APPLICATION 00000

A Time-Inconsistent Dynkin Game: Intra-personal v.s. Inter-personal Equilibria

Yu-Jui Huang University of Colorado, Boulder

Joint work with Zhou Zhou (University of Sydney)

One World Optimal Stopping Seminar December 8, 2021

OPTIMAL CONTROL/STOPPING

► Consider a Markovian state process *X*.

Stochastic Optimal Control/Stopping Given $(t, x) \in [0, \infty) \times \mathbb{R}^d$, can we solve

 $\sup_{\alpha \in \mathcal{A}} F(t, x, \alpha)?$

(1)

Classical Theory:

- Want: find an optimal strategy $\alpha_{t,x}^* \in \mathcal{A}$.
- ► Methods: dynamic programming, martingale approach,...
- Consider $\alpha_{t,x}^*$ as a mapping:

$$(t,x) \longrightarrow \alpha_{t,x}^* \in \mathcal{A}.$$

- Time Inconsistency:
 - $\alpha_{t,x}^*, \alpha_{s,X_s}^*, \alpha_{r,X_r}^*$ may all be different.
 - The original objective (1) cannot be attained...

INTRODUCTION MC	ODEL .	Results	APPLICATION
000000 00	00000	000000000000000000000000000000000000000	00000

Time-inconsistent objectives:

► Non-exponential discounting:

$$F(t, x, \alpha) := \mathbb{E}_{t,x}[\delta(T - t)g(X_T^{\alpha})].$$

► Payoff depending on initials (*t*, *x*):

$$F(t, x, \alpha) := \mathbb{E}_{t,x}[g(t, x, X_T^{\alpha})].$$

• Nonlinear functionals of $\mathbb{E}[\cdot]$:

$$F(t, x, \alpha) := \mathbb{E}_{t,x}[g(X_T^{\alpha})] - H(\mathbb{E}_{t,x}[g(X_T^{\alpha})]).$$

Probability distortion:

$$F(t, x, \alpha) := \int_0^\infty w \left(\mathbb{P}_{t, x} \left[g(X_T^\alpha) > u \right] \right) du$$

INTRODUCTION	Model	Results	APPLICATION
000000	000000	000000000000000000000000000000000000000	00000

How to resolve time inconsistency?

Consistent Planning [Strotz (1955-56)]

Take into account future selves' behavior.
 Find an (*intra-personal*) equilibrium strategy that
 <u>once being enforced over time,</u>
 <u>no future self would want to deviate from.</u>

How to precisely define and characterize equilibria?
 For control problems,

- Ekeland & Lazrak (2006): Definition via spike variations.
- Ekeland & Pirvu (2008): Extended HJB system characterizes equilibrium controls α^* .

INTRODUCTION	Model	Results	APPLICATION
0000000	000000	000000000000000000000000000000000000000	00000

LITERATURE

Control problems:

Ekeland, Mbodji, & Pirvu (2012), Björk, Murgoci, & Zhou (2014), Dong & Sircar (2014), Björk & Murgoci (2014), Yong (2012), Björk, Khapko & Murgoci (2017), ...

Stopping problems:

- (a) Extensions from "control" to "stopping"
 - ► Same *definition* and *extended HJB system* as in control case.
 - Christensen & Lindensjö (2018, 2020), Ebert et al. (2020).
- (b) The fixed-point approach
 - Equilibria as fixed-points, found via fixed-point iterations.
 - Huang & Nguyen-Huu (2018): non-exponential discounting; Huang, Nguyen-Huu, & Zhou (2020): probability distortion; Huang & Yu (2021): model uncertainty.

1. At first, one follows $R \in \mathcal{B}(\mathbb{R}^d)$.

3. Continue this procedure *until* we reach

 $R_0 := \lim_{n \to \infty} \Theta^n(R)$

Expect: $\Theta(R_0) = R_0$, i.e. cannot improve anymore.

INTRODUCTION	Model	Results	APPLICATION
000000	000000	000000000000000000000000000000000000000	00000

How about a game with "multiple agents"?

- Each agent has time-inconsistent preferences.
- ► <u>Two levels</u> of game-theoretic reasoning:

Each agent...

- 1. looks for an *intra-personal equilibrium* among her current and future selves;
- 2. finds the best response to other agents' strategies.
- An *inter-personal equilibrium* in the game is then

A **Nash equilibrium** among all agents, each of whom uses her *best* intra-personal equilibrium.

 Such *inter-personal equilibrium* have not been studied. (Precise definition? Existence? Construction?)

IN THIS TALK...

Focus on a Dynkin game:

▶
$$\mathbb{Z}_+ := \{0, 1, 2, ...\}.$$

- ► $X = (X_t)_{t \in \mathbb{Z}_+}$ time-homogeneous strong Markov, taking values in X.
- ► For $i \in \{1, 2\}$, given the other player uses $\sigma \in \mathcal{T}$, Player *i* maximizes

$$J_i(x,\tau,\sigma) := \mathbb{E}_x[F_i(\tau,\sigma)], \qquad (2)$$

over $\tau \in \mathcal{T}$, where

$$\begin{split} F_i(\tau,\sigma) &:= \delta_i(\tau) f_i(X_\tau) \mathbb{1}_{\{\tau < \sigma\}} + \delta_i(\sigma) g_i(X_\sigma) \mathbb{1}_{\{\tau > \sigma\}} \\ &+ \delta_i(\tau) h_i(X_\tau) \mathbb{1}_{\{\tau = \sigma\}}, \ \forall \tau, \sigma \in \mathcal{T}. \end{split}$$

f_i, g_i, h_i : X → R₊ Borel measurable.
 δ_i : R₊ → [0, 1] decreasing, *δ_i*(0) = 1 (e.g. *δ_i*(*t*) = *e^{-rt}*).

NON-EXPONENTIAL DISCOUNTING

Assume the discount function $\delta_i : \mathbb{R}_+ \to [0, 1]$ satisfies

$$\delta_i(t)\delta_i(s) \le \delta_i(t+s) \quad \forall t, s \in \mathbb{Z}_+.$$
(3)

- ► Captures *decreasing impatience* in behavioral economics.
- ► Examples:
 - hyperbolic $\delta_i(t) = \frac{1}{1+\beta t}$,
 - generalized hyperbolic $\delta_i(t) = \frac{1}{(1+\beta t)^k}$,
 - pseudo-exponential $\delta_i(t) = \lambda e^{-r_1 t} + (1 \lambda)e^{-r_2 t}$.
- ► Time inconsistency arises under (3).

STOPPING POLICIES

Assume each player stops at the first entrance time

 $\rho_S := \inf\{t \ge 0 : X_t \in S\}.$

- $S \in \mathcal{B}$, a Borel subset of X, is called a *stopping policy*.
- Given the other player using $T \in \mathcal{B}$, Player *i*'s intra-personal reasoning

$$\Theta_i^T(S) := \{ x \in S : J_i(x, 0, \rho_T) \ge J_i(x, \rho_S^+, \rho_T) \}$$
$$\cup \{ x \notin S : J_i(x, 0, \rho_T) > J_i(x, \rho_S^+, \rho_T) \} \in \mathcal{B}.$$
(4)

• Stop at time
$$0 \implies J_i(x, 0, \rho_T)$$
.

• Don't stop at time $0 \implies J_i(x, \rho_S^+, \rho_T)$, where

$$\rho_S^+ := \inf\{t > 0 : X_t \in S\}.$$

INTRODUCTION	Model	Results	Applicatio
000000	000000	000000000000000000000000000000000000000	00000

INTRA- AND INTER-PERSONAL EQUILIBRIA

Definition (Intra-personal)

 $S \in \mathcal{B}$ is Player *i*'s *intra-personal equilibrium* w.r.t. $T \in \mathcal{B}$ if $\Theta_i^T(S) = S$.

We denote this by $S \in \mathcal{E}_i^T$.

Definition (*Soft* inter-personal) $(S,T) \in \mathcal{B} \times \mathcal{B}$ is a <u>soft</u> inter-personal equilibrium if $\Theta_1^T(S) = S$ and $\Theta_2^S(T) = T$. We denote this by $(S,T) \in \mathcal{E}$.

Given $T \in \mathcal{B}$, define the value function of $S \in \mathcal{E}_i^T$ by

 $U_i^T(x,S) := J_i(x,0,\rho_T) \lor J_i(x,\rho_S^+,\rho_T), \quad x \in \mathbb{X}.$

Definition (*Optimal* Intra-personal) $S \in \mathcal{E}_i^T$ is Player *i*'s <u>optimal</u> intra-personal equilibrium w.r.t. $T \in \mathcal{B}$ if, for any $R \in \mathcal{E}_i^T$, $U_i^T(x, S) \ge U_i^T(x, R) \quad \forall x \in \mathbb{X}$. We denote this by $S \in \widehat{\mathcal{E}}_i^T$.

- "Optimal equilibrium" of Huang & Zhou (2019):
 - Wants an equilibrium to be uniformly dominating —a rare occurrence in game theory.
 - For stopping under (3), optimal equilibrium exists. (Huang & Zhou (2019, 2020), Huang & Wang (2021))

Introduction 0000000	Model 00000●	Results 000000000000000000000000000000000000	Application 00000

Definition (*Sharp* inter-personal) $(S,T) \in \mathcal{B} \times \mathcal{B}$ is a <u>sharp</u> inter-personal equilibrium if $S \in \widehat{\mathcal{E}}_1^T$ and $T \in \widehat{\mathcal{E}}_2^S$. We denote this by $(S,T) \in \widehat{\mathcal{E}}$.

Ultimate goals:

- Existence of *sharp* inter-personal equilibria.
- Construction via concrete *iterative procedures*.

INTRODUCTION	Model	RESULTS	APPLICATION
0000000	000000	•00000000000000000	00000

First Question: What type of iterations to use?

► Fixed-point iteration, i.e.

$$\lim_{n \to \infty} (\Theta_i^T)^n (S) \in \mathcal{E}_i^T$$

does not seem so promising ...

- Any iteration that <u>directly leads to</u> $S^* \in \widehat{\mathcal{E}}_i^T$?
 - Recently approached by <u>Bayraktar, Zhang, & Zhou (2020)</u> in a one-player stopping poblem.

INTRODUCTION	Model	RESULTS	APPLICATION
0000000	000000	000000000000000000000000000000000000000	00000

For any $T \in \mathcal{B}$, define $\Phi_i^T : \mathcal{B} \to \mathcal{B}$ by

$$\Phi_i^T(S) := S \cup \left\{ x \notin S : J_i(x, 0, \rho_T) > V_i^T(x, S) \right\},\tag{5}$$

where

$$V_i^T(x,S) := \sup_{1 \le \tau \le \rho_S^+} \mathbb{E}_x[F_i(\tau,\rho_T)] \quad x \in \mathbb{X}, S \in \mathcal{B}.$$
 (6)

Theorem (Direct iteration to $\widehat{\mathcal{E}}_{i}^{T}$) Assume $h_{i} \leq g_{i}$. Given $T \in \mathcal{B}$, define $(S_{i}^{n}(T))_{n \in \mathbb{N}} \subset \mathcal{B}$ by $S_{i}^{1}(T) := \Phi_{i}^{T}(\emptyset), \quad S_{i}^{n}(T) := \Phi_{i}^{T}(S^{n-1}(T)) \text{ for } n \geq 2,$ (7) Then, $D_{i}(T) = \Phi_{i}^{T}(\emptyset) = \Phi_{i}^{T}(G^{n-1}(T)) \quad (0)$

$$\Gamma_i(T) := \bigcup_{n \in \mathbb{N}} S_i^n(T) \in \widehat{\mathcal{E}}_i^T.$$
 (8)

ALTERNATING ITERATION

Let Players 1 and 2 *take turns* to perform iteration (7).

S_0	$T_0 = \Gamma_2(S_0)$
$S_1 = \Gamma_1(T_0)$	$T_1 = \Gamma_2(S_1)$
$S_2 = \Gamma_1(T_1)$	$T_2 = \Gamma_2(S_2)$
÷	÷

Hope:

- 1) (S_n, T_n) converges appropriately.
- 2) The limit (S_{∞}, T_{∞}) is a (*sharp*) inter-personal equilibrium.

$$J_i(x,\tau,\rho_T) \le J_i(x,\tau,\rho_R) \quad \forall x \in \mathbb{X}, \ \tau \in \mathcal{T}.$$
 (11)

In view of (6), for any $x \in \mathbb{X}$ and $S, S' \in \mathcal{B}$ with $S \supseteq S'$,

$$V_i^T(x,S) \leq V_i^R(x,S) \leq V_i^R(x,S'). \implies \Phi_i^T(S) \supseteq \Phi_i^R(S) \supseteq \Phi_i^R(S').$$

Model

RESULTS

Corollary ($T \mapsto \Gamma_i(T)$ monotone) Assume $f_i \leq h_i \leq g_i$ and (9). For any $T, R \in \mathcal{B}$ with $T \subseteq R$, $\Gamma_i(T) \supseteq \Gamma_i(R).$

Idea: Taking $S_0 = \emptyset$,

$S_0 = \emptyset$	$T_0 = \Gamma_2(S_0)$
$S_1 = \Gamma_1(T_0)$	$T_1 = \Gamma_2(S_1)$
$S_2 = \Gamma_1(T_1)$	$T_2 = \Gamma_2(S_2)$
:	:

Hence, the limit is well-defined as

$$(S_{\infty},T_{\infty})=(\cup_n S_n,\cap_n T_n)\in\mathcal{B}\times\mathcal{B}.$$

INTRODUCTION Model RESULTS Theorem (Existence of the *soft*) Assume $|f_i \le h_i \le g_i$ and (9). Set $S_0 := \emptyset$ and define $T_n := \Gamma_2(S_n) \qquad S_{n+1} := \Gamma_1(T_n), \quad \forall n \in \mathbb{N} \cup \{0\}.$ (12)Then, $(S_{\infty}, T_{\infty}) := (\bigcup_n S_n, \bigcap_n T_n) \in \mathcal{E}$ and satisfies $\Gamma_1(T_\infty) = S_\infty, \quad \Gamma_2(S_\infty) \subset T_\infty.$ (13)

Proof. Fix $x \in S_{\infty}$. $\exists N \in \mathbb{N}$ s.t. $x \in S_{n+1} = \Gamma_1(T_n) \in \mathcal{E}_1^{T_n} \ \forall n > N$.

$$J_1(x,0,\rho_{T_n}) \ge J_1(x,\rho_{S_{n+1}}^+,\rho_{T_n}) \quad \forall n \ge N.$$

$$\Longrightarrow J_1(x,0,\rho_{T_\infty}) \ge J_1(x,\rho_{S_\infty}^+,\rho_{T_\infty}), \text{ i.e. } x \in \Theta_1^{T_\infty}(S_\infty).$$

Thus, $S_{\infty} \subseteq \Theta_1^{T_{\infty}}(S_{\infty})$. Can get $(S_{\infty})^c \subseteq (\Theta_1^{T_{\infty}}(S_{\infty}))^c$ similarly. <u>Conclude:</u> $S_{\infty} = \Theta_1^{T_{\infty}}(S_{\infty})$ and $T_{\infty} = \Theta_2^{S_{\infty}}(T_{\infty})$.

INTRODUCTION	Model	RESULTS	APPLICATION
0000000	000000	000000000000000000000000000000000000000	00000

Proof (conti.). By monotonicity of $T \mapsto \Gamma_i(T)$,

$$S_n \subseteq S_{\infty} \implies \Gamma_2(S_{\infty}) \subseteq \Gamma_2(S_n) = T_n \implies \Gamma_2(S_{\infty}) \subseteq T_{\infty},$$

$$T_n \supseteq T_{\infty} \implies \Gamma_1(T_{\infty}) \supseteq \Gamma_1(T_n) = S_{n+1} \implies \Gamma_1(T_{\infty}) \supseteq S_{\infty},$$

Also, by $S_0 = \emptyset \subseteq S_\infty \in \mathcal{E}_1^{T_\infty}$, can construct $\{S_i^n(T_\infty)\}_n$ in (7) and find $S_i^n(T_\infty) \subseteq S_\infty$ for all *n*. Hence, $\Gamma_1(T_\infty) \subseteq S_\infty$.

Lemma

Assume
$$h_i \leq g_i$$
. If $(S,T) \in \mathcal{B} \times \mathcal{B}$ satisfies
 $\Gamma_1(T) = S \quad and \quad \Gamma_2(S) = T,$ (14)
then $(S,T) \in \widehat{\mathcal{E}}.$

• By (13), (S_{∞}, T_{∞}) is <u>almost</u> sharp!

INTRODUCTION MC	ODEL	RESULTS	APPLICATION
0000000 00	00000	000000000000000000000000000000000000000	00000

EXAMPLE I

•
$$\mathbb{X} = \{x_0, x_1, x_2, ...\}$$
 with
 $\mathbb{P}_{x_{n+1}}(X_1 = x_n) = 1, \quad n = 0, 1, 2...,$
 $\mathbb{P}_{x_0}(X_1 = x_0) = 1 - \varepsilon, \quad \mathbb{P}_{x_0}(X_1 = x_1) = \varepsilon, \text{ for } \varepsilon \in [0, 1).$

- Take M > 1 such that $\delta_2(2) < 1/M < \delta_2(1)$.
- Take L > 1 and define

$$f_1(x_n) = 1, \quad g_1(x_n) = L \quad n = 0, 1, 2, \dots,$$

$$f_2(x_0) = 0, \quad f_2(x_n) = 1 \quad n = 1, 2, \dots, \quad g_2(x_n) = M \quad n = 0, 1, 2 \dots,$$

while h_i is any function such that $f_i \leq h_i \leq g_i$.

INTRODUCTION	Model	RESULTS	APPLICATION
000000	000000	000000000000000000000000000000000000000	00000

For $\varepsilon \in [0, 1)$ small enough,

- $S_{0} = \emptyset, \qquad T_{0} = \{x_{1}, x_{2}, \dots\}, \\S_{1} = \{x_{0}\}, \qquad T_{1} = \{x_{2}, x_{3}, \dots\}, \\S_{2} = \{x_{0}, x_{1}\}, \qquad T_{2} = \{x_{3}, x_{4}, \dots\}, \\\vdots \qquad \vdots \\S_{n} = \{x_{0}, x_{1}, \dots, x_{n-1}\}, \qquad T_{n} = \{x_{n+1}, x_{n+2}, \dots\}.$
- $\blacktriangleright (S_{\infty}, T_{\infty}) = (\mathbb{X}, \emptyset).$
- Is it *sharp*? Let's check $\Gamma_2(\mathbb{X}) = \emptyset$.

 $V_2^{\mathbb{X}}(x_n, \emptyset) = \sup_{1 \le \tau \le \rho_{\emptyset}^+} \mathbb{E}_{x_n}[F_2(\tau, \rho_{\mathbb{X}})] = g_2(x_n) \ge h_2(x_n) = J_2(x_n, 0, \rho_{\mathbb{X}}).$

This implies $\Phi_2^{\mathbb{X}}(\emptyset) = \emptyset$, so $\Gamma_2(\mathbb{X}) = \emptyset$. $\Longrightarrow (S_{\infty}, T_{\infty}) \in \widehat{\mathcal{E}}$.

INTRODUCTION	Model	Results	APPLICATION
0000000	000000	000000000000000000000000000000000000	00000

EXAMPLE II

- $\blacktriangleright \mathbb{X} = \{x_0, x_1, x_2, \dots\} \cup \{y, z\}.$
- ► All previous settings remain.
- Transition probabilities for $\{y, z\}$

$$\mathbb{P}_{y}(X_{1} = x_{n}) = p_{n} > 0 \text{ with } \sum_{n=0}^{\infty} p_{n} = 1, \ \mathbb{P}_{z}(X_{1} = y) = 1.$$

►
$$\delta_2(1)^2 < \delta_2(2).$$

• Payoffs on $\{y, z\}$:

$$\begin{split} f_2(y) &= M\delta_2(1), \quad f_2(z) \in \left(M\delta_2(1)^2 \lor \delta_2(2), M\delta_2(2)\right), \\ g_2(y) &= g_2(z) = M. \end{split}$$

• Only require $f_1 \leq g_1$.

INTRODUCTION	Model	RESULTS	APPLICATION
000000	000000	000000000000000000000000000000000000000	00000

For $\varepsilon \in [0, 1)$ small enough,

 $\begin{array}{ll} S_0 = \emptyset, & T_0 = \{x_1, x_2, \dots\} \cup \{y, z\}, \\ S_1 = \{x_0\}, & T_1 = \{x_2, x_3, \dots\} \cup \{y, z\}, \\ S_2 = \{x_0, x_1\}, & T_2 = \{x_3, x_4, \dots\} \cup \{y, z\}, \end{array}$

$$S_n = \{x_0, x_1, \dots, x_{n-1}\}, \quad T_n = \{x_{n+1}, x_{n+2}, \dots\} \cup \{y, z\}.$$

:

 $\blacktriangleright (S_{\infty}, T_{\infty}) = (\mathbb{X}, \{y, z\}).$

÷

- Similarly to Example I, $\Gamma_2(\mathbb{X}) = \emptyset$. $\implies \Gamma_2(S_\infty) = \emptyset \subsetneq T_\infty$.
- <u>Note</u>: $\emptyset = \Gamma_2(S_\infty) \in \widehat{\mathcal{E}}_2^{S_\infty}$ dominates $T_\infty \in \mathcal{E}_2^{S_\infty}$ at *z*:

$$\begin{aligned} U_2^{S_{\infty}}(z,T_{\infty}) &= J_2(z,0,\rho_{S_{\infty}}) \lor J_2(z,\rho_{T_{\infty}}^+,\rho_{S_{\infty}}) = f_2(z) \lor M\delta_2(1)^2 \\ &= f_2(z) < M\delta_2(2) = J_2(z,\rho_{\emptyset}^+,\rho_{S_{\infty}}) \le U_2^{S_{\infty}}(z,\emptyset). \end{aligned}$$

• So,
$$T_{\infty} \notin \widehat{\mathcal{E}}_2^{S_{\infty}}$$
. $\implies (S_{\infty}, T_{\infty}) \notin \widehat{\mathcal{E}}$.

INTRODUCTION	Model	RESULTS	Application
000000	000000	000000000000000000000000000000000000000	00000

EXISTENCE OF THE Sharp

Assumption 1

X has transition densities $(p_t)_{t\geq 1}$ w.r.t a measure μ on $(\mathbb{X}, \mathcal{B})$. That is, for $t = 1, 2, ..., p_t : \mathbb{X} \times \mathbb{X} \to \mathbb{R}_+$ is Borel and

$$\mathbb{P}_x(X_t \in A) = \int_A p_t(x,y) \mu(dy) \quad orall x \in \mathbb{X}, \ A \in \mathcal{B}.$$

Lemma

Let μ be a measure on (X, B). Given $A \subseteq X$, there is a maximal Borel minorant of A under μ , defined as

• a set $A^{\mu} \in \mathcal{B}$ with $A^{\mu} \subseteq A$ such that

for any
$$A' \in \mathcal{B}$$
 with $A' \subseteq A$, $\mu(A' \setminus A^{\mu}) = 0$.

Under Assumption 1,
$$f_i \leq h_i \leq g_i$$
, and (9),

there exists a *sharp* inter-personal equilibrium.

To prove this, we focus on the collection

 $A := \{ (S,T) \in \mathcal{E} : \Gamma_1(T) \supseteq S \text{ and } \Gamma_2(S) \subseteq T \}.$

By previous Thm, $A \neq \emptyset$. Define a *partial order* on *A*:

 $(S,T) \succeq (S',T') \text{ if } S \supseteq S' \text{ and } T \subseteq T'.$ (15)

INTRODUCTION	Model	RESULTS	APPLICATION
000000	000000	000000000000000000000000000000000000000	00000

Suppose there exists a *maximal element* $(\overline{S}, \overline{T})$ in *A*.

Claim:
$$(\overline{S}, \overline{T}) \in \widehat{\mathcal{E}}$$
.

• Set $S_0 := \overline{S}$, $T_0 := \overline{T}$. Do alternating iteration:

 $S_{n+1} := \Gamma_1(T_n)$ and $T_{n+1} := \Gamma_2(S_{n+1})$ $\forall n \ge 0.$

► As shown in previous Thm,

$$(S_{\infty},T_{\infty}):=(\cup_n S_n,\cap_n T_n)\in A.$$

▶ By construction, $S_{\infty} \supseteq S_0 = \overline{S}$ and $T_{\infty} \subseteq T_0 = \overline{T}$. As $(\overline{S}, \overline{T})$ is maximal in $A, S_{\infty} = S_0 = \overline{S}$ and $T_{\infty} = T_0 = \overline{T}$.

$$\begin{cases} \Gamma_1(\bar{T}) = \Gamma_1(T_0) = S_1 = S_0 = \bar{S} \\ \Gamma_2(\bar{S}) = \Gamma_2(S_0) = \Gamma_2(S_1) = T_1 = T_0 = \bar{T} \implies (\bar{S}, \bar{T}) \in \widehat{\mathcal{E}}. \end{cases}$$

Let $(S_{\alpha}, T_{\alpha})_{\alpha \in I}$ be a *totally ordered* subset of *A*. **Claim:** $(S_{\alpha}, T_{\alpha})_{\alpha \in I}$ has an upper bound in *A*.

Idea:

• Set $S_0 := \bigcup_{\alpha \in I} S_\alpha$, $T_0 := \bigcap_{\alpha \in I} T_\alpha$. Do alternating iteration:

 $S_{n+1} := \Gamma_1(T_n)$ and $T_{n+1} := \Gamma_2(S_{n+1})$ $\forall n \ge 0.$

► <u>Expect:</u> $(S_{\infty}, T_{\infty}) := (\cup_n S_n, \cap_n T_n) \in A.$ ⇒ This is an upper bound for $(S_{\alpha}, T_{\alpha})_{\alpha \in I}$.

Measurability issue: $\cup_{\alpha \in I} S_{\alpha}$, $\cap_{\alpha \in I} T_{\alpha} \notin \mathcal{B}$ in general!

• Let $T_0^{\mu} \in \mathcal{B}$ a maximal Borel minorant of T_0 under μ .

•
$$T_0^{\mu} \in \mathcal{B}$$
 and $T_0^{\mu} \subseteq T_0$.

• For any $T \in \mathcal{B}$ with $T \subseteq T_0$, $\mu(T \setminus T_0^{\mu}) = 0$.

• For any $T \in \mathcal{B}$ with $T \subseteq T_0$,

$$\mathbb{P}_x(X_t \in T \setminus T_0^\mu) = \int_{T \setminus T_0^\mu} p_t(x, y) \mu(dy) = 0 \quad \forall x \in \mathbb{X}, \ t > 0.$$

Hence,

 $\mathbb{P}_{x}(X_{t} \in T \setminus T_{0}^{\mu} \text{ for some } t \in \mathbb{N}) = 0 \quad \forall x \in \mathbb{X}.$ (16)

Modified alternating iteration:

$$S_{0} = \bigcup_{\alpha \in I} S_{\alpha} \qquad T_{0} = \bigcap_{\alpha \in I} T_{\alpha}$$

$$S_{1} = \Gamma_{1}(T_{0}^{\mu}) \supseteq S_{0} \qquad T_{1} = \Gamma_{2}(S_{1})$$

$$S_{2} = \Gamma_{1}(T_{1}) \qquad T_{2} = \Gamma_{2}(S_{2})$$

$$\vdots \qquad \vdots$$

• For any $T \in \mathcal{B}$ with $T \subseteq T_0$,

 $\Gamma_1(T) \supseteq \Gamma_1(T_\alpha) \supseteq S_\alpha \ \forall \alpha \in I \implies \Gamma_1(T) \supseteq S_0.$

For any $S \in \mathcal{B}$ with $S \supseteq S_0$,

 $\Gamma_2(S) \subseteq \Gamma_2(S_\alpha) \subseteq T_\alpha \ \forall \alpha \in I \implies \Gamma_2(S) \subseteq T_0.$

Modified alternating iteration:

 $S_{0} = \bigcup_{\alpha \in I} S_{\alpha} \qquad T_{0} = \bigcap_{\alpha \in I} T_{\alpha}$ $S_{1} = \Gamma_{1}(T_{0}^{\mu}) \supseteq S_{0} \qquad T_{1} = \Gamma_{2}(S_{1}) \subseteq T_{0}$ $S_{2} = \Gamma_{1}(T_{1}) \supseteq \Gamma_{1}(T_{0}) \neq S_{1} \qquad T_{2} = \Gamma_{2}(S_{2})$ $\vdots \qquad \vdots$ $\mathsf{By} (16), \ \rho_{T_{1} \cup T_{0}^{\mu}} = \rho_{T_{0}^{\mu}} \mathbb{P}_{x}\text{-a.s., for } x \notin T_{1} \cup T_{0}^{\mu}.$ $S_{2} := \Gamma_{1}(T_{1}) \supseteq \Gamma_{1}(T_{1} \cup T_{0}^{\mu}) = \Gamma_{1}(T_{0}^{\mu}) = S_{1}.$

Modified alternating iteration:

 $S_{0} = \bigcup_{\alpha \in I} S_{\alpha} \qquad T_{0} = \bigcap_{\alpha \in I} T_{\alpha}$ $S_{1} = \Gamma_{1}(T_{0}^{\mu}) \supseteq S_{0} \qquad T_{1} = \Gamma_{2}(S_{1}) \subseteq T_{0}$ $S_{2} = \Gamma_{1}(T_{1}) \supseteq S_{1} \qquad T_{2} = \Gamma_{2}(S_{2}) \subseteq T_{1}$ $\vdots \qquad \vdots$

Conclude: $(S_{\infty}, T_{\infty}) := (\cup_n S_n, \cap_n T_n) \in A$ is well-defined, and is an upper bound for $(S_{\alpha}, T_{\alpha})_{\alpha \in I}$.

► By Zorn's lemma, the proof is complete.

SUMMARY

Soft inter-personal equilibrium:

A **Nash equilibrium** between two players, each of whom uses an intra-personal equilibrium.

- Always exists.
- Can be found via concrete alternating iteration.
- ► Sharp inter-personal equilibrium:

A **Nash equilibrium** between two players, each of whom uses an *<u>optimal</u>* intra-personal equilibrium.

- Exists, if *X* has transition densities.
- Constructed via alternating iteration + Zorn's lemma.

INTRODUCTION	Model	Results	APPLICATION
000000	000000	000000000000000000000000000000000000000	00000

APPLICATION TO NEGOTIATION

Firms 1, 2 want to cooperate to initiate a project

- Each firm has a proprietary skill/technology.
- Revenue R > 0 fixed.
- Cost X > 0 is random: $\exists u > 1$ and $p \in (0, 1)$ s.t.

$$\mathbb{P}_x[X_1/x=u]=p \text{ and } \mathbb{P}_x[X_1/x=1/u]=1-p, \quad \forall x\in\mathbb{X}.$$

That is, X evolves on the binomial tree

$$\mathbb{X} = \{ u^i : i = 0, \pm 1, \pm 2, \dots \}$$
(17)

- Each firm insists on...
 - ▶ Taking a larger (risk-free) share $N \in (R/2, R)$;
 - Demanding the other to take smaller share $K := R N \in (0, R/2)$ and incur (risky) cost *X*.

Model 000000	Results 000000000000000000000000000000000000	APPLICATION 00000
	Model 000000	MODEL RESULTS 000000 000000000000000000000000000000000000

► In our Dynkin game,

$$F_i(\tau,\sigma) := \delta_i(\tau) (K - X_\tau)^+ \mathbf{1}_{\{\tau < \sigma\}} + \delta_i(\sigma) N \mathbf{1}_{\{\tau > \sigma\}} + \delta_i(\tau) h_i(X_\tau) \mathbf{1}_{\{\tau = \sigma\}},$$

$$\delta_i(t) = \frac{1}{1 + \beta_i t},$$

• $\beta_i > 0$: impatience level of Firm *i*.

THE STRATEGY OF COERCION

► Demonstrate (or pretend!?) a strong will <u>not</u> to give in...

- ...to *coerce* the other firm to give in.
- "Never give in" $\iff \tau = \infty \iff S_0 = \emptyset$.

Proposition (Firm 1 more patient)

If $\beta_1 \leq \beta_2$, the alternating iterative procedure (12) terminates after one iteration: $\exists y_2^* \in [0, \infty) \cap \mathbb{X}$ s.t.

$$\underbrace{S_0 = \emptyset}_{0 = \infty} \implies T_0 = (0, y_2^*] \cap \mathbb{X} \implies \underbrace{S_1 = \emptyset}_{0 = \infty}.$$

Moreover, $(S_{\infty}, T_{\infty}) = (S_0, T_0) = (\emptyset, (0, y_2^*] \cap \mathbb{X}) \in \widehat{\mathcal{E}}$.

► **Message:** *"More patient"* ⇒ coercion works

Introduction	Model	Results	APPLICATION 00000
0000000	000000	000000000000000000000000000000000000	

• What if Firm 1 is *less patient* $(\beta_1 > \beta_2)$?

- ► Complicated...
 - \implies Coercion may or may not work.

Proposition (Firm 1 *significantly less patient*) If $\beta_1 > 0$ sufficiently large and $\beta_2 > 0$ sufficiently small, iterative procedure (12) yields

$$\begin{split} (\underline{S_0}, T_0) &= (\underline{\emptyset}, (0, y_2^*] \cap \mathbb{X}) \implies (S_1, T_1) \implies (S_2, T_2) \\ &\implies \cdots \\ &\implies (S_{\infty}, \underline{T_{\infty}}) = ((0, y_1^*] \cap \mathbb{X}, \underline{\emptyset}) \in \widehat{\mathcal{E}}, \end{split}$$

for some $y_1^*, y_2^* \in [0, \infty) \cap \mathbb{X}$.

► Message: "significantly less patient" ⇒ coercer is coerced!

THANK YOU!!

 "A Time-Inconsistent Dynkin Game: from Intra-personal to Inter-personal Equilibria" (H. and Z. Zhou), to appear in Finance & Stochastics, available @ arXiv:2101.00343.