally varied λ between 0.9 and 1.1 for two classes of networks
which were designed to maximize and minimize the effects
of degree correlations, respectively. To construct such net-
works, we considered a sequence of target degrees k̂1 > k̂2 >

. . . > k̂N , with N = 2000 sampled from a distribution uniform
in [50, 250]. To maximize the term b�kink�

outm/k�
outkin, we

chose kout
n = k̂n, kin

n = k̂N−n, b ∝ kin, and m ∝ kout; to mini-
mize that term, we chose kout

n = kin
n = k̂n and μn, bn ∝ k̂N−n.

We refer to the second (first) case as the (anti)correlated
case since there is a positive (negative) correlation between
k̂in

n and k̂out
n . We generated adjacency matrices A by choosing

the entries Anm to be 1 with probability kin
n kout

m /
∑

n kout
n [28]

and then rescaled the resulting matrices so that they had the
desired eigenvalue λ. We emphasize that while the simulations
in Fig. 1(b) were done with specific network realizations, the
predictions of Eq. (6) were derived by considering an aver-
aged network. Finally, we note that analogous expressions for
the control energy in terms of network control vectors can be
derived for the related problem of reaching a given dynamical
state (see, e.g., [29]).

B. Nonlinear regime

In the two cases described above, the control error is
well described by Eq. (6), but this is not the case if the
network’s degree distribution is heterogeneous (even mildly).
For example, if the degrees k̂n are sampled from a power-law
distribution, P(k) ∝ k−γ , with a minimum degree of 50 and
exponent γ = 4 [circles in Fig. 1(b)], the control error is no
longer minimized at λ = 1. To understand this discrepancy,
we assume for simplicity that each node is weighted equally,
i.e., bn = 1/N , and consider the evolution of the network
activity St = ∑N

n=1 st
n/N . In the absence of control input and

nonlinearity, the expected network activity for a homoge-
neous network with largest eigenvalue λ evolves, given St ,
as E [St+1] = λSt ; that is, the largest eigenvalue λ acts as a
branching parameter for the fraction of excited nodes. Thus,
our linear results above can be understood as follows: when
λ = 1, St evolves stochastically with no bias to increase or
decrease (i.e., E [St+1] = St ), and therefore, control can effec-
tively pin it to any value of the target Ŝ. When λ is larger
(less) than 1, St has a tendency to increase (decrease). To
establish a (statistical) steady state, this tendency needs to be
balanced with a nonzero control term, which can be accom-
plished only if Ŝ − S �= 0, i.e., if there is control error. When
the nonlinearity of the transfer function is taken into account,
the relationship E [St+1] = λSt is no longer valid, but one can
still define an effective branching ratio, the branching function
�, that given St , satisfies E [St+1] = �St :

�(S) = E [St+1 | St = S]/S. (7)

The branching function �(S) can be interpreted as an ef-
fective eigenvalue or branching ratio that applies when St =
S: when �(S) > 1 [�(S) < 1], activity tends to increase (de-
crease) on average. In Ref. [13] it was shown that for directed
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FIG. 2. Experiments with three networks with N =5000 show
the validity of Eqs. (12) and (8). Network degree distributions were
either uniform in [100,200] (solid blue line, λ = 1) or power laws
with γ = 4 and a minimum degree of 50 (dot-dashed green line,
λ = 1; dashed red line, λ = 1.05). (a) Branching functions calculated
using Eq. (12) for the three networks. (b) Control error measured nu-
merically (symbols) and theoretically using S obtained from Eq. (8)
(lines) as a function of target Ŝ for the same three networks. Note that
error is small whenever the branching function is close to 1.

Erdös-Rényi networks, depending on the fraction of inhibitory
neurons and the average network degree, the branching func-
tion is a decreasing function of S with �(S) � λ for small S,
�(S) ≈ λ for intermediate S, and �(S) < λ for S ≈ 1. The
region where �(S) ≈ 1 starts approximately at S ∼ 1/〈k〉,
where 〈k〉 = ∑

i ki/N is the mean degree of the network [13].
If the mean degree is small, this region could vanish. If there
is no inhibition, �(0) = 1. Branching functions for three dif-
ferent networks are shown in Fig. 2(a).

Because the statistical steady state of St is still established
by a balance between its tendency to increase [if �(S) > 1]
or decrease [if �(S) < 1] and the control term, we conjecture
that Eq. (6) is a good approximation for the control error in
the nonlinear case if one replaces λ by �(S), where S is found
self-consistently from the implicit equation that defines the
error,

S = Ŝ + R(�(S))Ŝ. (8)

Below we provide numerical evidence that shows the useful-
ness of this heuristic approach to predict how the controllable

range is affected by heterogeneity in the network’s degree
distribution.

Our goal now is to estimate the branching function in terms
of the network’s degree distribution and the transfer function
σ . For simplicity we will consider the case where kin

n and kout
n

are uncorrelated, so that k�
outkin = N〈k〉2. From the definition

of the branching function and Eq. (1), we obtain

�(S) = 1

SN
E

[
N∑

n=1

σ

(
N∑

m=1

Anmst
m

)∣∣∣∣∣St = S

]
. (9)

Replacing A by the averaged matrix Ā and assuming that st
m is

uncorrelated with kout
m , we get

�(S) ≈
N∑

n=1

σ
(
kin

n λS/〈k〉)/(NS). (10)

We note that, since we are replacing A by Ā, we do not expect
this estimation to be quantitatively precise. Nevertheless, as
we will see, it gives useful predictions on the controllable
range and control stability. Expressing the sum as an integral
over the in-degree distribution P(k), we obtain

�(S) ≈ 1

S

∫ kmax

kmin

σ (kλS/〈k〉)P(k)dk. (11)

In particular, for σ (x) = x for x � 1 and σ (x) = 1 for x > 1,
we obtain an expression for the branching function �(S):

�(S) ≈ λ

〈k〉
∫ 〈k〉/(λS)

kmin

kP(k)dk + 1

S

∫ kmax

〈k〉/(λS)
P(k)dk. (12)

Note that if kmax � 〈k〉/(λS), then Eq. (12) collapses to
�(S) = λ, showing how the nonlinear case reduces to the
linear one, but if kmax > 〈k〉/(λS), then �(S) < λ. This means
that the more heterogeneous the in-degree distribution is, the
more �(S) differs from λ. For the case λ = 1, �(S) ≈ 1 as
long as S < 〈k〉/kmax. Therefore, the range of target values Ŝ
that can be controlled with zero error is reduced for heteroge-
neous networks.

We illustrate how heterogeneity in the degree distribution
modifies the controllable range of targets by considering net-
works of size N = 5000 generated as before but using b =
1
N 1, m = 1

2 1, and {k̂n} sampled from either a power-law distri-
bution with exponent γ = 4 with minimum degree kmin = 50
or a uniform distribution in [100,200], and we choose {kin

n },
{kout

n } to be two independent permutations of the {k̂n} se-
quence. (In light of recent discussion [30], note that we choose
power-law degree distributions just as a convenient example
of heavy-tailed distributions.) Figure 2(a) shows branching
functions �(S) calculated using Eq. (12) for three combina-
tions of λ and degree distributions (see the caption). Of the
two networks with λ = 1, the most homogeneous network has
a branching function which is approximately 1 for a wide
range of values of S. For the network with λ = 1.05, the
branching function crosses 1 only at a value of S approx-
imately equal to 0.53, effectively reducing the controllable
range to a single point. All this is reflected in the error R,
plotted as a function of the target Ŝ in Fig. 2(b). In all cases,
the region where the error is approximately zero corresponds
to the region where the branching function is approximately 1.
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In addition, the error computed theoretically from the activity
S found by solving Eq. (8) (symbols) agrees qualitatively
with the one obtained numerically from simulations of the
full system (solid line), with quantitative agreement except
for large values of S. Networks with a homogeneous degree
distribution and λ = 1 have the largest controllable range.

IV. STABILITY

Here we discuss how heterogeneity in the degree dis-
tribution affects the stability of the controlled fixed point.
Considering the case m = μ1 and b = 1

N 1 for simplicity and
assuming that the effect of the nonlinear function σ can be ne-
glected [i.e., when �(S) ≈ λ], we can study the stability of the
controlled system by studying the stability of the fixed point of
pt+1 = Āpt + μ1(Ŝ − b�pt ). Its stability is determined by the
eigenvalues of the Jacobian J = λkink�

out/k�
outkin − μ11�/N .

Since the range of J is spanned by kin and 1, to solve for the
eigenvalue α in Ju = αu we set u = akin + b1, with a and b
not both zero. We get

Ju = (λkink�
out/k�

outkin − μ11�/N )(akin + b1) (13)

= aλkin − aμ〈k〉1 + λb(〈k〉/〈koutkin〉)kin − bμ1 (14)

= αakin + αb1. (15)

Grouping coefficients of kin and 1 gives the system

α

[
a
b

]
=

[
λ λ〈k〉/〈koutkin〉

−μ〈k〉 −μ

][
a
b

]
, (16)

which is satisfied for nonzero values of a, b for

α = (λ − μ) ±
√

(λ − μ)2 − 4(−λμ + λμh)

2
, (17)

where h ≡ 〈k〉2/〈koutkin〉. For undirected networks, h =
〈k〉2/〈k2〉 � 1 can be thought of as a measure of the network’s
degree heterogeneity, with more heterogeneous distributions
giving smaller h. In principle, the controlled state becomes un-
stable when α = ±1. The eigenvalue α = 1 yields instability
if μ < (λ − 1)/[1 + λ(h − 1)]. This instability corresponds
to applying insufficient control, as can be seen in the limit
μ → 0, where one obtains α → λ. In this case, network ac-
tivity St = b�pt will increase (λ > 1) or decrease (λ < 1)
until it saturates due to the nonlinearity. A more dramatic
instability occurs when too much control is applied and one al-
ternatively overshoots and undershoots the target state, which
corresponds to α = −1 and gives the condition

μ <
λ + 1

λ + 1 − hλ
. (18)

From (18), one can see that heterogeneous (smaller h)
networks become unstable at smaller control strengths. To
illustrate this, in Fig. 3 we plot the rms relative error

√
〈R2〉t

(where 〈·〉t denotes a time average) obtained from numerical
simulations with networks constructed as described above
with kout

n = kin
n = k̂n and k̂n sampled from a power-law degree

distribution with minimum degree kmin = 50 and exponent
γ = 3 (blue circles), 4 (red squares), and 8 (green diamonds).
We used λ = 1 and λ = 1.2 in Figs. 3(a) and 3(b), respec-
tively, and Ŝ = 0.3. The vertical dashed lines indicate the
value of μ predicted from Eq. (18), at which the controlled
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FIG. 3. The rms relative error
√

〈R2〉t obtained from numerical
simulations with undirected networks with a power-law degree distri-
bution P(k) ∝ k−γ with minimum degree kmin = 50 and γ = 3 (blue
circles), 4 (red squares), and 8 (green diamonds). We used Ŝ = 0.3
and λ = 1 and λ = 1.2 in (a) and (b), respectively. The vertical
dashed lines indicate the value of μ predicted from Eq. (18), at which
the controlled state becomes unstable.

state becomes unstable. As μ increases past the value given by
Eq. (18), which is smaller for the more heterogeneous degree
distributions, the error increases sharply. For small values of
μ the error also increases as the control is insufficient, and
this effect is more pronounced for λ = 1.2, for which there
is a strong tendency for network activity to increase. From
the cases shown here, the case with the smallest error for
the largest range of control values μ is the network with
λ = 1 and γ = 8, i.e., the most homogeneous network at
criticality.

V. DISCUSSION

In summary, we studied how two key network properties
(excitability and degree distribution heterogeneity) affect the
ability to control the macroscopic activity of a network of
excitable elements with inhibition. We found that for networks
poised at the critical point of a phase transition (λ = 1), con-
trol was optimal (control error was minimized) for the widest
range of control targets. Our results suggest that the cerebral
cortex may take advantage of maximum controllability by tun-
ing itself to operate near criticality. One limitation of our work
is that we do not answer the question of what mechanisms a
neural system may use to tune itself to criticality. Nonetheless,
previous experiments [3,5] and theory [31–33] suggest that
such mechanisms may exist, and we leave this question for
further exploration in future work.

A second finding in our work is that heterogeneity in
the network’s degree distribution reduces the range of target
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values and the range of control strengths that yield stable
control. While heterogeneity can be beneficial for robustness
to random node failures [34], our results suggest that a more
homogeneous degree distribution might be preferable for situ-
ations where control of a large range of macroscopic network
activity levels is important.

A common critique of the hypothesis that the cerebral
cortex may operate near criticality is that critical dynamics are

too noisy, as reflected in the large fluctuations in Fig. 1(a). For
many aspects of brain function it is easy to imagine that these
large fluctuations would cause trouble. However, our primary
result here is that the noisy dynamics of criticality are, in fact,
easy to control. This suggests that a brain might be able to
take advantage of the other functional benefits of criticality
while controlling its own noise to remain at a manageable
level.
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