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Theory of two-dimensional oblique dispersive shock waves in supersonic flow of a superfluid
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Dispersive shock waves (DSWs) are studied theoretically in the context of two-dimensional (2D) supersonic
flow of a superfluid. Employing Whitham averaging theory for the repulsive Gross-Pitaevskii (GP) equation,
suitable jump and entropy conditions are obtained for an oblique DSW, a fundamental building block for 2D
flows with boundaries. In analogy to oblique viscous shock waves (VSWs), these conditions yield analytic
relations between Mach number (M), velocity deflection angle (6), and wave angle (8). Unlike VSWs, the
M-6- phase diagram for DSWs displays four distinct regions associated with phase transitions in supersonic
flow over a corner which are predicted and verified by numerical computations of the GP equation. Quasista-
tionary DSWs, shock detachment due to transonic flow, spontaneous excitation of vortices, and the onset of
turbulent dynamics associated with cavitation of the superfluid are observed.
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One of the hallmarks of supersonic flows is the formation
of shock waves, which are nonlinear disturbances in the flu-
id’s material and thermodynamic properties. In dissipative
media, self-steepening can lead to the formation of viscous
shock waves (VSWs), which are localized, sharp jumps in
the fluid properties. Geometry plays a key role in VSW for-
mation: a two-dimensional (2D) supersonic flow when
turned through a compression, e.g., by an obstacle, can lead
to a VSW. Straight, oblique, and curved detached VSWs can
form when the flow is supersonic or transonic, respectively
[1]. These stationary shock patterns can exhibit stable rich
dynamical behavior [2] and have recently found application
in the study of granular flows [3].

On the other hand, dispersive shock waves (DSWs) are
expanding, rapidly oscillating disturbances that connect two
disparate regions in a nonlinear dispersive medium, such as a
superfluid flowing at supersonic speed. The study of DSWs
dates back to shallow water systems (see, e.g., [4]) and have
been observed in multiple branches of physics including as-
trophysical plasma [5], ultracold atoms [6,7], and nonlinear
optics [8]. However, with few exceptions [9-13], the entire
body of DSW theory literature has been confined to one di-
mension. In particular, the one-dimensional (1D) theory of
Whitham averaging has been very successful but has proven
difficult to generalize to higher dimensions perhaps due to
complexities in the resulting modulation equations [14].

The different methods derived in this Rapid Communica-
tion open a different avenue for analyzing multidimensional
DSWs. We show that the rudiments of 1D DSW theory, i.e.,
Whitham averaging, can be extended to multiple dimensions.
This is achieved by constructing analytically what is argu-
ably the simplest 2D dispersive shock structure, an oblique
DSW, from which more complex structures can be “built.”
Hence, this work addresses an outstanding problem in DSW
theory that has arisen across multiple branches of physics. In
addition, we numerically observe rich and complex 2D DSW
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flows across corners, very different from the analogous 1D
“piston problem” [15], and explain precisely how this rich-
ness arises from the multidimensional DSW theory. The
broader message of this work is that multidimensional super-
sonic flows can be understood in terms of a unified approach
that is based on simpler 1D “building blocks.”

We begin by constructing an oblique DSW for the repul-
sive  Gross-Pitaevskii (GP) or defocusing nonlinear
Schrodinger (NLS) equation. Relations between the up-
stream and downstream flow properties are derived resulting
in the Mach number-deflection angle-DSW wave angle
(M-6-B) phase diagram. We study the case of flow over a
corner where four distinct regimes in the phase diagram are
related to numerical simulations of the (2+1)D GP equation.
A suite of phase transitions depending on Mach number and
corner angle are observed. Persistent quasistationary DSW
patterns, shock detachment with spontaneous vortex pair cre-
ation, and turbulent dynamics are related directly to the
M- 6- diagram prediction of fully supersonic flow, transonic
flow, and cavitation of the superfluid, respectively. Such be-
havior does not exist in dissipative media and is experimen-
tally accessible in condensed matter and optical systems,
complementing recent studies of shock waves [6-8,16],
phase transitions [17], and turbulence [18].

We consider systems governed by the 2D repulsive GP
equation in the semiclassical (small dispersion) regime,
which in nondimensional form is

. & 2 2
iof== TV Vil Vi=T5e oG ()
where (x,y,t) is a complex-valued field, V(x,y,?) is a lin-
ear potential that models a moving obstacle, and 0 <e <1 is
a normalized dispersion coefficient. Equation (1) models a
2D BEC in the mean-field approximation [19] and also mod-
els the envelope of a light beam propagating through a defo-
cusing nonlinear medium [20] which can be interpreted as an
optical “superfluid” [21].
Equation (1) admits oblique dark soliton solutions which
experience a transverse, “snake” instability that is of either
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FIG. 1. (Color online) Density of an oblique DSW. Lighter re-
gions correspond to larger density.

the absolute or convective type [13]. A convective instability
practically means that the soliton is stable in a region close to
the obstacle where growing perturbations (e.g., vortices) are
“carried away” by the flow. Recent theoretical studies of su-
personic flows past an obstacle found oblique soliton trains
[10], oblique dark solitons [12], and the formation of small-
amplitude “ship waves” [13].

We now consider the (2+1)D GP Eq. (1) with V=0 to
construct an oblique DSW. Employing the transformation ¢
=vpexp(i¢/e), where p is the fluid density and 1=V ¢ is the
velocity, leads to the Euler-like equations

pi+ V- (pii) =0,

I T /s
(PM),"‘V(pu®M)+5Vp2=ZpV|:T_2—p2 .

(2)

When £=0, Egs. (2) reduce to the shallow water equations or
the isentropic compressible gas equations [1]. When a steep
gradient forms, the dispersive term becomes large and can
lead to the formation of a DSW, which can be oblique, i.e.,
form an angle with the incoming flow direction (see Fig. 1).

We restrict the wave propagation direction to /2 + 3 (see
Fig. 1) and rotate the coordinates of Egs. (2) as

&=sin(B)x - cos(B)y, 3)

leading to a (1+1)D GP equation with V— &3/ We now
derive the relations between the up and downstream flows by
considering the oblique Riemann initial data

0
p(x.y,0) = {,2 g§><0
) ) u,[1,0] £§<0
u(x,y,o) - {uz[cos(e),sin(a)] f > O’ (4)

where 6 is the deflection angle; then we can use 1D DSW
theory based on the Whitham averaging method for the (1
+1) D NLS-GP equation [7,22,23].

To first order in &, a normal DSW can be described by a
slowly modulated elliptic function with a dark-soliton train
at the trailing edge decaying to small amplitude linear waves
at the leading edge. It can exist when suitable jump and
entropy conditions are satisfied for a so-called simple wave
across the shock front. We let 7ig=[sin(3),~cos(8)] and pg
=[cos(B),sin(B)] be the unit vectors normal and parallel to
the DSW trailing edge, respectively (Fig. 1). Assuming that
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FIG. 2. (Color online) M-6-8 phase diagram [relations (7) and
(8)] showing the deflection angle 6 as a function of the wave angle
B for various supersonic upstream Mach numbers M;>1. Inset:
Sonic Mach number M (6) (dashed curve) and cavitation sonic
Mach number M_,,(6) (dash-dotted curve). Geometric symbols cor-
respond to the simulation parameters in Fig. 3.

the parallel velocity is continuous across the shock and the
normal velocity satisfies the simple wave conditions for a
normal DSW [22] leads to the oblique DSW jump conditions

- - A — [ - N A

(@) —ity) - fig=2(Npy = \Npy), (=) pp=0. (5)
The jump conditions [Eq. (5)] are justified by the restricted
flow direction [Eq. (3)] and the irrotationality of the flow,
du,/ dy—duy/ dx=0. We can simplify [Eq. (5)] in the refer-
ence frame moving with the soliton trailing edge [22]

!/_ e A
Uirail = = VP2 + 1 - fig=0. (6)

According to Egs. (2) small amplitude disturbances
propagate with the sound speed p. We therefore introduce
the local Mach numbers as M;=u;/\p;, i=1,2. Combining
Egs. (5) and (6), we obtain the following relations between
the deflection angle # and DSW wave angle S:

tan(B — 6) =2 sec(B)/M, — tan(3). (7)

Relation (7) is depicted in Fig. 2. Much like a VSW, a DSW
must also satisfy an entropy condition: p,>p, [22]. This
restricts its region of existence to

M,>1, 0<@=mm sin'(I/M)<B=m2. (8)

Hence an oblique DSW requires a supersonic upstream flow,
a positive deflection angle so that the flow always turns into
the DSW, and a DSW wave angle larger than the so-called
Mach angle sin~!(1/M,), the same as an oblique VSW [1].

Relations (7) and (8) accompanied by the M-6-8 phase
diagram in Fig. 2 are the main results of this Rapid Commu-
nication. They represent the fundamental conditions for the
existence of an oblique DSW according to the (2+1)D
NLS/GP Eq. (1) and provide insight into flows around ob-
stacles, as discussed below. This M-6-f phase diagram is
markedly different from that for an oblique VSW in gas dy-
namics [1] (chapter 4) and in shallow water flows (cf. [3])
when M;>2. In the oblique VSW case it is impossible for
0> 3 and it is always true that 6<<7/2.

When a supersonic flow encounters an obstacle, an “at-
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FIG. 3. (Color online) Density plots in the x-y plane of flows
past a corner with angle # and Mach number M,. (a) 6=20°,
M =4, t=0.12 [momentum field depicted by arrows, dashed line is
predicted by the DSW wave angle from Eq. (7)], (b) 6=30°,
M,=1.8, t=0.23, (c) 6=40°, M;=4, t=0.086, and (d) 6=70°,
M =23, t=0.15. See [25] for animations and a momentum plot
identifying a vortex pair of opposite polarity.

tached” or “detached,” curved oblique shock wave can be
excited if the downstream flow is supersonic or subsonic (the
transonic regime [1]), respectively. This maxim holds true
for DSWs also. Using Egs. (5) and (6), the downstream
Mach number is

M, = cot(B)sec(B-6). 9)

Equation (9) for a sonic downstream flow, M,=1, along
with Eq. (7) determine a sonic wave angle B,(M,)
and sonic deflection angle 6y(M;) satisfying sin(B;)
=—2/M;+\1+8/M> and cos(6,)=(10v8+M>-M37-28)/
(M1\£'12+M%—4\s"8 +M%) (dashed curves in Fig. 2 and inset).
Inverting the latter, we find that the sonic upstream Mach
number, M(6), divides the phase space (M, 6) into super-
sonic (M;>M,) and transonic (M;<M,) regimes.

A behavior peculiar to an oblique DSW is that fluid can
flow into it from both sides (6> ), an impossibility for an
oblique VSW. Using Egs. (7) and (6), the transition to this
behavior, =4, occurs when \p,/p,=M, sin(6)=2 or pre-
cisely when a vacuum line forms (cavitation) in the oblique
DSW [24]. We define the cavitation Mach number when
0=, M, (0)=2/sin(6) (dash-dotted curves in Fig. 2 and
inset) so that cavitation occurs when M;>M_,,. Since
M_,,=2, only the isolated range 1<<M;<<2 gives rise to
oblique DSWs comparable to oblique VSWs [1,3]. In this
regime, nonuniqueness of the wave angle B leads to the pos-
sibility of a “weak” or a “strong” shock.
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TABLE I. Phase transitions in superfluid flow past a corner. The
shapes correspond to Fig. 2 (inset) and Figs. 3(a)-3(d).

Supersonic (M,>1) Subsonic (M,<1)

0<pB Convective DSW ¢ Detached DSW [J
6>  Convective and turbulent O  Detached and turbulent A

The oblique DSW jump conditions can be used to ap-
proximate flows past an obstacle. To study these dynamics
we perform numerical simulations of Eq. (1) with £=0.025,
an initially quiescent fluid, and a repulsive (positive) poten-
tial V(x,y,t) that models a corner impulsively accelerated at
t=0 to a constant velocity. This “corner” is manifested by a
rapid transition from V=0 to a suitable large value at the
corner’s boundary. Wherever the potential is large, there is
negligible density so the potential acts as an effective bound-
ary for the flow. The condition on the fluid flow at the bound-
ary is then ii-71,=0. We assume the existence of an oblique
DSW satisfying Eq. (7) and compare the predicted down-
stream flow conditions with the numerical simulations. Fig-
ure 3 shows example computational results.

Each subplot in Fig. 3 corresponds to a different choice of
M and corner angle 6, which are depicted by the geometric
shapes in Fig. 2 and inset. Figure 3(a) shows a quasistation-
ary oblique DSW emanating from the corner that satisfies the
flow boundary conditions. Vortex pairs form far from the
corner which is indicative of a convective instability [13].
Figure 3(b) shows a detached, curved DSW with vortices and
waves propagating away from the corner. Figure 3(c) shows
turbulent behavior that is convected away from the corner.
Finally, Fig. 3(d) shows the most “violent” dynamics, which
resemble fully developed turbulence in a viscous flow.
Whereas the formation of vortices from dark stripes in these
systems is well known [26], the varying behaviors depicted
in Figs. 3(a)-3(d) are a consequence of the oblique DSW
jump conditions in Egs. (7) and (9).

We have performed many simulations while varying M,
and 6. We now summarize the resulting dynamics referring
to the shapes in Fig. 2, inset, and Fig. 3—see also Table 1.
(©) When the downstream flow is supersonic and the corner
angle is smaller than the wave angle, the DSW experiences a
convective instability and remains regular near the corner.
(CJ) When the downstream flow is subsonic, the DSW be-
comes curved and detached from the corner accompanied by
waves propagating ahead of the corner. An absolute trans-
verse instability leads to the proliferation of vortices. (O)
When the corner angle is greater than the flow angle (the
cavitation regime) a pure oblique DSW cannot exist. These
“inadmissable” angles are manifested by the onset of turbu-
lent dynamics which are convected away from the corner.
(A) When the downstream flow is subsonic and the angles
are inadmissable, the flow becomes both detached and turbu-
lent.

We have verified the analytical results by extracting the
downstream density p, and Mach number M, from the nu-
merical simulations of flows past a corner in the convective
DSW regime with M =2.3 and find excellent agreement with
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FIG. 4. (Color online) Predicted [Egs. (6), (7), and (9)] and
computed downstream density p, (solid, circles) and Mach number
M, (dashes, squares) as a function of corner angle 6 with fixed
M =23 in the convective DSW regime <, M,>1.

the values predicted by Egs. (6), (7), and (9) (see Fig. 4).
Furthermore, the predicted wave angle B also agrees very
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well with the numerical simulations [see dashed line in Fig.
3(a)].

In conclusion, we have obtained the jump conditions for
2D, oblique DSWs and used them to classify the behavior of
supersonic flows past a corner. In contrast to viscous 2D
flows, we find that 2D supersonic dispersive flows experi-
ence a range of phase transitions from stabilized convective
flow patterns to violently unstable transonic flows leading to
turbulence. These results demonstrate the use of oblique
DSWs as building blocks for 2D supersonic flows and have
potential application to the control of matter or optical waves
and the generation of turbulence in condensed-matter physics
and optics.

Note added. Recently, a publication appeared on station-
ary 2D NLS flows in the hypersonic (M;>1), small corner
angle (0<#<1) limit [27].
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