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INTRODUCTION MODEL RESULTS APPLICATION

OPTIMAL CONTROL/STOPPING

I Consider a Markovian state process X.

Stochastic Optimal Control/Stopping

Given (t, x) ∈ [0,∞)× Rd, can we solve

sup
α∈A

F(t, x, α)? (1)

I Classical Theory:
I Want: find an optimal strategy α∗

t,x ∈ A.
I Methods: dynamic programming, martingale approach,...
I Consider α∗

t,x as a mapping:

(t, x) 7−→ α∗
t,x ∈ A.
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I Problem Solved. Feeling Good?

t s r

α∗t,x(t, x) α∗t,x(s,Xs) α∗t,x(r,Xr)

I The Reality:

t s r

α∗t,x(t, x) α∗s,Xs
(s,Xs) α∗r,Xr

(r,Xr)

I Time Inconsistency:
I α∗

t,x, α∗
s,Xs

, α∗
r,Xr

may all be different.
I The original objective (1) cannot be attained...
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Time-inconsistent objectives:
I Non-exponential discounting:

F(t, x, α) := Et,x[δ(T − t)g(Xα
T)].

I Payoff depending on initials (t, x):

F(t, x, α) := Et,x[g(t, x,Xα
T)].

I Nonlinear functionals of E[·]:

F(t, x, α) := Et,x[g(Xα
T)]−H(Et,x[g(Xα

T)]).

I Probability distortion:

F(t, x, α) :=

∫ ∞
0

w
(
Pt,x [g(Xα

T) > u]

)
du.
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How to resolve time inconsistency?

Consistent Planning [Strotz (1955-56)]

I Take into account future selves’ behavior.

Find an (intra-personal) equilibrium strategy that
once being enforced over time,

no future self would want to deviate from.

I How to precisely define and characterize equilibria?

For control problems,
I Ekeland & Lazrak (2006): Definition via spike variations.
I Ekeland & Pirvu (2008): Extended HJB system

characterizes equilibrium controls α∗.
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LITERATURE

I Control problems:

Ekeland, Mbodji, & Pirvu (2012), Björk, Murgoci, & Zhou (2014),
Dong & Sircar (2014), Björk & Murgoci (2014), Yong (2012),
Björk, Khapko & Murgoci (2017), ...

I Stopping problems:
(a) Extensions from “control” to “stopping”

I Same definition and extended HJB system as in control case.
I Christensen & Lindensjö (2018, 2020), Ebert et al. (2020).

(b) The fixed-point approach
I Equilibria as fixed-points, found via fixed-point iterations.
I Huang & Nguyen-Huu (2018): non-exponential discounting;

Huang, Nguyen-Huu, & Zhou (2020): probability distortion;
Huang & Yu (2021): model uncertainty.
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FIXED-POINT APPROACH

1. At first, one follows R ∈ B(Rd).

0

RΘ(R)
=⇒ switch from R to Θ(R)

2. Now, one follows Θ(R).

0

Θ(R)Θ2(R)
=⇒ switch from Θ(R) to Θ2(R)

3. Continue this procedure until we reach

R0 := lim
n→∞

Θn(R)

Expect: Θ(R0) = R0, i.e. cannot improve anymore.
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How about a game with “multiple agents”?
I Each agent has time-inconsistent preferences.

I Two levels of game-theoretic reasoning:

Each agent...
1. looks for an intra-personal equilibrium among her current

and future selves;
2. finds the best response to other agents’ strategies.

I An inter-personal equilibrium in the game is then

A Nash equilibrium among all agents,
each of whom uses her best intra-personal equilibrium.

I Such inter-personal equilibrium have not been studied.
(Precise definition? Existence? Construction?)
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IN THIS TALK...

Focus on a Dynkin game:
I Z+ := {0, 1, 2, ...}.
I X = (Xt)t∈Z+ time-homogeneous strong Markov, taking

values in X.
I For i ∈ {1, 2}, given the other player uses σ ∈ T , Player i

maximizes
Ji(x, τ , σ) := Ex[Fi(τ , σ)], (2)

over τ ∈ T , where

Fi(τ, σ) := δi(τ)fi(Xτ )1{τ<σ} + δi(σ)gi(Xσ)1{τ>σ}
+ δi(τ)hi(Xτ )1{τ=σ}, ∀τ, σ ∈ T .

I fi, gi, hi : X→ R+ Borel measurable.
I δi : R+ → [0, 1] decreasing, δi(0) = 1 (e.g. δi(t) = e−rt).
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NON-EXPONENTIAL DISCOUNTING

Assume the discount function δi : R+ → [0, 1] satisfies

δi(t)δi(s) ≤ δi(t + s) ∀ t, s ∈ Z+. (3)

I Captures decreasing impatience in behavioral economics.
I Examples:

I hyperbolic δi(t) = 1
1+βt ,

I generalized hyperbolic δi(t) = 1
(1+βt)k ,

I pseudo-exponential δi(t) = λe−r1t + (1− λ)e−r2t.

I Time inconsistency arises under (3).
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STOPPING POLICIES

Assume each player stops at the first entrance time

ρS := inf{t ≥ 0 : Xt ∈ S}.

I S ∈ B, a Borel subset of X, is called a stopping policy.
I Given the other player using T ∈ B, Player i’s

intra-personal reasoning

ΘT
i (S) :={x ∈ S : Ji(x, 0, ρT) ≥ Ji(x, ρ+S , ρT)}

∪ {x /∈ S : Ji(x, 0, ρT) > Ji(x, ρ+S , ρT)} ∈ B. (4)

I Stop at time 0 =⇒ Ji(x, 0, ρT).
I Don’t stop at time 0 =⇒ Ji(x, ρ+S , ρT), where

ρ+S := inf{t > 0 : Xt ∈ S}.
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INTRA- AND INTER-PERSONAL EQUILIBRIA

Definition (Intra-personal)
S ∈ B is Player i’s intra-personal equilibrium w.r.t. T ∈ B if

ΘT
i (S) = S.

We denote this by S ∈ ET
i .

Definition (Soft inter-personal)
(S,T) ∈ B × B is a soft inter-personal equilibrium if

ΘT
1 (S) = S and ΘS

2(T) = T.

We denote this by (S,T) ∈ E .
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Given T ∈ B, define the value function of S ∈ ET
i by

UT
i (x,S) := Ji(x, 0, ρT) ∨ Ji(x, ρ+S , ρT), x ∈ X.

Definition (Optimal Intra-personal)

S ∈ ET
i is Player i’s optimal intra-personal equilibrium w.r.t. T ∈ B

if,
for any R ∈ ET

i , UT
i (x,S) ≥ UT

i (x,R) ∀ x ∈ X.

We denote this by S ∈ ÊT
i .

I “Optimal equilibrium” of Huang & Zhou (2019):
I Wants an equilibrium to be uniformly dominating

—a rare occurrence in game theory.
I For stopping under (3), optimal equilibrium exists.

(Huang & Zhou (2019, 2020), Huang & Wang (2021))
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Definition (Sharp inter-personal)
(S,T) ∈ B × B is a sharp inter-personal equilibrium if

S ∈ ÊT
1 and T ∈ ÊS

2 .

We denote this by (S,T) ∈ Ê .

Ultimate goals:
I Existence of sharp inter-personal equilibria.
I Construction via concrete iterative procedures.
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First Question: What type of iterations to use?

I Fixed-point iteration, i.e.

lim
n→∞

(ΘT
i )n(S) ∈ ET

i

does not seem so promising...
I Any iteration that directly leads to S∗ ∈ ÊT

i ?
I Recently approached by Bayraktar, Zhang, & Zhou (2020)

in a one-player stopping poblem.
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For any T ∈ B, define ΦT
i : B → B by

ΦT
i (S) := S ∪

{
x /∈ S : Ji(x, 0, ρT) > VT

i (x,S)
}
, (5)

where

VT
i (x,S) := sup

1≤τ≤ρ+S

Ex[Fi(τ, ρT)] x ∈ X,S ∈ B. (6)

Theorem (Direct iteration to ÊT
i )

Assume hi ≤ gi . Given T ∈ B, define
(
Sn

i (T)
)

n∈N ⊂ B by

S1
i (T) := ΦT

i (∅), Sn
i (T) := ΦT

i
(
Sn−1(T)

)
for n ≥ 2, (7)

Then,
Γi(T) :=

⋃
n∈N

Sn
i (T) ∈ ÊT

i . (8)
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ALTERNATING ITERATION

Let Players 1 and 2 take turns to perform iteration (7).

S0 T0 = Γ2(S0)

S1 = Γ1(T0) T1 = Γ2(S1)

S2 = Γ1(T1) T2 = Γ2(S2)

...
...

Hope:
1) (Sn,Tn) converges appropriately.
2) The limit (S∞,T∞) is a (sharp) inter-personal equilibrium.
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Lemma

Assume fi ≤ hi ≤ gi and

(δi(t)gi(Xx
t ))t≥0 is a supermartingale ∀x ∈ X. (9)

Then, for any T,R ∈ B with T ⊆ R,

ΦT
i (S) ⊇ ΦR

i (S) ⊇ ΦR
i (S′) ∀S,S′ ∈ B with S ⊇ S′. (10)

Proof Sketch. (9) implies

Ji(x, τ, ρT) ≤ Ji(x, τ, ρR) ∀x ∈ X, τ ∈ T . (11)

In view of (6), for any x ∈ X and S,S′ ∈ B with S ⊇ S′,

VT
i (x,S) ≤ VR

i (x,S) ≤ VR
i (x,S′). =⇒ ΦT

i (S) ⊇ ΦR
i (S) ⊇ ΦR

i (S′).
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Corollary (T 7→ Γi(T) monotone)

Assume fi ≤ hi ≤ gi and (9) . For any T,R ∈ B with T ⊆ R,

Γi(T) ⊇ Γi(R).

Idea: Taking S0 = ∅,

S0 = ∅ T0 = Γ2(S0)

S1 = Γ1(T0) T1 = Γ2(S1)

S2 = Γ1(T1) T2 = Γ2(S2)

...
...

Hence, the limit is well-defined as

(S∞,T∞) = (∪nSn,∩nTn) ∈ B × B.
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Theorem (Existence of the soft)

Assume fi ≤ hi ≤ gi and (9) . Set
:::::::
S0 := ∅ and define

Tn := Γ2(Sn) Sn+1 := Γ1(Tn), ∀n ∈ N ∪ {0}. (12)

Then, (S∞,T∞) := (∪nSn,∩nTn) ∈ E and satisfies

Γ1(T∞) = S∞, Γ2(S∞) ⊆ T∞. (13)

Proof. Fix x ∈ S∞. ∃N ∈ N s.t. x ∈ Sn+1 = Γ1(Tn) ∈ ETn
1 ∀n > N.

J1(x, 0, ρTn) ≥ J1(x, ρ+Sn+1
, ρTn) ∀n ≥ N.

=⇒ J1(x, 0, ρT∞) ≥ J1(x, ρ+S∞
, ρT∞), i.e. x ∈ ΘT∞

1 (S∞).

Thus, S∞ ⊆ ΘT∞
1 (S∞). Can get (S∞)c ⊆ (ΘT∞

1 (S∞))c similarly.

Conclude: S∞ = ΘT∞
1 (S∞) and T∞ = ΘS∞

2 (T∞).
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Proof (conti.). By monotonicity of T 7→ Γi(T),

Sn ⊆ S∞ =⇒ Γ2(S∞) ⊆ Γ2(Sn) = Tn =⇒ Γ2(S∞) ⊆ T∞,
Tn ⊇ T∞ =⇒ Γ1(T∞) ⊇ Γ1(Tn) = Sn+1 =⇒ Γ1(T∞) ⊇ S∞,

Also, by S0 = ∅ ⊆ S∞ ∈ ET∞
1 , can construct {Sn

i (T∞)}n in (7)
and find Sn

i (T∞) ⊆ S∞ for all n. Hence, Γ1(T∞) ⊆ S∞.

Lemma

Assume hi ≤ gi . If (S,T) ∈ B × B satisfies

Γ1(T) = S and Γ2(S) = T, (14)

then (S,T) ∈ Ê .

I By (13), (S∞,T∞) is
::::::
almost sharp!
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EXAMPLE I

I X = {x0, x1, x2, . . . }with

Pxn+1(X1 = xn) = 1, n = 0, 1, 2 . . . ,
Px0(X1 = x0) = 1− ε, Px0(X1 = x1) = ε, for ε ∈ [0, 1).

I Take M > 1 such that δ2(2) < 1/M < δ2(1).
I Take L > 1 and define

f1(xn) = 1, g1(xn) = L n = 0, 1, 2, . . . ,
f2(x0) = 0, f2(xn) = 1 n = 1, 2, . . . , g2(xn) = M n = 0, 1, 2 . . . ,

while hi is any function such that fi ≤ hi ≤ gi.
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For ε ∈ [0, 1) small enough,

S0 = ∅, T0 = {x1, x2, . . . },
S1 = {x0}, T1 = {x2, x3, . . . },
S2 = {x0, x1}, T2 = {x3, x4, . . . },

...
...

Sn = {x0, x1, . . . , xn−1}, Tn = {xn+1, xn+2, . . . }.

I (S∞,T∞) = (X, ∅).
I Is it sharp? Let’s check Γ2(X) = ∅.

VX
2 (xn, ∅) = sup

1≤τ≤ρ+∅

Exn [F2(τ, ρX)] = g2(xn) ≥ h2(xn) = J2(xn, 0, ρX).

This implies ΦX
2 (∅) = ∅, so Γ2(X) = ∅. =⇒ (S∞,T∞) ∈ Ê .
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EXAMPLE II

I X = {x0, x1, x2, . . . } ∪ {y, z}.
I All previous settings remain.
I Transition probabilities for {y, z}

Py(X1 = xn) = pn > 0 with
∞∑

n=0

pn = 1, Pz(X1 = y) = 1.

I δ2(1)2 < δ2(2).
I Payoffs on {y, z}:

f2(y) = Mδ2(1), f2(z) ∈
(
Mδ2(1)2 ∨ δ2(2),Mδ2(2)

)
,

g2(y) = g2(z) = M.

I Only require f1 ≤ g1.
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For ε ∈ [0, 1) small enough,

S0 = ∅, T0 = {x1, x2, . . . } ∪ {y, z},
S1 = {x0}, T1 = {x2, x3, . . . } ∪ {y, z},
S2 = {x0, x1}, T2 = {x3, x4, . . . } ∪ {y, z},

...
...

Sn = {x0, x1, . . . , xn−1}, Tn = {xn+1, xn+2, . . . } ∪ {y, z}.

I (S∞,T∞) = (X, {y, z}).
I Similarly to Example I, Γ2(X) = ∅. =⇒ Γ2(S∞) = ∅ ( T∞.
I Note: ∅ = Γ2(S∞) ∈ ÊS∞

2 dominates T∞ ∈ ES∞
2 at z:

US∞
2 (z,T∞) = J2(z, 0, ρS∞) ∨ J2(z, ρ+T∞

, ρS∞) = f2(z) ∨Mδ2(1)2

= f2(z) < Mδ2(2) = J2(z, ρ+∅ , ρS∞) ≤ US∞
2 (z, ∅).

I So, T∞ /∈ ÊS∞
2 . =⇒ (S∞,T∞) /∈ Ê .
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EXISTENCE OF THE Sharp

Assumption 1
X has transition densities (pt)t≥1 w.r.t a measure µ on (X,B).
That is, for t = 1, 2, ..., pt : X× X→ R+ is Borel and

Px(Xt ∈ A) =

∫
A

pt(x, y)µ(dy) ∀x ∈ X, A ∈ B.

Lemma
Let µ be a measure on (X,B). Given A ⊆ X, there is a maximal
Borel minorant of A under µ, defined as
I a set Aµ ∈ B with Aµ ⊆ A such that

for any A′ ∈ B with A′ ⊆ A, µ(A′ \ Aµ) = 0.
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Theorem (Existence of the sharp)

Under Assumption 1 , fi ≤ hi ≤ gi , and (9) ,

there exists a sharp inter-personal equilibrium.

To prove this, we focus on the collection

A := {(S,T) ∈ E : Γ1(T) ⊇ S and Γ2(S) ⊆ T}.

By previous Thm, A 6= ∅. Define a partial order on A:

(S,T) � (S′,T′) if S ⊇ S′ and T ⊆ T′. (15)
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PROOF (STEP 1)
Suppose there exists a maximal element (S̄, T̄) in A.

Claim: (S̄, T̄) ∈ Ê .
I Set S0 := S̄, T0 := T̄. Do alternating iteration:

Sn+1 := Γ1(Tn) and Tn+1 := Γ2(Sn+1) ∀n ≥ 0.

I As shown in previous Thm,

(S∞,T∞) := (∪nSn,∩nTn) ∈ A.

I By construction, S∞ ⊇ S0 = S̄ and T∞ ⊆ T0 = T̄.
As (S̄, T̄) is maximal in A, S∞ = S0 = S̄ and T∞ = T0 = T̄.{

Γ1(T̄) = Γ1(T0) = S1 = S0 = S̄
Γ2(S̄) = Γ2(S0) = Γ2(S1) = T1 = T0 = T̄

=⇒ (S̄, T̄) ∈ Ê .
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PROOF (STEP 2)

Let (Sα,Tα)α∈I be a totally ordered subset of A.

Claim: (Sα,Tα)α∈I has an upper bound in A.

Idea:
I Set S0 := ∪α∈ISα, T0 := ∩α∈ITα. Do alternating iteration:

Sn+1 := Γ1(Tn) and Tn+1 := Γ2(Sn+1) ∀n ≥ 0.

I Expect: (S∞,T∞) := (∪nSn,∩nTn) ∈ A.
=⇒ This is an upper bound for (Sα,Tα)α∈I.

Measurability issue: ∪α∈ISα, ∩α∈ITα /∈ B in general!
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PROOF (STEP 2)

I Let Tµ0 ∈ B a maximal Borel minorant of T0 under µ.
I Tµ0 ∈ B and Tµ0 ⊆ T0.
I For any T ∈ B with T ⊆ T0, µ(T \ Tµ0 ) = 0.

I For any T ∈ B with T ⊆ T0,

Px(Xt ∈ T \ Tµ0 ) =

∫
T\Tµ

0

pt(x, y)µ(dy) = 0 ∀x ∈ X, t > 0.

Hence,

Px(Xt ∈ T \ Tµ0 for some t ∈ N) = 0 ∀x ∈ X. (16)
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PROOF (STEP 2)

I Modified alternating iteration:

S0 = ∪α∈ISα T0 = ∩α∈ITα
S1 = Γ1(Tµ0 ) ⊇ S0 T1 = Γ2(S1)

S2 = Γ1(T1) T2 = Γ2(S2)

...
...

I For any T ∈ B with T ⊆ T0,

Γ1(T) ⊇ Γ1(Tα) ⊇ Sα ∀α ∈ I =⇒ Γ1(T) ⊇ S0.

For any S ∈ B with S ⊇ S0,

Γ2(S) ⊆ Γ2(Sα) ⊆ Tα ∀α ∈ I =⇒ Γ2(S) ⊆ T0.



INTRODUCTION MODEL RESULTS APPLICATION

PROOF (STEP 2)

I Modified alternating iteration:

S0 = ∪α∈ISα T0 = ∩α∈ITα
S1 = Γ1(Tµ0 ) ⊇ S0 T1 = Γ2(S1) ⊆ T0

S2 = Γ1(T1) ⊇ Γ1(T0) 6= S1 T2 = Γ2(S2)

...
...

I By (16), ρT1∪Tµ
0

= ρTµ
0
Px-a.s., for x /∈ T1 ∪ Tµ0 .

S2 := Γ1(T1) ⊇ Γ1(T1 ∪ Tµ0 ) = Γ1(Tµ0 ) = S1.
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PROOF (STEP 2)

I Modified alternating iteration:

S0 = ∪α∈ISα T0 = ∩α∈ITα
S1 = Γ1(Tµ0 ) ⊇ S0 T1 = Γ2(S1) ⊆ T0

S2 = Γ1(T1) ⊇ S1 T2 = Γ2(S2) ⊆ T1

...
...

Conclude: (S∞,T∞) := (∪nSn,∩nTn) ∈ A is well-defined,
and is an upper bound for (Sα,Tα)α∈I.

I By Zorn’s lemma, the proof is complete.
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SUMMARY

I Soft inter-personal equilibrium:

A Nash equilibrium between two players,
each of whom uses an intra-personal equilibrium.

I Always exists.
I Can be found via concrete alternating iteration.

I Sharp inter-personal equilibrium:

A Nash equilibrium between two players,
each of whom uses an optimal intra-personal equilibrium.
I Exists, if X has transition densities.
I Constructed via alternating iteration + Zorn’s lemma.
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APPLICATION TO NEGOTIATION

I Firms 1, 2 want to cooperate to initiate a project
I Each firm has a proprietary skill/technology.
I Revenue R > 0 fixed.
I Cost X > 0 is random: ∃ u > 1 and p ∈ (0, 1) s.t.

Px[X1/x = u] = p and Px[X1/x = 1/u] = 1− p, ∀x ∈ X.

That is, X evolves on the binomial tree

X = {ui : i = 0,±1,±2, . . . } (17)

I Assume: X is a submartingale, i.e. p ≥ 1
u+1 .

I Each firm insists on...
I Taking a larger (risk-free) share N ∈ (R/2,R);
I Demanding the other to take smaller share

K := R−N ∈ (0,R/2) and incur (risky) cost X.
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I In our Dynkin game,

Fi(τ, σ) := δi(τ)(K − Xτ )+1{τ<σ} + δi(σ)N1{τ>σ}
+ δi(τ)hi(Xτ )1{τ=σ},

I τ < σ: Firm i gives in first.
I τ > σ : The other firm gives in first.
I f1(x) = f2(x) = (K − x)+, g1(x) = g2(x) = N, fi ≤ hi ≤ gi.
I Hyperbolic discounting:

δi(t) =
1

1 + βit
,

I βi > 0: impatience level of Firm i.
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THE STRATEGY OF COERCION

I Demonstrate (or pretend!?) a strong will not to give in...
I ...to coerce the other firm to give in.
I “Never give in” ⇐⇒ τ =∞ ⇐⇒ S0 = ∅.

Proposition (Firm 1 more patient)
If β1 ≤ β2, the alternating iterative procedure (12) terminates
after one iteration: ∃ y∗2 ∈ [0,∞) ∩ X s.t.

S0 = ∅
::::::

=⇒ T0 = (0, y∗2] ∩ X =⇒ S1 = ∅
::::::

.

Moreover, (S∞,T∞) = (S0,T0) = (∅, (0, y∗2] ∩ X) ∈ Ê .

I Message: “More patient” =⇒ coercion works
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I What if Firm 1 is less patient (β1 > β2)?
I Complicated...

=⇒ Coercion may or may not work.

Proposition (Firm 1 significantly less patient)
If β1 > 0 sufficiently large and β2 > 0 sufficiently small,
iterative procedure (12) yields

(S0,T0) = (∅, (0, y∗2] ∩ X) =⇒ (S1,T1) =⇒ (S2,T2)

=⇒ · · ·

=⇒ (S∞,T∞) = ((0, y∗1] ∩ X, ∅) ∈ Ê ,

for some y∗1, y
∗
2 ∈ [0,∞) ∩ X.

I Message: “significantly less patient” =⇒ coercer is coerced!
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THANK YOU!!
I “A Time-Inconsistent Dynkin Game: from Intra-personal to

Inter-personal Equilibria”
(H. and Z. Zhou), to appear in Finance & Stochastics, available @
arXiv:2101.00343.
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