A Time-Inconsistent Dynkin Game:

Intra-personal v.s. Inter-personal Equilibria

Yu-Jui Huang
University of Colorado, Boulder

Joint work with Zhou Zhou
(University of Sydney)

One World Optimal Stopping Seminar
December 8, 2021

Optimal Control/Stopping

- Consider a Markovian state process X.

Stochastic Optimal Control/Stopping

Given $(t, x) \in[0, \infty) \times \mathbb{R}^{d}$, can we solve

$$
\begin{equation*}
\sup _{\alpha \in \mathcal{A}} F(t, x, \alpha) ? \tag{1}
\end{equation*}
$$

- Classical Theory:
- Want: find an optimal strategy $\alpha_{t, x}^{*} \in \mathcal{A}$.
- Methods: dynamic programming, martingale approach,...
- Consider $\alpha_{t, x}^{*}$ as a mapping:

$$
(t, x) \quad \longmapsto \quad \alpha_{t, x}^{*} \in \mathcal{A}
$$

- Problem Solved. Feeling Good?

- The Reality:

- Time Inconsistency:
- $\alpha_{t, x}^{*}, \alpha_{s, X_{s}}^{*}, \alpha_{r, X_{r}}^{*}$ may all be different.
- The original objective (1) cannot be attained...

Time-inconsistent objectives:

- Non-exponential discounting:

$$
F(t, x, \alpha):=\mathbb{E}_{t, x}\left[\delta(T-t) g\left(X_{T}^{\alpha}\right)\right]
$$

- Payoff depending on initials (t, x) :

$$
F(t, x, \alpha):=\mathbb{E}_{t, x}\left[g\left(t, x, X_{T}^{\alpha}\right)\right] .
$$

- Nonlinear functionals of $\mathbb{E}[\cdot]$:

$$
F(t, x, \alpha):=\mathbb{E}_{t, x}\left[g\left(X_{T}^{\alpha}\right)\right]-H\left(\mathbb{E}_{t, x}\left[g\left(X_{T}^{\alpha}\right)\right]\right) .
$$

- Probability distortion:

$$
F(t, x, \alpha):=\int_{0}^{\infty} w\left(\mathbb{P}_{t, x}\left[g\left(X_{T}^{\alpha}\right)>u\right]\right) d u
$$

How to resolve time inconsistency?
Consistent Planning [Strotz (1955-56)]

- Take into account future selves' behavior.

Find an (intra-personal) equilibrium strategy that once being enforced over time, no future self would want to deviate from.

- How to precisely define and characterize equilibria?

For control problems,

- Ekeland \& Lazrak (2006): Definition via spike variations.
- Ekeland \& Pirvu (2008): Extended HJB system characterizes equilibrium controls α^{*}.

LITERATURE

- Control problems:

Ekeland, Mbodji, \& Pirvu (2012), Björk, Murgoci, \& Zhou (2014),
Dong \& Sircar (2014), Björk \& Murgoci (2014), Yong (2012),
Björk, Khapko \& Murgoci (2017), ...

- Stopping problems:
(a) Extensions from "control" to "stopping"
- Same definition and extended HJB system as in control case.
- Christensen \& Lindensjö $(2018,2020)$, Ebert et al. (2020).
(b) The fixed-point approach
- Equilibria as fixed-points, found via fixed-point iterations.
- Huang \& Nguyen-Huu (2018): non-exponential discounting; Huang, Nguyen-Huu, \& Zhou (2020): probability distortion; Huang \& Yu (2021): model uncertainty.

Fixed-Point Approach

1. At first, one follows $R \in \mathcal{B}\left(\mathbb{R}^{d}\right)$.

2. Now, one follows $\Theta(R)$.

3. Continue this procedure until we reach

$$
R_{0}:=\lim _{n \rightarrow \infty} \Theta^{n}(R)
$$

Expect: $\Theta\left(R_{0}\right)=R_{0}$, i.e. cannot improve anymore.

How about a game with "multiple agents"?

- Each agent has time-inconsistent preferences.
- Two levels of game-theoretic reasoning:

Each agent...

1. looks for an intra-personal equilibrium among her current and future selves;
2. finds the best response to other agents' strategies.

- An inter-personal equilibrium in the game is then

A Nash equilibrium among all agents, each of whom uses her best intra-personal equilibrium.

- Such inter-personal equilibrium have not been studied. (Precise definition? Existence? Construction?)

In this Talk...

Focus on a Dynkin game:

- $\mathbb{Z}_{+}:=\{0,1,2, \ldots\}$.
- $X=\left(X_{t}\right)_{t \in \mathbb{Z}_{+}}$time-homogeneous strong Markov, taking values in \mathbb{X}.
- For $i \in\{1,2\}$, given the other player uses $\sigma \in \mathcal{T}$, Player i maximizes

$$
\begin{equation*}
J_{i}(x, \tau, \sigma):=\mathbb{E}_{x}\left[F_{i}(\tau, \sigma)\right] \tag{2}
\end{equation*}
$$

over $\tau \in \mathcal{T}$, where

$$
\begin{aligned}
F_{i}(\tau, \sigma):=\delta_{i}(\tau) f_{i}\left(X_{\tau}\right) 1_{\{\tau<\sigma\}} & +\delta_{i}(\sigma) g_{i}\left(X_{\sigma}\right) 1_{\{\tau>\sigma\}} \\
& +\delta_{i}(\tau) h_{i}\left(X_{\tau}\right) 1_{\{\tau=\sigma\}}, \forall \tau, \sigma \in \mathcal{T} .
\end{aligned}
$$

- $f_{i}, g_{i}, h_{i}: \mathbb{X} \rightarrow \mathbb{R}_{+}$Borel measurable.
- $\delta_{i}: \mathbb{R}_{+} \rightarrow[0,1]$ decreasing, $\delta_{i}(0)=1$ (e.g. $\delta_{i}(t)=e^{-r t}$).

Non-Exponential Discounting

Assume the discount function $\delta_{i}: \mathbb{R}_{+} \rightarrow[0,1]$ satisfies

$$
\begin{equation*}
\delta_{i}(t) \delta_{i}(s) \leq \delta_{i}(t+s) \quad \forall t, s \in \mathbb{Z}_{+} . \tag{3}
\end{equation*}
$$

- Captures decreasing impatience in behavioral economics.
- Examples:
- hyperbolic $\delta_{i}(t)=\frac{1}{1+\beta t}$,
- generalized hyperbolic $\delta_{i}(t)=\frac{1}{(1+\beta t)^{k}}$,
- pseudo-exponential $\delta_{i}(t)=\lambda e^{-r_{1} t}+(1-\lambda) e^{-r_{2} t}$.
- Time inconsistency arises under (3).

Stopping Policies

Assume each player stops at the first entrance time

$$
\rho_{S}:=\inf \left\{t \geq 0: X_{t} \in S\right\}
$$

- $S \in \mathcal{B}$, a Borel subset of \mathbb{X}, is called a stopping policy.
- Given the other player using $T \in \mathcal{B}$, Player i 's intra-personal reasoning

$$
\begin{align*}
\Theta_{i}^{T}(S):=\{x & \left.\in S: J_{i}\left(x, 0, \rho_{T}\right) \geq J_{i}\left(x, \rho_{S}^{+}, \rho_{T}\right)\right\} \\
& \cup\left\{x \notin S: J_{i}\left(x, 0, \rho_{T}\right)>J_{i}\left(x, \rho_{S}^{+}, \rho_{T}\right)\right\} \in \mathcal{B} . \tag{4}
\end{align*}
$$

- Stop at time $0 \Longrightarrow J_{i}\left(x, 0, \rho_{T}\right)$.
- Don't stop at time $0 \Longrightarrow J_{i}\left(x, \rho_{S}^{+}, \rho_{T}\right)$, where

$$
\rho_{S}^{+}:=\inf \left\{t>0: X_{t} \in S\right\} .
$$

Intra- And Inter-personal Equilibria

Definition (Intra-personal)

$S \in \mathcal{B}$ is Player i 's intra-personal equilibrium w.r.t. $T \in \mathcal{B}$ if

$$
\Theta_{i}^{T}(S)=S .
$$

We denote this by $S \in \mathcal{E}_{i}^{T}$.

Definition (Soft inter-personal)

$(S, T) \in \mathcal{B} \times \mathcal{B}$ is a soft inter-personal equilibrium if

$$
\Theta_{1}^{T}(S)=S \quad \text { and } \quad \Theta_{2}^{S}(T)=T .
$$

We denote this by $(S, T) \in \mathcal{E}$.

Given $T \in \mathcal{B}$, define the value function of $S \in \mathcal{E}_{i}^{T}$ by

$$
U_{i}^{T}(x, S):=J_{i}\left(x, 0, \rho_{T}\right) \vee J_{i}\left(x, \rho_{S}^{+}, \rho_{T}\right), \quad x \in \mathbb{X}
$$

Definition (Optimal Intra-personal)

$S \in \mathcal{E}_{i}^{T}$ is Player i^{\prime} s optimal intra-personal equilibrium w.r.t. $T \in \mathcal{B}$ if,

$$
\text { for any } R \in \mathcal{E}_{i}^{T}, \quad U_{i}^{T}(x, S) \geq U_{i}^{T}(x, R) \forall x \in \mathbb{X}
$$

We denote this by $S \in \widehat{\mathcal{E}}_{i}^{T}$.

- "Optimal equilibrium" of Huang \& Zhou (2019):
- Wants an equilibrium to be uniformly dominating -a rare occurrence in game theory.
- For stopping under (3), optimal equilibrium exists. (Huang \& Zhou (2019, 2020), Huang \& Wang (2021))

Definition (Sharp inter-personal)

$(S, T) \in \mathcal{B} \times \mathcal{B}$ is a sharp inter-personal equilibrium if

$$
S \in \widehat{\mathcal{E}}_{1}^{T} \quad \text { and } \quad T \in \widehat{\mathcal{E}}_{2}^{S} .
$$

We denote this by $(S, T) \in \widehat{\mathcal{E}}$.

Ulimate goals:

- Existence of sharp inter-personal equilibria.
- Construction via concrete iterative procedures.

First Question: What type of iterations to use?

- Fixed-point iteration, i.e.

$$
\lim _{n \rightarrow \infty}\left(\Theta_{i}^{T}\right)^{n}(S) \in \mathcal{E}_{i}^{T}
$$

does not seem so promising...

- Any iteration that directly leads to $S^{*} \in \widehat{\mathcal{E}}_{i}^{T}$?
- Recently approached by Bayraktar, Zhang, \& Zhou (2020) in a one-player stopping poblem.

For any $T \in \mathcal{B}$, define $\Phi_{i}^{T}: \mathcal{B} \rightarrow \mathcal{B}$ by

$$
\begin{equation*}
\Phi_{i}^{T}(S):=S \cup\left\{x \notin S: J_{i}\left(x, 0, \rho_{T}\right)>V_{i}^{T}(x, S)\right\} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{i}^{T}(x, S):=\sup _{1 \leq \tau \leq \rho_{S}^{+}} \mathbb{E}_{x}\left[F_{i}\left(\tau, \rho_{T}\right)\right] \quad x \in \mathbb{X}, S \in \mathcal{B} \tag{6}
\end{equation*}
$$

Theorem (Direct iteration to $\widehat{\mathcal{E}}_{i}^{T}$)

Assume $h_{i} \leq g_{i}$. Given $T \in \mathcal{B}$, define $\left(S_{i}^{n}(T)\right)_{n \in \mathbb{N}} \subset \mathcal{B}$ by

$$
\begin{equation*}
S_{i}^{1}(T):=\Phi_{i}^{T}(\emptyset), \quad S_{i}^{n}(T):=\Phi_{i}^{T}\left(S^{n-1}(T)\right) \text { for } n \geq 2 \tag{7}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\Gamma_{i}(T):=\bigcup_{n \in \mathbb{N}} S_{i}^{n}(T) \in \widehat{\mathcal{E}}_{i}^{T} \tag{8}
\end{equation*}
$$

Alternating Iteration

Let Players 1 and 2 take turns to perform iteration (7).

$$
\begin{array}{ll}
S_{0} & T_{0}=\Gamma_{2}\left(S_{0}\right) \\
S_{1}=\Gamma_{1}\left(T_{0}\right) & T_{1}=\Gamma_{2}\left(S_{1}\right) \\
S_{2}=\Gamma_{1}\left(T_{1}\right) & T_{2}=\Gamma_{2}\left(S_{2}\right)
\end{array}
$$

Hope:

1) $\left(S_{n}, T_{n}\right)$ converges appropriately.
2) The limit $\left(S_{\infty}, T_{\infty}\right)$ is a (sharp) inter-personal equilibrium.

Lemma

Assume $f_{i} \leq h_{i} \leq g_{i}$ and

$$
\begin{equation*}
\left(\delta_{i}(t) g_{i}\left(X_{t}^{x}\right)\right)_{t \geq 0} \text { is a supermartingale } \quad \forall x \in \mathbb{X} \tag{9}
\end{equation*}
$$

Then, for any $T, R \in \mathcal{B}$ with $T \subseteq R$,

$$
\begin{equation*}
\Phi_{i}^{T}(S) \supseteq \Phi_{i}^{R}(S) \supseteq \Phi_{i}^{R}\left(S^{\prime}\right) \quad \forall S, S^{\prime} \in \mathcal{B} \text { with } S \supseteq S^{\prime} \tag{10}
\end{equation*}
$$

Proof Sketch. (9) implies

$$
\begin{equation*}
J_{i}\left(x, \tau, \rho_{T}\right) \leq J_{i}\left(x, \tau, \rho_{R}\right) \quad \forall x \in \mathbb{X}, \tau \in \mathcal{T} \tag{11}
\end{equation*}
$$

In view of (6), for any $x \in \mathbb{X}$ and $S, S^{\prime} \in \mathcal{B}$ with $S \supseteq S^{\prime}$,

$$
V_{i}^{T}(x, S) \leq V_{i}^{R}(x, S) \leq V_{i}^{R}\left(x, S^{\prime}\right) . \Longrightarrow \Phi_{i}^{T}(S) \supseteq \Phi_{i}^{R}(S) \supseteq \Phi_{i}^{R}\left(S^{\prime}\right)
$$

Corollary ($T \mapsto \Gamma_{i}(T)$ monotone)

Assume $f_{i} \leq h_{i} \leq g_{i}$ and (9). For any $T, R \in \mathcal{B}$ with $T \subseteq R$,

$$
\Gamma_{i}(T) \supseteq \Gamma_{i}(R) .
$$

Idea: Taking $S_{0}=\emptyset$,

$$
\begin{array}{ll}
S_{0}=\emptyset & T_{0}=\Gamma_{2}\left(S_{0}\right) \\
S_{1}=\Gamma_{1}\left(T_{0}\right) & T_{1}=\Gamma_{2}\left(S_{1}\right) \\
S_{2}=\Gamma_{1}\left(T_{1}\right) & T_{2}=\Gamma_{2}\left(S_{2}\right)
\end{array}
$$

Hence, the limit is well-defined as

$$
\left(S_{\infty}, T_{\infty}\right)=\left(\cup_{n} S_{n}, \cap_{n} T_{n}\right) \in \mathcal{B} \times \mathcal{B}
$$

Theorem (Existence of the soft)

Assume $f_{i} \leq h_{i} \leq g_{i}$ and (9). Set $S_{0}:=\emptyset$ and define

$$
\begin{equation*}
T_{n}:=\Gamma_{2}\left(S_{n}\right) \quad S_{n+1}:=\Gamma_{1}\left(T_{n}\right), \quad \forall n \in \mathbb{N} \cup\{0\} \tag{12}
\end{equation*}
$$

Then, $\left(S_{\infty}, T_{\infty}\right):=\left(\cup_{n} S_{n}, \cap_{n} T_{n}\right) \in \mathcal{E}$ and satisfies

$$
\begin{equation*}
\Gamma_{1}\left(T_{\infty}\right)=S_{\infty}, \quad \Gamma_{2}\left(S_{\infty}\right) \subseteq T_{\infty} \tag{13}
\end{equation*}
$$

Proof. Fix $x \in S_{\infty} . \exists N \in \mathbb{N}$ s.t. $x \in S_{n+1}=\Gamma_{1}\left(T_{n}\right) \in \mathcal{E}_{1}^{T_{n}} \forall n>N$.

$$
\begin{aligned}
& J_{1}\left(x, 0, \rho_{T_{n}}\right) \geq J_{1}\left(x, \rho_{S_{n+1}}^{+}, \rho_{T_{n}}\right) \forall n \geq N . \\
\Longrightarrow & J_{1}\left(x, 0, \rho_{T_{\infty}}\right) \geq J_{1}\left(x, \rho_{S_{\infty}}^{+}, \rho_{T_{\infty}}\right), \text { i.e. } x \in \Theta_{1}^{T_{\infty}}\left(S_{\infty}\right) .
\end{aligned}
$$

Thus, $S_{\infty} \subseteq \Theta_{1}^{T \infty}\left(S_{\infty}\right)$. Can get $\left(S_{\infty}\right)^{c} \subseteq\left(\Theta_{1}^{T \infty}\left(S_{\infty}\right)\right)^{c}$ similarly.
Conclude: $S_{\infty}=\Theta_{1}^{T_{\infty}}\left(S_{\infty}\right)$ and $T_{\infty}=\Theta_{2}^{S_{\infty}}\left(T_{\infty}\right)$.

Proof (conti.). By monotonicity of $T \mapsto \Gamma_{i}(T)$,

$$
\begin{aligned}
& S_{n} \subseteq S_{\infty} \Longrightarrow \Gamma_{2}\left(S_{\infty}\right) \subseteq \Gamma_{2}\left(S_{n}\right)=T_{n} \Longrightarrow \Gamma_{2}\left(S_{\infty}\right) \subseteq T_{\infty}, \\
& T_{n} \supseteq T_{\infty} \Longrightarrow \Gamma_{1}\left(T_{\infty}\right) \supseteq \Gamma_{1}\left(T_{n}\right)=S_{n+1} \Longrightarrow \Gamma_{1}\left(T_{\infty}\right) \supseteq S_{\infty},
\end{aligned}
$$

Also, by $S_{0}=\emptyset \subseteq S_{\infty} \in \mathcal{E}_{1}^{T \infty}$, can construct $\left\{S_{i}^{n}\left(T_{\infty}\right)\right\}_{n}$ in (7) and find $S_{i}^{n}\left(T_{\infty}\right) \subseteq S_{\infty}$ for all n. Hence, $\Gamma_{1}\left(T_{\infty}\right) \subseteq S_{\infty}$.

Lemma

Assume $h_{i} \leq g_{i}$. If $(S, T) \in \mathcal{B} \times \mathcal{B}$ satisfies

$$
\begin{equation*}
\Gamma_{1}(T)=S \quad \text { and } \quad \Gamma_{2}(S)=T \tag{14}
\end{equation*}
$$

then $(S, T) \in \widehat{\mathcal{E}}$.

- By (13), $\left(S_{\infty}, T_{\infty}\right)$ is almost sharp!

Example I

- $\mathbb{X}=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ with

$$
\begin{aligned}
& \mathbb{P}_{x_{n+1}}\left(X_{1}=x_{n}\right)=1, \quad n=0,1,2 \ldots, \\
& \mathbb{P}_{x_{0}}\left(X_{1}=x_{0}\right)=1-\varepsilon, \quad \mathbb{P}_{x_{0}}\left(X_{1}=x_{1}\right)=\varepsilon, \text { for } \varepsilon \in[0,1) .
\end{aligned}
$$

- Take $M>1$ such that $\delta_{2}(2)<1 / M<\delta_{2}(1)$.
- Take $L>1$ and define
$f_{1}\left(x_{n}\right)=1, \quad g_{1}\left(x_{n}\right)=L \quad n=0,1,2, \ldots$,
$f_{2}\left(x_{0}\right)=0, f_{2}\left(x_{n}\right)=1 \quad n=1,2, \ldots, g_{2}\left(x_{n}\right)=M \quad n=0,1,2 \ldots$,
while h_{i} is any function such that $f_{i} \leq h_{i} \leq g_{i}$.

For $\varepsilon \in[0,1)$ small enough,

$$
\begin{array}{rlrl}
S_{0} & =\emptyset, & & T_{0}=\left\{x_{1}, x_{2}, \ldots\right\}, \\
S_{1} & =\left\{x_{0}\right\}, & T_{1}=\left\{x_{2}, x_{3}, \ldots\right\}, \\
S_{2} & =\left\{x_{0}, x_{1}\right\}, & T_{2}=\left\{x_{3}, x_{4}, \ldots\right\}, \\
\vdots & & \vdots \\
S_{n} & =\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}, & & T_{n}=\left\{x_{n+1}, x_{n+2}, \ldots\right\} .
\end{array}
$$

- $\left(S_{\infty}, T_{\infty}\right)=(\mathbb{X}, \emptyset)$.
- Is it sharp? Let's check $\Gamma_{2}(\mathbb{X})=\emptyset$.

$$
V_{2}^{\mathbb{X}}\left(x_{n}, \emptyset\right)=\sup _{1 \leq \tau \leq \rho_{\emptyset}^{+}} \mathbb{E}_{x_{n}}\left[F_{2}\left(\tau, \rho_{\mathbb{X}}\right)\right]=g_{2}\left(x_{n}\right) \geq h_{2}\left(x_{n}\right)=J_{2}\left(x_{n}, 0, \rho_{\mathbb{X}}\right)
$$

This implies $\Phi_{2}^{\mathbb{X}}(\emptyset)=\emptyset$, so $\Gamma_{2}(\mathbb{X})=\emptyset . \Longrightarrow\left(S_{\infty}, T_{\infty}\right) \in \widehat{\mathcal{E}}$.

EXAMPLE II

- $\mathbb{X}=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\} \cup\{y, z\}$.
- All previous settings remain.
- Transition probabilities for $\{y, z\}$

$$
\mathbb{P}_{y}\left(X_{1}=x_{n}\right)=p_{n}>0 \text { with } \sum_{n=0}^{\infty} p_{n}=1, \mathbb{P}_{z}\left(X_{1}=y\right)=1
$$

- $\delta_{2}(1)^{2}<\delta_{2}(2)$.
- Payoffs on $\{y, z\}$:

$$
\begin{aligned}
f_{2}(y)=M \delta_{2}(1), & f_{2}(z) \in\left(M \delta_{2}(1)^{2} \vee \delta_{2}(2), M \delta_{2}(2)\right) \\
& g_{2}(y)=g_{2}(z)=M .
\end{aligned}
$$

- Only require $f_{1} \leq g_{1}$.

For $\varepsilon \in[0,1)$ small enough,

$$
\begin{array}{llrl}
S_{0} & =\emptyset, & & T_{0}=\left\{x_{1}, x_{2}, \ldots\right\} \cup\{y, z\}, \\
S_{1} & =\left\{x_{0}\right\}, & & T_{1}=\left\{x_{2}, x_{3}, \ldots\right\} \cup\{y, z\}, \\
S_{2} & =\left\{x_{0}, x_{1}\right\}, & & T_{2}=\left\{x_{3}, x_{4}, \ldots\right\} \cup\{y, z\}, \\
\vdots & & \vdots & \\
S_{n} & =\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}, & & T_{n}
\end{array}=\left\{x_{n+1}, x_{n+2}, \ldots\right\} \cup\{y, z\} .
$$

- $\left(S_{\infty}, T_{\infty}\right)=(\mathbb{X},\{y, z\})$.
- Similarly to Example $\mathrm{I}, \Gamma_{2}(\mathbb{X})=\emptyset . \Longrightarrow \Gamma_{2}\left(S_{\infty}\right)=\emptyset \subsetneq T_{\infty}$.
- Note: $\emptyset=\Gamma_{2}\left(S_{\infty}\right) \in \widehat{\mathcal{E}}_{2}^{S_{\infty}}$ dominates $T_{\infty} \in \mathcal{E}_{2}^{S_{\infty}}$ at z :

$$
\begin{aligned}
U_{2}^{S_{\infty}}\left(z, T_{\infty}\right) & =J_{2}\left(z, 0, \rho_{S_{\infty}}\right) \vee J_{2}\left(z, \rho_{T_{\infty}}^{+}, \rho_{S_{\infty}}\right)=f_{2}(z) \vee M \delta_{2}(1)^{2} \\
& =f_{2}(z)<M \delta_{2}(2)=J_{2}\left(z, \rho_{\emptyset}^{+}, \rho_{S_{\infty}}\right) \leq U_{2}^{S_{\infty}}(z, \emptyset) .
\end{aligned}
$$

- So,$T_{\infty} \notin \widehat{\mathcal{E}}_{2}^{S_{\infty}} . \Longrightarrow\left(S_{\infty}, T_{\infty}\right) \notin \widehat{\mathcal{E}}$.

Existence of the Sharp

Assumption 1

X has transition densities $\left(p_{t}\right)_{t \geq 1}$ w.r.t a measure μ on $(\mathbb{X}, \mathcal{B})$.
That is, for $t=1,2, \ldots, p_{t}: \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R}_{+}$is Borel and

$$
\mathbb{P}_{x}\left(X_{t} \in A\right)=\int_{A} p_{t}(x, y) \mu(d y) \quad \forall x \in \mathbb{X}, A \in \mathcal{B}
$$

Lemma

Let μ be a measure on $(\mathbb{X}, \mathcal{B})$. Given $A \subseteq \mathbb{X}$, there is a maximal Borel minorant of A under μ, defined as

- a set $A^{\mu} \in \mathcal{B}$ with $A^{\mu} \subseteq A$ such that
for any $A^{\prime} \in \mathcal{B}$ with $A^{\prime} \subseteq A, \quad \mu\left(A^{\prime} \backslash A^{\mu}\right)=0$.

Theorem (Existence of the sharp)

Under Assumption $1, f_{i} \leq h_{i} \leq g_{i}$, and (9),
there exists a sharp inter-personal equilibrium.

To prove this, we focus on the collection

$$
A:=\left\{(S, T) \in \mathcal{E}: \Gamma_{1}(T) \supseteq S \text { and } \Gamma_{2}(S) \subseteq T\right\}
$$

By previous Thm, $A \neq \emptyset$. Define a partial order on A :

$$
\begin{equation*}
(S, T) \succeq\left(S^{\prime}, T^{\prime}\right) \quad \text { if } S \supseteq S^{\prime} \text { and } T \subseteq T^{\prime} \tag{15}
\end{equation*}
$$

Proof (Step 1)

Suppose there exists a maximal element (\bar{S}, \bar{T}) in A.
Claim: $(\bar{S}, \bar{T}) \in \widehat{\mathcal{E}}$.

- Set $S_{0}:=\bar{S}, T_{0}:=\bar{T}$. Do alternating iteration:

$$
S_{n+1}:=\Gamma_{1}\left(T_{n}\right) \quad \text { and } \quad T_{n+1}:=\Gamma_{2}\left(S_{n+1}\right) \quad \forall n \geq 0
$$

- As shown in previous Thm,

$$
\left(S_{\infty}, T_{\infty}\right):=\left(\cup_{n} S_{n}, \cap_{n} T_{n}\right) \in A
$$

- By construction, $S_{\infty} \supseteq S_{0}=\bar{S}$ and $T_{\infty} \subseteq T_{0}=\bar{T}$. As (\bar{S}, \bar{T}) is maximal in $A, S_{\infty}=S_{0}=\bar{S}$ and $T_{\infty}=T_{0}=\bar{T}$.

$$
\left\{\begin{array}{l}
\Gamma_{1}(\bar{T})=\Gamma_{1}\left(T_{0}\right)=S_{1}=S_{0}=\bar{S} \\
\Gamma_{2}(\bar{S})=\Gamma_{2}\left(S_{0}\right)=\Gamma_{2}\left(S_{1}\right)=T_{1}=T_{0}=\bar{T}
\end{array} \Longrightarrow(\bar{S}, \bar{T}) \in \widehat{\mathcal{E}} .\right.
$$

Proof (Step 2)

Let $\left(S_{\alpha}, T_{\alpha}\right)_{\alpha \in I}$ be a totally ordered subset of A.
Claim: $\left(S_{\alpha}, T_{\alpha}\right)_{\alpha \in I}$ has an upper bound in A.
Idea:

- Set $S_{0}:=\cup_{\alpha \in I} S_{\alpha}, T_{0}:=\cap_{\alpha \in I} T_{\alpha}$. Do alternating iteration:

$$
S_{n+1}:=\Gamma_{1}\left(T_{n}\right) \quad \text { and } \quad T_{n+1}:=\Gamma_{2}\left(S_{n+1}\right) \quad \forall n \geq 0 .
$$

- Expect: $\left(S_{\infty}, T_{\infty}\right):=\left(\cup_{n} S_{n}, \cap_{n} T_{n}\right) \in A$.
\Longrightarrow This is an upper bound for $\left(S_{\alpha}, T_{\alpha}\right)_{\alpha \in I}$.
Measurability issue: $\cup_{\alpha \in I} S_{\alpha}, \cap_{\alpha \in I} T_{\alpha} \notin \mathcal{B}$ in general!

Proof (Step 2)

- Let $T_{0}^{\mu} \in \mathcal{B}$ a maximal Borel minorant of T_{0} under μ.
- $T_{0}^{\mu} \in \mathcal{B}$ and $T_{0}^{\mu} \subseteq T_{0}$.
- For any $T \in \mathcal{B}$ with $T \subseteq T_{0}, \mu\left(T \backslash T_{0}^{\mu}\right)=0$.
- For any $T \in \mathcal{B}$ with $T \subseteq T_{0}$,

$$
\mathbb{P}_{x}\left(X_{t} \in T \backslash T_{0}^{\mu}\right)=\int_{T \backslash T_{0}^{\mu}} p_{t}(x, y) \mu(d y)=0 \quad \forall x \in \mathbb{X}, t>0
$$

Hence,

$$
\begin{equation*}
\mathbb{P}_{x}\left(X_{t} \in T \backslash T_{0}^{\mu} \text { for some } t \in \mathbb{N}\right)=0 \quad \forall x \in \mathbb{X} \tag{16}
\end{equation*}
$$

Proof (Step 2)

- Modified alternating iteration:

$$
\begin{array}{ll}
S_{0}=\cup_{\alpha \in I} S_{\alpha} & T_{0}=\cap_{\alpha \in I} T_{\alpha} \\
S_{1}=\Gamma_{1}\left(T_{0}^{\mu}\right) \supseteq S_{0} & T_{1}=\Gamma_{2}\left(S_{1}\right) \\
S_{2}=\Gamma_{1}\left(T_{1}\right) & T_{2}=\Gamma_{2}\left(S_{2}\right)
\end{array}
$$

- For any $T \in \mathcal{B}$ with $T \subseteq T_{0}$,

$$
\Gamma_{1}(T) \supseteq \Gamma_{1}\left(T_{\alpha}\right) \supseteq S_{\alpha} \forall \alpha \in I \Longrightarrow \Gamma_{1}(T) \supseteq S_{0} .
$$

For any $S \in \mathcal{B}$ with $S \supseteq S_{0}$,

$$
\Gamma_{2}(S) \subseteq \Gamma_{2}\left(S_{\alpha}\right) \subseteq T_{\alpha} \forall \alpha \in I \Longrightarrow \Gamma_{2}(S) \subseteq T_{0}
$$

Proof (Step 2)

- Modified alternating iteration:

$$
\begin{array}{ll}
S_{0}=\cup_{\alpha \in I} S_{\alpha} & T_{0}=\cap_{\alpha \in I} T_{\alpha} \\
S_{1}=\Gamma_{1}\left(T_{0}^{\mu}\right) \supseteq S_{0} & T_{1}=\Gamma_{2}\left(S_{1}\right) \\
S_{2}=\Gamma_{1}\left(T_{1}\right) \supseteq \Gamma_{1}\left(T_{0}\right) \neq S_{1} & T_{2}=\Gamma_{2}\left(S_{2}\right)
\end{array}
$$

- $\operatorname{By}(16), \rho_{T_{1} \cup T_{0}^{\mu}}=\rho_{T_{0}^{\mu}} \mathbb{P}_{x}$-a.s., for $x \notin T_{1} \cup T_{0}^{\mu}$.

$$
S_{2}:=\Gamma_{1}\left(T_{1}\right) \supseteq \Gamma_{1}\left(T_{1} \cup T_{0}^{\mu}\right)=\Gamma_{1}\left(T_{0}^{\mu}\right)=S_{1} .
$$

Proof (Step 2)

- Modified alternating iteration:

$$
\begin{array}{ll}
S_{0}=\cup_{\alpha \in I} S_{\alpha} & T_{0}=\cap_{\alpha \in I} T_{\alpha} \\
S_{1}=\Gamma_{1}\left(T_{0}^{\mu}\right) \supseteq S_{0} & T_{1}=\Gamma_{2}\left(S_{1}\right) \subseteq T_{0} \\
S_{2}=\Gamma_{1}\left(T_{1}\right) \supseteq S_{1} & T_{2}=\Gamma_{2}\left(S_{2}\right) \subseteq T_{1}
\end{array}
$$

Conclude: $\left(S_{\infty}, T_{\infty}\right):=\left(\cup_{n} S_{n}, \cap_{n} T_{n}\right) \in A$ is well-defined, and is an upper bound for $\left(S_{\alpha}, T_{\alpha}\right)_{\alpha \in I}$.

- By Zorn's lemma, the proof is complete.

SUMMARY

- Soft inter-personal equilibrium:

A Nash equilibrium between two players, each of whom uses an intra-personal equilibrium.

- Always exists.
- Can be found via concrete alternating iteration.
- Sharp inter-personal equilibrium:

A Nash equilibrium between two players, each of whom uses an optimal intra-personal equilibrium.

- Exists, if X has transition densities.
- Constructed via alternating iteration + Zorn's lemma.

Application to Negotiation

- Firms 1, 2 want to cooperate to initiate a project
- Each firm has a proprietary skill/technology.
- Revenue $R>0$ fixed.
- Cost $X>0$ is random: $\exists u>1$ and $p \in(0,1)$ s.t.

$$
\mathbb{P}_{x}\left[X_{1} / x=u\right]=p \text { and } \mathbb{P}_{x}\left[X_{1} / x=1 / u\right]=1-p, \quad \forall x \in \mathbb{X}
$$

That is, X evolves on the binomial tree

$$
\begin{equation*}
\mathbb{X}=\left\{u^{i}: i=0, \pm 1, \pm 2, \ldots\right\} \tag{17}
\end{equation*}
$$

- Assume: X is a submartingale, i.e. $p \geq \frac{1}{u+1}$.
- Each firm insists on...
- Taking a larger (risk-free) share $N \in(R / 2, R)$;
- Demanding the other to take smaller share $K:=R-N \in(0, R / 2)$ and incur (risky) cost X.
- In our Dynkin game,

$$
\begin{aligned}
F_{i}(\tau, \sigma):=\delta_{i}(\tau)\left(K-X_{\tau}\right)^{+} 1_{\{\tau<\sigma\}} & +\delta_{i}(\sigma) N 1_{\{\tau>\sigma\}} \\
& +\delta_{i}(\tau) h_{i}\left(X_{\tau}\right) 1_{\{\tau=\sigma\}}
\end{aligned}
$$

- $\tau<\sigma$: Firm i gives in first.
- $\tau>\sigma$: The other firm gives in first.
- $f_{1}(x)=f_{2}(x)=(K-x)^{+}, g_{1}(x)=g_{2}(x)=N, f_{i} \leq h_{i} \leq g_{i}$.
- Hyperbolic discounting:

$$
\delta_{i}(t)=\frac{1}{1+\beta_{i} t},
$$

- $\beta_{i}>0$: impatience level of Firm i.

The Strategy of Coercion

- Demonstrate (or pretend!?) a strong will not to give in...
- ...to coerce the other firm to give in.
- "Never give in" $\Longleftrightarrow \tau=\infty \Longleftrightarrow S_{0}=\emptyset$.

Proposition (Firm 1 more patient)

If $\beta_{1} \leq \beta_{2}$, the alternating iterative procedure (12) terminates after one iteration: $\exists y_{2}^{*} \in[0, \infty) \cap \mathbb{X}$ s.t.

$$
\underline{S}_{0}=\emptyset \Longrightarrow T_{0}=\left(0, y_{2}^{*}\right] \cap \mathbb{X} \Longrightarrow S_{1}=\emptyset
$$

Moreover, $\left(S_{\infty}, T_{\infty}\right)=\left(S_{0}, T_{0}\right)=\left(\emptyset,\left(0, y_{2}^{*}\right] \cap \mathbb{X}\right) \in \widehat{\mathcal{E}}$.

- Message: "More patient" \Longrightarrow coercion works
- What if Firm 1 is less patient $\left(\beta_{1}>\beta_{2}\right)$?
- Complicated...
\Longrightarrow Coercion may or may not work.

Proposition (Firm 1 significantly less patient)

If $\beta_{1}>0$ sufficiently large and $\beta_{2}>0$ sufficiently small, iterative procedure (12) yields

$$
\begin{aligned}
\left(\underline{\underline{S_{0}}}, T_{0}\right)=\left(\underline{\underline{\emptyset}},\left(0, y_{2}^{*}\right] \cap \mathbb{X}\right) & \Longrightarrow\left(S_{1}, T_{1}\right) \Longrightarrow\left(S_{2}, T_{2}\right) \\
& \Longrightarrow \cdots \\
& \Longrightarrow\left(S_{\infty}, \underline{\underline{T_{\infty}}}\right)=\left(\left(0, y_{1}^{*}\right] \cap \mathbb{X}, \underline{\underline{\emptyset}}\right) \in \widehat{\mathcal{E}}
\end{aligned}
$$

for some $y_{1}^{*}, y_{2}^{*} \in[0, \infty) \cap \mathbb{X}$.

- Message: "significantly less patient" \Longrightarrow coercer is coerced!

THANK YOU!!

- "A Time-Inconsistent Dynkin Game: from Intra-personal to Inter-personal Equilibria" (H. and Z. Zhou), to appear in Finance \& Stochastics, available @ arXiv:2101.00343.

