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OPTIMAL CONTROL/STOPPING

» Consider a Markovian state process X.
Stochastic Optimal Control/Stopping

Given (t,x) € [0,00) x R, can we solve

sup F(t,x, «)? (1)
acA

» Classical Theory:

» Want: find an optimal strategy a;, € A.
» Methods: dynamic programming, martingale approach,...
» Consider o}, as a mapping:

(t,x) = o, €A
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» Problem Solved. Feeling Good?

t S r
([ L g @
azx(t,x) o (8, Xs) o (1, Xy)

» The Reality:

t S r
@ L L
O‘?r(tvx) O‘:,XS (S’XS) O‘;F?X,(r? XF)

39

» Time Inconsistency:

> o, of x, o) x, may all be different.
» The original objective (1) cannot be attained...
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Time-inconsistent objectives:

» Non-exponential discounting:
F(t,x, @) := Eex[0(T — £)g(X7)].
» Payoff depending on initials (¢, x):
F(t,x, o) := E¢ x[g(t, x, XT)].
» Nonlinear functionals of E[-]:
F(t x, @) i= Erx[g(X7)] — H(Er[g(XF)))-

» Probability distortion:

F(t,x,a) := /Ooow(IP)t,x [g(XTF) > u] >du.
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How to resolve time inconsistency?

Consistent Planning [Strotz (1955-56)] ‘

» Take into account future selves’ behavior.
Find an (intra-personal) equilibrium strategy that

once being enforced over time,
no future self would want to deviate from.

» How to precisely define and characterize equilibria?
For control problems,

» Ekeland & Lazrak (2006): Definition via spike variations.
» Ekeland & Pirvu (2008): Extended HJB system
characterizes equilibrium controls o*.
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LITERATURE

» Control problems:

Ekeland, Mbodji, & Pirvu (2012), Bjork, Murgoci, & Zhou (2014),
Dong & Sircar (2014), Bjork & Murgoci (2014), Yong (2012),
Bjork, Khapko & Murgoci (2017), ...

» Stopping problems:

(a) Extensions from “control” to “stopping”
» Same definition and extended HJB system as in control case.
» Christensen & Lindensjo (2018, 2020), Ebert et al. (2020).
(b) The fixed-point approach
» Equilibria as fixed-points, found via fixed-point iterations.
» Huang & Nguyen-Huu (2018): non-exponential discounting;
Huang, Nguyen-Huu, & Zhou (2020): probability distortion;
Huang & Yu (2021): model uncertainty.
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FIXED-POINT APPROACH
1. At first, one follows R € B(R?).

0
T = switch from R to O(R)
O(R) R
2. Now, one follows O(R).
0
; = switch from O(R) to ©*(R)
©%(R)  O(R)

3. Continue this procedure until we reach
Ro:= lim ©"(R)

n—o00

Expect: O(Ry) = Ry, i.e. cannot improve anymore.
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How about a game with “multiple agents”?
» FEach agent has time-inconsistent preferences.
» Two levels of game-theoretic reasoning;:

Each agent...

1. looks for an intra-personal equilibrium among her current
and future selves;
2. finds the best response to other agents’ strategies.

» An inter-personal equilibrium in the game is then

A Nash equilibrium among all agents,
each of whom uses her best intra-personal equilibrium.

» Such inter-personal equilibrium have not been studied.
(Precise definition? Existence? Construction?)
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IN THIS TALK...

Focus on a Dynkin game:
> 7, :=1{0,1,2,..}.
» X = (X})tez, time-homogeneous strong Markov, taking
values in X.

» Fori e {1,2}, given the other player uses o € T, Player i
maximizes

]Z'(x77_70) = Ex[Pi(Tao—)]v (2)
over 7 € T, where
Fi(r,0) := 6i{(T)fi(X: )1 (7 <oy + 0i(0)8i(Xo) L r>0)
+ 5{(7’)}11‘(}(7—)1{7.:0}, Vr,o€T.

» fi,gi.hi : X — R, Borel measurable.
> 5 : Ry — [0,1] decreasing, 5;(0) = 1 (e.g. 6;(t) = e ™).
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NON-EXPONENTIAL DISCOUNTING

Assume the discount function ¢; : R, — [0, 1] satisfies
(5,‘(1‘)5,‘(5) < 5i(t + S) ViseZy. 3)

» Captures decreasing impatience in behavioral economics.
» Examples:

» hyperbolic §;(t) = %ﬁﬂ

> generalized hyperbolic &;(t) = W,

> pseudo-exponential §;() = Ae™ "1 + (1 — N)e "2\

» Time inconsistency arises under (3).
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STOPPING POLICIES

Assume each player stops at the first entrance time
ps :==inf{t >0: X; € S}.

» S c B, aBorel subset of X, is called a stopping policy.

» Given the other player using T € B3, Player i’'s
intra-personal reasoning

@zT(S) ::{x €s 5]i<x707PT) > ]i(xa P;apT)}
U{x & S:Ji(x,0,pr) > Ji(x, pd, pr)} € B. (4)

» Stop at time 0 = Ji(x,0, pr).
» Don’t stop at time 0 => J;(x, pd, pr), where

pd ==inf{t >0: X; € S}.
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INTRA- AND INTER-PERSONAL EQUILIBRIA

Definition (Intra-personal)

S € Bis Player i’s intra-personal equilibrium w.r.t. T € B if
er(s) =s.
We denote thisby S € £I.

Definition (Soft inter-personal)

(5,T) € B x Bis a soft inter-personal equilibrium if
ef(s)=S and ©5(T)=T.

We denote this by (S, T) € €.
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Given T € B, define the value function of S € £ by
UIT(X’S) = ]i(x>0>PT)\/]i(x-/P;=PT)7 xeX

Definition (Optimal Intra-personal)

S € &l is Player i’s optimal intra-personal equilibrium w.r.t. T € B
if,
forany R € &, Ul (x,S) > U] (x,R) Vx € X.

We denote thisby S € g'lT .

» “Optimal equilibrium” of Huang & Zhou (2019):
» Wants an equilibrium to be uniformly dominating
—a rare occurrence in game theory.
» For stopping under (3), optimal equilibrium exists.
(Huang & Zhou (2019, 2020), Huang & Wang (2021))
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Definition (Sharp inter-personal)
(S5,T) € B x B is a sharp inter-personal equilibrium if
Sc& and Te&.

We denote this by (S, T) € E.

Ultimate goals:
» Existence of sharp inter-personal equilibria.

» Construction via concrete iterative procedures.



INTRODUCTION MODEL RESULTS APPLICATION

0000000 000000 ©0000000000000000000 00000
:

First Question: What type of iterations to use?

» Fixed-point iteration, i.e.
lim (©1)"(S) € &F

n—o0
does not seem so promising...
» Any iteration that directly leads to S* §ZT ?

» Recently approached by Bayraktar, Zhang, & Zhou (2020)
in a one-player stopping poblem.
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For any T € B, define ! : B — Bby

o7(S):=SU {x ¢S :Ji(x,0,pr) > VI(x, S)} ,
where

VI(x,S):= sup E.[Fi(r,pr)] x€X,S€B.
1<r<pd

Theorem (Direct iteration to 87 )
Assume | h; < g; | Given T € B, define (Sl’.’(T))nGN C Bby

SNT) = (D), SHT) := ®L(S"Y(T)) forn > 2,

Then,
Ti(T) = | S{(T) € &

neN

©)

(6)

@)

®)
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ALTERNATING ITERATION

Let Players 1 and 2 take turns to perform iteration (7).

So To =T'2(So)
51 = Pl(To) T, = FZ(Sl)
Sy =T1(Th) Tr, =T'5(S2)

Hope:
1) (Su, Ty) converges appropriately.
2) The limit (So, Two) is a (sharp) inter-personal equilibrium.
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Lemma

Assume |f; < h; < gi|and

(0i(t)gi(XF))e>0 is a supermartingale  Vx € X. )

Then, forany T,R € Bwith T C R,

®!(S) D ®X(S) D @K(S)) VS,S' e BwithS D S'.  (10)

Proof Sketch. (9) implies
]i(x7 T, PT) < ]i(xv T, pR) Vx € X’ TeT. (11)
In view of (6), forany x € Xand 5,5’ € BwithS 2 &/,

Vi(x,8) S Vi(x,8) < Vi(x,§). = @/(S) 2 &}(S) 2 &(S).
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Corollary (T — I';(T) monotone)

Assume

fi<h <gi

and | 9) | Forany T,R € Bwith T C R,

Li(T) 2 Ti(R).

Idea: Taking S = 0),

S() =0 TO = FZ(SO)
51 = Fl(To) T, = F2(51)
So =T1(T1) Ty =T'2(S2)

Hence, the limit is well-defined as

(Sooa Too) = (UnSm ﬁnTn) € BxB.
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Theorem (Existence of the soft)

Assume |fi < h; < g |and ‘ ) ‘ Set Sg := () and define

T, :=T5(S))  Sup1:=T1(Tn), VneNuU{0}. (12)

Then, (Seo, Too) := (UnSn, NuTy) € € and satisfies

) = ey Wl(Ssa) € Ty (13)

Proof. Fixx € Soo. AN € Ns.it. x € S, 11 =1'1(Ty) € SlT” Vn > N.

jl(xvovan) Zh(x7p;_ aan) Vn > N.

n—+1
= N1(x,0,pr.) > J1(x, pd_p1..), ie.x € O7=(Sx0).

Thus, Soc € @1T°°(Soo). Can get (55)° C (@1T°° (Sc0))¢ similarly.
Conclude: Soo = O7*(Soo) and Too = 65 (Two).
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Proof (conti.). By monotonicity of T — I';(T),

Sn - Soo - FZ(SOO) - FZ(SH) — Tn = FZ(Soo) C Tooa
Tn 2 Too — Fl(Too) 2 Fl(Tn) = Sn+1 — Fl(Too) 2 Soo,

Also, by Sp =0 C Sy € 51T°°, can construct {S}(To) }» in (7)
and find S(Tw,) C So for all n. Hence, I'1 (Too) € Soo-

Lemma

Assume | h; < gi | If (S, T) € B x B satisfies
I'(T)=S and Ty(S)=T, (14)

~

then (S,T) € €.

» By (13), (Soo, To) is almost sharp!



APPLICATION

INTRODUCTION MODEL RESULTS
0000000 000000 0000000®000000000000 00000
: :

> X = {XO,Xl,XQ,...}With

Pxn+1(X1:xn):17 7’1207172”_7
Py(X1=x0) =1—¢, Py(X1=x1)=¢, fore€[0,1).

» Take M > 1such that 6,(2) < 1/M < d,(1).
» Take L > 1 and define

filxa) =1, g1(xy) =L n=0,1,2,...,
fZ(xO):O, fZ(x”):l n=12,..., gZ(xn):M n=0,1,2...,

while #; is any function such that f; < h; < g;.
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For ¢ € [0,1) small enough,

50207 Toz{xlax2>"'}a
Sl = {xO}a Tl = {x27x3)"'}a
52 = {xo,xl}, Tz = {X3,X4,...},
Sn = {x0,%1,... ,%Xn-1}, T = {Xns1, Xng2, -+ - }-

> (SOO7TOO) = (X7 Q))
» Is it sharp? Let’s check I'(X) = 0.

V3 (xn,0) = sup Ey,[Fa(7, px)] = g2(xn) > ha(xn) = J2(x, 0, pxc).
1<r<p;

This implies ®5(0) = 0, s0 T2(X) = 0. = (Seo, Two) € E.



INTRODUCTION MODEL RESULTS APPLICATION

0000000 000000 000000000 e0000000000 00000
:

EXAMPLE II

» X = {xo,x1,%2,... } U{y,z}.
» All previous settings remain.

» Transition probabilities for {y,z}

Py(Xl = Xp) = pn > 0 with an =1, P,(X1=y) =1
n=0

v

52(1)2 < 52(2).
Payoffs on {y, z}:

fo(y) =M (1), fa(z) € (Mba(1)?
2(y) = g(z) =

v

V 52(2),M&2(2))
M.

» Only require f; < g1.
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For € € [0,1) small enough,

So =0, T():{X1,XQ,...}U{]/,Z},
51 = {XQ}, T = {x27x37 s } U {]/,Z},
Sy = {xo, x1}, To = {x3,x4,... } U{y,z},

STZ - {x07x17 s 7xn—1}7 TYZ = {xn+1axn+27 .. } U {%Z}-

> (Soo, Too) = (X, {y, 2}).
» Similarly to Example I, T»(X) = 0. = T2(S«) =0 C Tw
» Note: ) =T(S) € 525“’ dominates T, € 525°° at z:

U5> (2, Too) = J2(2,0, ps..) V Ja(z. pF_. ps..) = fa(z) V My(1)?
:fZ(Z) < M(SZ(Z) = ]2(27 'Oa_’ pSoo) < Ugm (Zv ®)

> S0, Too & E5%. = (S0, Too) € E.
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EXISTENCE OF THE Sharp

Assumption 1

X has transition densities (p;);>1 w.r.t a measure ;. on (X, B).
Thatis, fort =1,2,..., p; : X x X = R, is Borel and

Py (X; € A) = / pe(x,y)p(dy) Vxe X, AebB.
A

Lemma

Let 12 be a measure on (X, B). Given A C X, there is a maximal
Borel minorant of A under p, defined as

» aset A¥ € Bwith A# C A such that

forany A’ € Bwith A’ C A, u(A"\ A*) =0.




INTRODUCTION MODEL RESULTS APPLICATION

0000000 000000 00000000000 0e0000000 00000
:

Theorem (Existence of the sharp)

|fi <hi < gi},and | (9)

4

Under ‘ Assumption 1

there exists a sharp inter-personal equilibrium.

To prove this, we focus on the collection
A:={(5T)e&:T1(T) 2 Sand I'»(S) C T}.
By previous Thm, A # (). Define a partial order on A:

(S, T) = (8, T") ifSOSandTCT. (15)
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PROOF (STEP 1)

Suppose there exists a maximal element (S, T) in A.
Claim: (5,T) € £.
» SetSp:=S, Ty :=T. Do alternating iteration:
Sn+1 = Fl(Tn) and TnJrl = F2(5n+1) Vn > 0.

» As shown in previous Thm,
(15007 TOO) = (UTZSTH mnTn) S A.

> By construction, So, 2 Sp = S and Too CTo=T.
As (S, T) is maximal in A, Soo = So = Sand Ty, = Tg = T.

= (5,T) €&

I'y(T) =T1(To) =S1 =50 =S
S5) =T2(Sp) =T2(S1) =T1 =To =T

[2(S)
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PROOF (STEP 2)

Let (Sqa, Ta)acr be a totally ordered subset of A.
Claim: (S,, To)aer has an upper bound in A.

Idea:

» Set So := Une1Sa, To := NaerTw. Do alternating iteration:
Sn+1 = Fl(Tn) and Tn+1 = F2(5n+1) Vn > 0.

» Expect: (Seo, Too) := (UnSu, MuTn) € A.
= This is an upper bound for (S, To)acr-

Measurability issue: UyeSa, NaciTo ¢ B in general!
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PROOF (STEP 2)

» Let T) € Bamaximal Borel minorant of Ty under .
» Ty € Band T} C To.
» Forany T € Bwith T C T, u(T \ Ty) = 0.

» Forany T € Bwith T C Ty,

Py(X; € T\ Th) = / pe(x,y)p(dy) =0 vVxeX, t>0.

T\T}

Hence,

Py(X; € T\ T} forsomet € N) =0 VxeX. (16)
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PROOF (STEP 2)

» Modified alternating iteration:

So = UqaerSa To = NaerTa
S1 =T(T) O S Ty = T(S1)
Sy = Ty(Th) Ty = Ta(Sy)

» Forany T € Bwith T C Ty,
I'(T) 2T1(To) 2 S Ya el = T1(T) 2 Sp.
Forany S € Bwith § O Sy,

['2(S) €I (Sa) €Ty Ya el = T(S) C Ty.
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PROOF (STEP 2)

» Modified alternating iteration:

SO = UaEISa TO = rjozGITa
S1=T1(T}) 2 So T =T2(51) € Ty
So=T1(T1) 211 (To) #S1  Tr=T2(Sy)

> By (16), pr,urs = pre Prmas., forx ¢ Ty U T},

Sz :==T1(T1) 2 T1(T1 U Ty) = T1(Ty) = S1.
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PROOF (STEP 2)

» Modified alternating iteration:

Sp = Uaelsa Ty = maeITa
S1=T1(T})) 2 So T1 =T2(51) € Ty
Sy =T1(T1) 2 54 Tr=T%(5)CT

Conclude: (S, Too) := (UpSy, Ny Ty) € A is well-defined,
and is an upper bound for (Su, Ta)acl-

» By Zorn’s lemma, the proof is complete.
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SUMMARY

» Soft inter-personal equilibrium:

A Nash equilibrium between two players,
each of whom uses an intra-personal equilibrium.

> Always exists.
» Can be found via concrete alternating iteration.

» Sharp inter-personal equilibrium:
A Nash equilibrium between two players,
each of whom uses an gptimal intra-personal equilibrium.

» Exists, if X has transition densities.
» Constructed via alternating iteration + Zorn’s lemma.
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APPLICATION TO NEGOTIATION

» Firms 1, 2 want to cooperate to initiate a project

» Each firm has a proprietary skill/technology.
» Revenue R > 0 fixed.
» Cost X > Oisrandom: 3u > landp € (0,1) s.t.

PiXa/x=u]=p and P [Xy/x=1/ul=1—-p, VxeX
That is, X evolves on the binomial tree

X={u:i=0+1,42,...} (17)

1

» Assume: X is a submartingale, i.e.p > _ -

» Each firm insists on...
» Taking a larger (risk-free) share N € (R/2,R);

» Demanding the other to take smaller share
K:=R—N € (0,R/2) and incur (risky) cost X.
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» In our Dynkin game,

Fi(r,0) :=6;(7) (K — X:) " 1<y + 6i(0)N1 (75 0y
+ 6i(T)hi (X7 )1 {r=0y

» 7 < o: Firm i gives in first.
» 7 > o : The other firm gives in first.

> fi(x) = fo(x) = (K=2)T, 81(x) = g2(x) = N, fy <hi < gi.
» Hyperbolic discounting:

1

5i(t) = 50

» 3 > 0: impatience level of Firm i.
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THE STRATEGY OF COERCION

» Demonstrate (or pretend!?) a strong will not to give in...

» ...to coerce the other firm to give in.
» “Never givein” <= 7 =00 <= 5y = 0.

Proposition (Firm 1 more patient)

If 51 < [3», the alternating iterative procedure (12) terminates
after one iteration: 3y; € [0,00) N X s.t.

So=0 = T():(O,yg]ﬂx — H

o~

Moreover, (S, Too) = (S0, To) = (0, (0,131 NX) € £.

» Message: “More patient” =—> coercion works
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» What if Firm 1 is less patient (51 > [2)?

» Complicated...
= Coercion may or may not work.

Proposition (Firm 1 significantly less patient)

If 31 > 0 sufficiently large and 3, > 0 sufficiently small,
iterative procedure (12) yields

(S0, To) = (@, (0,12] NX) = (51,T1) = (52, T2)

~

= (So0, Too) = (0,471 NX,0) €&,

for some y7,y5 € [0,00) N X.

<

» Message: “significantly less patient” — coercer is coerced!
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THANK YOU!!

» “A Time-Inconsistent Dynkin Game: from Intra-personal to
Inter-personal Equilibria”
(H. and Z. Zhou), to appear in Finance & Stochastics, available @
arXiv:2101.00343.
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