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OBLIQUE SPATIAL DISPERSIVE SHOCK WAVES IN NONLINEAR
SCHRÖDINGER FLOWS∗
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Abstract. In dispersive media, hydrodynamic singularities are resolved by coherent wavetrains
known as dispersive shock waves (DSWs). Only dynamically expanding, temporal DSWs are possible
in one-dimensional media. The additional degree of freedom inherent in two-dimensional media
allows for the generation of time-independent DSWs that exhibit spatial expansion. Spatial oblique
DSWs, dispersive analogs of oblique shocks in classical media, are constructed utilizing Whitham
modulation theory for a class of nonlinear Schrödinger boundary value problems. Self-similar, simple
wave solutions of the modulation equations yield relations between the DSW’s orientation and the
upstream/downstream flow fields. Time dependent numerical simulations demonstrate a convective
or absolute instability of oblique DSWs in supersonic flow over obstacles. The convective instability
results in an effective stabilization of the DSW.
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1. Introduction. Breaking of hydrodynamic flows in conservative, weakly
dispersive media yields dispersive shock waves (DSWs) characterized by expand-
ing nonlinear wave trains. Mathematically, a great deal is known about DSWs in
the framework of nonlinear wave modulation theory, also known as Whitham theory
[45, 21], and inverse scattering [37, 38, 39, 43, 1] for spatio-temporal (1+1)-dimensional
((1+1)D) systems (cf. the review [13]). The limited theoretical investigations of DSWs
in multiple dimensions [19, 20, 15, 33, 16, 25, 26, 31, 32, 2, 8] and the experimental
realization of multidimensional DSWs in ultracold atoms as superfluid matter waves
[9, 42, 23] and in nonlinear optical diffraction patterns [44, 17] provides motivation
for this study of two-dimensional DSWs. Furthermore, with the exception of recent
studies on Kadomtsev–Petviashvili and related (2+1)D equations [33, 32, 2, 8], the re-
maining previous theoretical works invoke asymptotic reductions to the Korteweg–de
Vries or (1+1)D nonlinear Schrödinger (NLS) equations. These equations’ complete
integrability enables a detailed analytical description via the existence of Riemann
invariants for the associated Whitham modulation equations. Whitham theory is ap-
plicable to a much wider class of equations and a description of salient DSW features is
possible by making a simple wave assumption [10]. In this article, we use simple wave
DSW theory (DSW fitting [13]) to construct large amplitude, spatial oblique DSWs for
the two-dimensional, time-independent (2+0)D NLS equation. A spatial oblique DSW
inhabits a wedge region in the plane filled with stationary, modulated periodic waves.
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OBLIQUE SPATIAL DISPERSIVE SHOCK WAVES 1353

The bounding angles of the oblique DSW are completely determined by the upstream
Mach number and the downstream flow angle. Consequently, this asymptotic solution
can be applied to the problem of supersonic flow over a corner. We investigate the
dynamical stability of an oblique DSW for the corner problem, numerically observing
instability. Utilizing the instability theory of oblique dark NLS solitons [30, 26, 29],
we classify the convective or absolute nature of the instability. The former provides an
effective dynamical stabilization of the oblique DSW near the apex of the corner. Be-
cause the two-dimensional NLS equation is an accurate model of nonlinear optical and
matter wave dynamics, among other systems, these results exhibit wide application.

1.1. DSW fitting. Generally, Whitham averaging for an nth order (1+1)D
dispersive wave equation proceeds in several steps. The first requirement is an
n-parameter family of periodic traveling wave solutions. In some special cases, the
number of parameters characterizing the general family of periodic solutions can be
less than n. The period and frequency of oscillation determine a length and time
scale associated with dispersively initiated dynamic processes. Whitham theory then
proceeds by assuming the existence of larger modulation length and time scales on
which the traveling wave’s parameters adiabatically vary. The first order, quasi-linear
modulation equations for these parameters can be determined by averaging n − 1
conservation laws associated with the dispersive wave equation. The system is closed
by an additional modulation equation, known as the conservation of waves, that re-
sults from a consistency condition inherent to the assumption of adiabatic parametric
evolution. An important property required for modulational stability of the travel-
ing wave is hyperbolicity of the modulation equations. If the Whitham modulation
equations exhibit singularity formation, modulations of quasi-periodic or multiphase
solutions may be used, if they exist. In this work, we apply this same procedure to
a 5th order dispersive (2+0)D spatial system. One of the spatial variables can be
viewed as a timelike variable, hence, all of the Whitham machinery applies.

Regularization of gradient catastrophe in dispersive hydrodynamics can be asymp-
totically described utilizing Whitham theory. Away from DSWs, the solution is slowly
varying and can be approximately described by the dispersionless equations (disper-
sionless zone). Shock formation gives rise to the development of oscillations charac-
terized by a modulated traveling wave (oscillation zone). The interfaces between the
oscillation and dispersionless zones are unknowns that must be determined along with
the solution. Within the oscillation (dispersionless) zone, the Whitham (dispersion-
less) equations are solved. The two zones are matched at their free boundaries by
equating the averaged solution to the dispersionless solution and requiring that either
the oscillation amplitude goes to zero (harmonic limit) or the oscillation period goes
to infinity (soliton limit). Admissibility criteria analogous to entropy conditions for
classical shock waves determine the appropriate limiting behavior. Thus a complete
asymptotic description of dispersive hydrodynamics involves the determination of the
space-time dynamics of all the modulation parameters and the boundaries between
oscillation and dispersionless zones.

This construction may appear to be complex and, perhaps, just as involved as
solving the original evolution equation. If one seeks the complete description, this is a
challenging problem indeed. However, often one is only interested in the macroscopic
physical DSW properties encapsulated by the locations (DSW speeds) and limiting
behavior (harmonic or soliton) of the free boundaries. For Riemann step initial data, a
DSW fitting method is available under modest assumptions [10, 13]. Remarkably, the
DSW speeds and edge properties can be found by integrating two ordinary differential
equations (ODEs) that involve only the dispersionless characteristic speeds and the
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1354 HOEFER, EL, AND KAMCHATNOV

dispersion relation. The integration of the full Whitham equations is not required. In
this work, we utilize the DSW fitting method for oblique, spatial NLS DSWs.

The DSW fitting method enables the determination of a number of physical fea-
tures of the spatial DSW from given upstream flow conditions and the corner deflection
angle. For example, the downstream Mach number and density are determined by
a DSW locus (subsection 4.1) that results from a simple wave assumption for the
Whitham modulation system. Bounding angles corresponding to the DSW’s har-
monic (subsection 4.2) and soliton (subsection 4.3) edges identify the oscillation zone
of the DSW. Moreover, the soliton edge’s amplitude and the harmonic edge’s charac-
teristic wavelength are also determined. All these predicted quantities are distinctive
physical features that could be observed and potentially controlled in various physical
problems. The NLS equation studied here models two-dimensional superfluid flows
[40] and optical beams propagating through nonlinear media [4]. In fact, the scenario
of a superfluid flowing past an obstacle has been experimentally observed in several
contexts [6, 3, 5, 35].

We remark that this problem utilizes an unconventional application of Whitham
theory. In typical problems, there is either a scalar or system of two governing equa-
tions. Here, we have three governing equations, with one of them defining an algebraic
relationship in the dispersionless limit.

1.2. Previous results. One scenario leading to dispersive hydrodynamic sin-
gularity formation is a large disturbance, say, in the fluid density. Through a process
of self-steepening and dispersive regularization, the disturbance results in unsteady
DSWs, which are typically realized along one spatial dimension. The analytical de-
scription of DSWs was pioneered by Gurevich and Pitaevskii [21] through the use
of Whitham averaging theory [45, 46]. (2+0)D steady oblique DSWs can arise in
the long time limit of supersonic flow past a corner. In the weakly nonlinear regime
[19, 20, 26], a Korteweg–de Vries (KdV) equation describes the behavior. In the hy-
personic [16] regime, hypersonic similitude was used to reduce a (2+0)D steady corner
flow problem to a (1+1)D unsteady piston problem [24, 28]. There are also (2+1)D
generalizations of (1+1)D DSWs to unsteady oblique DSWs realized by a coordinate
rotation [25, 26]. All of these works, except numerical simulations in [31], involved
integrable equations (KdV or (1+1)D NLS) enabling a detailed analytical descrip-
tion via the existence of Riemann invariants for the modulation equations. Whitham
theory is applicable to a wider class of equations and a description of salient DSW
features is possible by making a simple wave assumption [10]. We use this simple
wave DSW theory to construct large amplitude oblique DSWs and then investigate
their stability in the context of supersonic corner flow.

The layout of the manuscript is as follows. Section 2 provides the formulation
of the oblique DSW problem. We develop the necessary tools to apply Whitham
theory to the (2+0)D NLS equation in section 3. The asymptotic construction of
spatial oblique DSWs is completed in subsections 4.1 to 4.3 and compared to known
small amplitude and hypersonic regimes in subsections 4.4 and 4.5. The properties of
spatial oblique DSWs are then studied in subsection 4.6 while their admissibility and
instability are studied numerically and analytically in subsection 4.7. We conclude
the manuscript with some discussion in section 5.

2. Problem formulation. We consider the cubic defocusing or repulsive NLS
equation in two spatial dimensions,

(1) iΨt = −1
2

(Ψxx + Ψyy) + |Ψ|2Ψ.
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OBLIQUE SPATIAL DISPERSIVE SHOCK WAVES 1355

This equation is a model equation for the order parameter of a Bose–Einstein conden-
sate [40] or the envelope of the optical field propagating through a nonlinear medium
[4]. An equivalent representation of the NLS equation can be had through the trans-
formation to dispersive hydrodynamic form (Ψ =

√
ρeiφ) so that equating real and

imaginary parts of (1) yields

ρt + (ρφx)x + (ρφy)y = 0,(2a)

φt +
1
2
|∇φ|2 + ρ = D[ρ],(2b)

where the short-wave dispersion is encapsulated in

D[ρ] =
1
4

(
ρxx + ρyy

ρ
−
ρ2
x + ρ2

y

2ρ2

)
.(2c)

By identifying the phase gradient with a velocity field u = (u, v) = ∇φ and ρ as a
density, (2a) expresses the conservation of mass while (2b) is an analogue of Bernoulli’s
equation. Taking the gradient of (2b), we obtain the velocity equations

ut + uux + vuy + ρx = D[ρ]x,(3a)
vt + uvx + vvy + ρy = D[ρ]y.(3b)

By virtue of potential flow, we also have the irrotationality constraint

(4) vx − uy = 0.

Based on this hydrodynamic representation, it is natural to define the dynamic sound
speed c as the speed at which long wavelength, small amplitude density perturbations
propagate c(ρ) =

√
ρ. Similarly, we define the Mach number of the flow as

(5) M =
|u|
√
ρ
,

and the associated Mach angle

(6) µ = arcsin(M−1).

In the course of this paper, we will move freely between the Cartesian velocity com-
ponents u, v and the Mach number M or angle µ and flow direction

(7) θ = tan−1(v/u)

coordinates.
In order to investigate steady, spatial patterns, we consider stationary solutions

of (2) in the form

(8) ρ(x, y, t)→ ρ(x, y), φ(x, y, t)→ −εt+ φ(x, y), u(x, y, t)→ u(x, y),

where the constant ε can be interpreted as the superfluid chemical potential [40] or
the optical propagation constant [4]. Then (2b) becomes

1
2

(u2 + v2) + ρ−D[ρ] = ε,(9)
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1356 HOEFER, EL, AND KAMCHATNOV

Fig. 1. Corner boundary value problem for steady, supersonic NLS flow.

an analog of Bernoulli’s equation, which implicitly determines ρ in terms of the flow
speed |u|2. Equation (9), the steady continuity equation (2a)

(10) (ρu)x + (ρv)y = 0,

and the irrotationality constraint (4) constitute a closed system for ρ, u, and v. With
some algebraic manipulation, this system can be written in the form[

u2 − ρ uv
0 1

] [
u
v

]
x

+
[
uv v2 − ρ
−1 0

] [
u
v

]
y

=
[
u · ∇D[ρ]

0

]
,(11a)

ρ = ε− 1
2
|u|2 +D[ρ].(11b)

2.1. Corner boundary value problem. The steady equations (11) are sup-
plemented with boundary conditions appropriate for supersonic flow past an interior
or compressive corner. Figure 1 provides a schematic for the flow of interest. Without
loss of generality, we scale the upstream density to unity and consider an incoming,
uniform flow parallel to the x axis with Mach angle µ1. Evaluating (11b) with these
far field conditions as x→ −∞ gives

(12) ε = 1 + csc2 µ1/2.

At all physical boundaries, we apply the condition

(13) u · n = 0,

where n is normal to the boundary. Subsequently, the downstream flow points in the
direction of the corner angle θ2 with Mach angle µ2 and density ρ2. In the far field
downstream flow, we evaluate (11b) again with (12) to find

(14) ρ2 =
M2

1 + 2
M2

2 + 2
=

sin2 µ2(1 + 2 sin2 µ1)
sin2 µ1(1 + 2 sin2 µ2)

.

We observe that knowledge of the fluid velocity in a steady configuration determines
the fluid density via the generalized Bernoulli’s equation (11b) as in classical gas
dynamics.
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OBLIQUE SPATIAL DISPERSIVE SHOCK WAVES 1357

Because the upstream and downstream flows exhibit a jump at x = 0 in the den-
sity and velocity field, we can view this steady configuration as a dispersive Riemann
problem with “initial” conditions

(15) µ(x, 0) =

{
µ1, x < 0,
µ2, x > 0,

θ(x, 0) =

{
0, x < 0,
θ2, x > 0,

ρ(x, 0) =

{
1, x < 0,
ρ2, x > 0,

where ρ2 is given by (14). We can treat the spatial coordinate y as a timelike variable.
As such, we will often use common terminology related to dynamical behavior but
the reader is advised to keep in mind that we are considering steady, i.e., time-
independent flow configurations. The Riemann problem (15) for (11) differs from
the classical Riemann problem in that a dispersive regularization is required—i.e.,
we need to incorporate the dispersive effects encapsulated in the term D[ρ], (2c)—in
contrast to a dissipative regularization. Generically, the Riemann problem for systems
is resolved into constant states connected by multiple waves, each of which can be
a rarefaction or shock wave [36]. Motivated by the geometry of the problem, it is
natural to consider the case where the upstream Mach angle µ1 and deflection angle
θ2 are given so that µ2 is to be determined so that the Riemann problem results in
a single wave, a simple DSW. This is demonstrated in section 4. Furthermore, we
will show in subsection 3.3 that a necessary condition for the generation of a DSW
requires supersonic upstream flow M1 > 1 (0 < µ1 < π/2) and a compressive turn
0 < θ2 < π/2. The spatial oblique DSW will be shown to exhibit modulated, periodic
waves inside a wedge with bounding angles β1 and β2 emanating from the corner (see
schematic in Figure 1).

Stated concisely, we seek a large y description of the dispersive Riemann problem
(15) for (11) that results in a single spatial oblique DSW.

3. Properties of the stationary NLS equation. The application of DSW
fitting theory requires knowledge of certain properties of the governing equation [13].
In this section, we present the needed properties.

3.1. Spatially periodic solution. Equations (11) admit the periodic wave
solution [12]

ρ(x, y) = ρ(ξ) = p1 + (p2 − p1) sn2 (sinϕ√p3 − p1ξ;m
)
,(16a)

u(x, y) = d cosϕ+ σ
sinϕ

√
p1p2p3

ρ(ξ)
,(16b)

v(x, y) = d sinϕ− σ
cosϕ

√
p1p2p3

ρ(ξ)
, ξ = x− cotϕy, m =

p2 − p1

p3 − p1
,(16c)

where sn is the Jacobi elliptic function. This periodic solution has five independent pa-
rameters 0 < p1 < p2 < p3, d ∈ R, and ϕ ∈ (0, π/2). Both choices of the sign σ = ±1
give valid solutions corresponding to waves propagating in opposite directions. The
angle of constant phase ξ = const is ϕ, measured from the x axis. Recalling that y can
be viewed as a timelike variable, cotϕ is the “speed” of propagation whereas tanϕ
is the slope of the wavefronts (lines of constant phase) in the x-y plane. Here, d is a
free parameter whose physical meaning is the uniform flow velocity along the phase
wavefronts; this flow is normal to the direction of wave “propagation” and therefore
it does not affect the nonlinear wave profile ρ(x, y). The period of the wave in the x
direction is

(17) L =
2K(m)

sinϕ
√
p3 − p1

,
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where K(m) is the complete elliptic integral of the first kind. We remark that the
oblique periodic wave (16) was generated by applying rotation and Galilean symme-
tries to the zero phase speed, spatially periodic solution of the (1+1)D NLS equation.

It is convenient to consider a more physically inspired set of parameters that
uniquely determine the periodic wave. They are the wavenumber in the x direction
k = 2π/L, the density oscillation amplitude a = p2 − p1, and the mean values ρ, u, v
computed as

(18) f ≡ 1
L

∫ L

0
f(ξ) dξ,

leading to

ρ = p3 − (p3 − p1)
E(m)
K(m)

,(19)

u = d cosϕ+ σ
sinϕp2p3

p1K(m)
Π(1− p2/p1,m),(20)

v = d sinϕ− σ cosϕp2p3

p1K(m)
Π(1− p2/p1,m),(21)

where E(m) and Π(1− p2/p1,m) are the complete elliptic integrals of the second and
third kinds, respectively. The five physical parameters (k, a, ρ, u, v) are in correspon-
dence with (p1, p2, p3, d, ϕ), assuming the invertibility of the relevant Jacobian. An
auxiliary variable, the oscillation “frequency,” can be defined as ω = k cotϕ that is a
nonlinear spatial dispersion or diffraction relation.

DSWs exhibit two distinct edges: a harmonic wave edge exhibiting small ampli-
tude oscillations and a solitary wave edge. These two features are captured by the
solution (16) for appropriate limiting cases [12]. The k → 0 limit yields the stationary
oblique soliton solution [11]

ρ(x, y) = ρ(ζ) = ρ− a sech2(ζ),(22a)

u(x, y) = ρ1/2M

(
cos(ϕ− θ) cosϕ+ sin(ϕ− θ) sinϕ

ρ

ρ(ζ)

)
,(22b)

v(x, y) = ρ1/2M

(
cos(ϕ− θ) sinϕ− sin(ϕ− θ) cosϕ

ρ

ρ(ζ)

)
,(22c)

ζ = a1/2 sinϕ(x− cotϕy),(22d)

where u = ρ1/2M [cos θ, sin θ]T = [u, v]T is the far field flow with M , θ the av-
eraged Mach number (5) and averaged flow angle (7). The limit limp2→p3 Π(1 −
p2/p1,m)/K(m) = p1/p3 implies that the oblique soliton’s orientation ϕ is deter-

mined by the far field behavior according to cosϕ = (M2−ρ2)1/2
cos θ−ρ1/2 sin θ

M
. The

amplitude-slope relation

(22e) a = ρ
(

1−M2
sin2(ϕ− θ)

)
,

and the positive density restriction 0 < a imply

(23) | sin(ϕ− θ)| < sinµ,

so that the oblique solitary wave is oriented inside the Mach cone defined by the Mach
angle µ. In contrast, small amplitude dispersive waves exhibit lines of constant phase

D
ow

nl
oa

de
d 

08
/2

1/
17

 to
 1

31
.2

31
.1

53
.1

90
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OBLIQUE SPATIAL DISPERSIVE SHOCK WAVES 1359

oriented outside the Mach cone (shown below). The Mach cone is well known from
gas dynamics and represents the spatial region where small amplitude disturbances
are confined to propagate in dispersionless, supersonic flow (cf. [7]). This does not
contradict the orientation of small amplitude dispersive waves because their propa-
gation direction is orthogonal to the direction of constant phase, hence is outside the
Mach cone. These restrictions on wave orientation have been previously described in
the context of supersonic NLS flow past a small impurity where oblique solitary waves
and small amplitude dispersive waves were generated [12].

A calculation shows that the a→ 0 limit in (16) corresponds to harmonic waves
satisfying

ρ(x, y) = ρ− a

2
cos(kx− ωy) +O(a2),(24)

u(x, y) = u+ a
σk

4ρ

(
1 +

4ρ
k2 + ω2

)1/2

cos(kx− ωy) +O(a2),(25)

v(x, y) = v − aσω
4ρ

(
1 +

4ρ
k2 + ω2

)1/2

cos(kx− ωy) +O(a2)(26)

with the linear dispersion relation

(27) ρ(k2 + ω2)
(

1 +
k2 + ω2

4ρ

)
− (ku− ωv)2 = 0.

The long wave, stationary sound speed or inverse slope λ = limk→0 ω/k can be found
by dividing (27) by k2 and taking the limit k → 0, leading to the relation

(28) ρ(1 + λ2)− (u− λv)2 = 0,

whose roots are

λ± =
u v ∓

√
(u2 + v2 − ρ)ρ
v2 − ρ

= cot
(
θ ± µ

)
.(29)

Thus, as y increases, long stationary waves on the flow (ρ,u) exhibit the “slopes of
sound” 1/λ±. Real sound slopes coincide with supersonic flow (M > 1) and modula-
tionally stable waves, consistent with hyperbolicity of the dispersionless equations (see
subsection 3.3). Complex sound slopes correspond to subsonic flow and modulational
instability, the counterpart of ellipticity for the dispersionless equations.

It is convenient to consider the dispersion relation (27) in polar coordinates. For
this we follow [18] and take

(30) k = q sinϕ, ω = q cosϕ, u = ρ1/2M [cos θ, sin θ].

Then (27) becomes

(31) q = 2ρ1/2
(

sin2(ϕ− θ)
sin2 µ

− 1
)1/2

.

The dispersion relation (31) is real valued so long as

(32) | sin(ϕ− θ)| ≥ sinµ.
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1360 HOEFER, EL, AND KAMCHATNOV

Fig. 2. Admissible vectors [ω, k]T = q[cosϕ, sinϕ]T for small amplitude dispersive waves rel-
ative to the background flow direction u. The shaded region depicts the Mach cone of inadmissible
directions defined by the Mach angle µ = sin−1(M−1).

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

ω
/
ρ
1
/
2

k /ρ1 / 2

 

 

M = 1 . 5
M = 2

M = 3

Fig. 3. The dispersion relation for several Mach numbers M and flow angle θ = π/18. The
dotted line corresponds to the boundary of the Mach cone for M = 3.

This inequality can be interpreted in the following way. The direction of constant
phase [ω, k]T , parallel to the dispersive wave troughs and crests, has angle ϕ. In-
equality (32) is satisfied when ϕ is outside the Mach cone defined by the static sound
slope angles θ ± µ and θ ± µ + π shown in Figure 2. Hence, inequality (32) leads to
the admissible angles satisfying

(33) µ ≤
∣∣ϕ− θ∣∣ ≤ π − µ,

in which small amplitude waves satisfying the dispersion relation (27) can propagate.
This admissible region is depicted in Figure 2. A branch of the dispersion relation
(27) in the ω-k plane for specific choices of M is plotted in Figure 3. This primary
branch corresponds to ϕ ∈ [θ+µ, θ+π/2]. The dispersion relation is concave (negative
dispersion) across the band [0, kmax] of admissible wavenumbers, where kmax is reached

when ϕ = π/2, kmax = 2ρ1/2
(

cos2 θ
sin2 µ

− 1
)1/2

. The group velocity is

(34) ωk =
ωϕ
kϕ

=
sin(2θ − 3ϕ) + cos 2µ sinϕ
cos(2θ − 3ϕ)− cos 2µ cosϕ

,

which reaches a zero point for k0 ∈ (0, kmax). The dispersion curvature has impli-
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OBLIQUE SPATIAL DISPERSIVE SHOCK WAVES 1361

cations for the relative locations of the DSW’s harmonic and soliton edges [13, 41].
Strictly negative curvature implies that the soliton edge is closest to the corner wall
while the harmonic edge is furthest.

3.2. Whitham modulation equations. Whitham averaging theory describes
oscillatory regions by allowing the nonlinear periodic wave solution’s parameters to
vary slowly relative to the period of oscillation. The modulation equations can be
determined in several, equivalent ways [45, 46]. In DSW theory, it is common to obtain
the modulation equations by averaging conservation laws associated for the evolution
equation for the periodic wave [13]. For this, we allow the periodic solution’s (16)
five parameters to vary according to (u, v, ρ, a, k) = (u, v, ρ, a, k)(x, y). Due to slow
variation, any derivatives of the parameters with respect to x or y are considered
asymptotically smaller than differentiation of the periodic wave with respect to its
phase ξ. We begin by averaging (9) subject to the periodic wave solution (16)

(35)
1
2

(u2 + v2) + ρ−D[ρ] = ε,

recalling the definition of nonlinear wave averaging (18). This provides a global rela-
tion for the modulation parameters, thus reducing the number of required conservation
laws by one. Because of this, we can view the mean density ρ as an auxiliary variable,
determined from (35) by the variations of the other parameters. Three more equations
are found by averaging the continuity equation (10), the irrotationality constraint (4),
and the stationary energy equation [27]:

∇ · (ρu) = 0,(36a)
(v)x − (u)y = 0,(36b)

∇ ·
(
u (E + ρ2/2)− u∆ρ/4 + (∇ρ)(∇ · (ρu))/(4ρ)

)
= 0,(36c)

where the energy E is

(37) E =
1
2
ρ(u2 + v2) +

|∇ρ|2

8ρ
+

1
2
ρ2.

The final modulation equation is the conservation of waves,

(38) ky + ωx = 0,

a consistency condition for the assumption of slow modulations [46].
The modulation equations (35), (36), and (38) provide a closed system for the

spatial evolution of the periodic wave’s five parameters. In order to construct the
DSW, we need to assign appropriate initial/boundary data to the modulation equa-
tions compatible with the Riemann data (15). This will be achieved in section 4.

3.3. Dispersionless regime. The application of DSW theory requires knowl-
edge of the dispersionless limiting equations (D → 0 in (11)), which we can write as

[
u

v

]
y

+

 0 −1
u2 − ρ
v2 − ρ

2uv
v2 − ρ

[u
v

]
x

= 0,(39a)

ρ+
1
2
|u|2 = ε.(39b)
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1362 HOEFER, EL, AND KAMCHATNOV

This quasi-linear system has been well studied in the context of gas dynamics (cf. [7]).
It exhibits the same characteristic speeds λ± = cot(θ ± µ) as resulted from the long
wavelength limit (29). The system (39a) is strictly hyperbolic and genuinely nonlinear
when the characteristic speeds are real, i.e., when the flow is supersonic. Equations
(39a) are diagonalized by the Riemann invariants

(40) s±(θ, µ) = θ ±
(
−µ+

√
3 tan−1(

√
3 tanµ)

)
.

Simple wave solutions correspond to changes in only one Riemann invariant

(41) s± = const and λ∓ = x/y.

These solutions exhibit flows with an expansion turn forming a rarefaction wave.
The Riemann initial data (15) for the dispersionless equations (39a) exhibits a single
rarefaction wave when

(42) s−(0, µ1) < θ2 < 0.

This is the Prandtl–Meyer expansion fan [7]. When the flow turns too much, θ2 <
s−(0, µ1), it exhibits cavitation (ρ→ 0).

The dispersionless equations (39) exhibit gradient catastrophe when the flow ex-
periences a compressive turn. For the Riemann data (15), this corresponds to θ2 > 0.
In gas dynamics, the singularity is resolved by appealing to small scale physical pro-
cesses coinciding with dissipation. In the next section, we resolve singularity formation
utilizing a dispersive regularization due to nonzero D[ρ] in (11).

4. Oblique DSWs. As described in subsection 1.1, a complete description of
spatial DSWs requires integration of the Whitham equations (35), (36), and (38),
matched to the dispersionless flow satisfying (39). As originally formulated by Gure-
vich and Pitaevskii in the KdV DSW problem [21], matching corresponds to equality
of the dispersionless (u, v, ρ) and averaged (u, v, ρ) flow variables at the edges of
the DSW. Embedded within this matching procedure is the requirement that two
characteristics of the Whitham equations coalesce, which occurs when either a → 0
(harmonic wave edge) or k → 0 (solitary wave edge). The remaining modulation
parameter determines the location of the interface. At the harmonic wave edge, the
nonzero wavenumber corresponds to a wave packet moving with the group velocity.
The solitary wave edge moves according to the phase speed of a solitary wave with
amplitude a. The specific choice of Riemann data (15) implies self-similar behavior
for the modulations so it is natural to seek a simple wave solution of the modulation
equations. The innovation in [10] was the determination of the DSW edge locations
while bypassing full integration of the modulation equations. This was achieved by a
priori assuming the existence of a simple wave and analyzing the modulation equa-
tions in the a → 0 and k → 0 limits. This analysis results in a universal description
of simple DSW edge speeds.

In section 3 we provided all the necessary pieces in order to implement Whitham
averaging. However, it is important to note that the simple DSW construction pre-
sented in [10] can be implemented with knowledge of only the linear dispersion rela-
tion (27), the dispersionless characteristic speeds (29), and the solitary wave ampli-
tude/speed relation (22e). This reflects the fact that a DSW incorporates a range of
nonlinear wave phenomena, from large amplitude solitary waves to vanishingly small
amplitude waves, into a single coherent structure. The integration of the universal,
simple DSW ODEs shows how the harmonic and solitary wave edges are nonlocally
connected.
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4.1. DSW locus. The assumption of a simple wave solution to the full mod-
ulation system yields several important results. Utilizing a backward characteristic
argument, it was shown that the Riemann data (15) evolves into a single DSW opening
to the right when [10]

(43) s−(0, µ1) = s−(θ2, µ2).

This is a 2-DSW, named thus because it degenerates to the faster characteristic speed
λ+ in the small amplitude regime [13]. This provides an explicit relationship between
the upstream and downstream flow variables that must hold for a 2-DSW. In combi-
nation with two expansion fan solutions and 1-DSWs, these four wave types form the
generic building blocks for the general solution to the Riemann problem. See [13] for
additional details. The locus (43) enables the determination of the sonic curve, i.e.,
the relationship between µ1 and θ2 such that M2 = 1 or, equivalently, µ2 = π/2. We
define the sonic angle θs according to s−(0, µ1) = limµ2→π/2− s−(θs, µ2), obtaining

(44) θs(µ1) =
(√

3− 1
) π

2
+ µ1 −

√
3 tan−1

(√
3 tanµ1

)
.

For an oblique DSW with 0 < µ1 < π/2, the dispersionless quasi-linear system (39a)
is hyperbolic if and only if 0 ≤ θ2 < θs.

In addition to the DSW locus (43), a local, simple wave relation holds when either
a = 0 or k = 0 [10, 13],

(45) s−(0, µ1) = s−(θ, µ), 0 < θ(µ) < θ2,

leading to

(46) θ = θ(µ) = µ1 − µ−
√

3
[
tan−1

(√
3 tanµ1

)
− tan−1

(√
3 tanµ

)]
.

Similarly, when a = 0 or k = 0, (35) implies the local relation

(47) ρ = ρ(µ) =
sin2 µ (1 + 2 sin2 µ1)
sin2 µ1 (1 + 2 sin2 µ)

.

We can evaluate the density between the oblique DSW and the wedge as

(48) ρ2 = ρ(µ2) =
sin2 µ2(1 + 2 sin2 µ1)
sin2 µ1(1 + 2 sin2 µ2)

.

4.2. Harmonic wave edge angle. The angle β1 (recall Figure 1) of the har-
monic wave edge (a = 0) is determined by integrating the simple wave ODE [10]

(49)
dk
dµ

=
ωµ(k, µ)

λ+(µ)− ωk(k, µ)
, k(µ2) = 0,

to k1 = k(µ1) and then evaluating the group velocity

(50) β1 = cot−1 ωk(k1, µ1).

This represents an integration from the solitary wave edge (µ, θ, ρ, k, a)=(µ2, θ2, ρ2,0,a2)
to the harmonic wave edge (µ, θ, ρ, k, a) = (µ1, 0, 1, k1, 0). The integration is accom-
plished while remaining in the a = 0 plane. Let us see why this is so. The assumed

D
ow

nl
oa

de
d 

08
/2

1/
17

 to
 1

31
.2

31
.1

53
.1

90
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1364 HOEFER, EL, AND KAMCHATNOV

existence of a simple wave necessitates a functional relationship between the modula-
tion variables F (µ, θ, ρ, k, a) = C, where C ∈ R is a constant. Then, C is determined
by F (µ2, θ2, ρ2, 0, a2) = C from the soliton edge initial condition k(µ2) = 0 when
µ = µ2, θ = θ2, and ρ = ρ2. But the initial condition is independent of a so the
functional relationship F (µ2, θ2, ρ2, 0, 0) = C must also hold and determines C. Then
k1 is found by evaluating F (µ1, 0, 1, k1, 0) = C via integration of (49) in the a = 0
plane, thus bypassing the integration of the full Whitham system.

Due to the implicit nature of the dispersion relation (27), we undertake the solu-
tion of (49) utilizing the polar form (30), (31). The transformation of (49) into polar
form is somewhat involved. We relegate the details to Appendix A.1. The harmonic
edge initial value problem then becomes

(51)
dϕ
dµ

=
2 cosµ

[
2 sinµ− sin(2θ + µ− 2ϕ)

]
(2− cos 2µ)

[
sin(2µ)− 2 sin(2θ − 2ϕ)

] , ϕ(µ2) = θ(µ2) + µ2,

where θ(µ) satisfies the local relation (45). Integrating this to µ = µ1 and evaluating
(50) provides the harmonic edge angle.

4.3. Solitary wave edge angle. The angle β2 (recall Figure 1) of the solitary
wave edge (k = 0) can be formulated in an analogous way to the harmonic edge by
the introduction of new modulation variables (k, ω)→ (k̃, ω̃) via

(52) ω̃(k̃, µ) = −iω(ik̃, µ).

The conjugate wavenumber k̃ plays the role of an amplitude and is a convenient
parameterization of the periodic traveling wave, which leads to the simple wave initial
value problem [10]

(53)
dk̃
dµ

=
ω̃µ(k̃, µ)

λ+(µ)− ω̃k̃(k̃, µ)
, k̃(µ1) = 0.

Note the symmetry of (49) and (53). Upon integration of (53) to k̃2 = k̃(µ2), the soli-
tary wave edge angle is determined from the solitary wave phase speed ω̃/k̃ according
to

(54) β2 = cot−1 ω̃(k̃2, µ2)
k̃2

.

The solution of (53) represents the integration from the harmonic wave edge to the
solitary wave edge in the k = 0 plane in an analogous manner to the harmonic edge
case. As shown in Appendix A.2, this problem can be cast in the form

dϕ̃
dµ

=
2 cosµ

[
2 sinµ− sin(2θ + µ− 2ϕ̃)

]
(2− cos 2µ)

[
sin(2µ)− 2 sin(2θ − 2ϕ̃)

] , ϕ̃(µ1) = θ(µ1) + µ1 = µ1,(55)

where θ(µ) satisfies (45). Integrating to µ = µ2 and evaluating (54) provides the
soliton edge angle.

4.4. Small amplitude regime. The small amplitude regime was studied in [26]
by an asymptotic reduction of the (2+0)D NLS equation (11) to the KdV equation.
This regime corresponds to small deflection angles 0 < θ2 � 1 with M1 = O(1), to
distinguish it from the hypersonic regime studied in the next section. Here, we perform
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an asymptotic analysis of the Whitham modulation equations for the full (2+0)D
equations to verify the validity of our results and to provide an alternative derivation
in the small amplitude regime. Evaluating the DSW locus (45) in this regime implies

(56) θ(µ) =
2(µ− µ1)

1 + 3 tan2 µ1
+O((µ− µ1)2),

which gives θ2 = θ(µ2). This relation can be asymptotically inverted to give

(57) µ(θ) = µ1 +
1
2

(1 + 3 tan2 µ1)θ +O(θ
2
).

We also recover the asymptotic density variation

(58) ρ(θ) = 1 + 2 csc(2µ1)θ +O(θ
2
).

Both (57) and (58) agree with the results in [26] when θ = θ2.
Since 0 < θ � 1, the restriction (33) implies ϕ − µ1 = O(θ) in the parametric

representation of the dispersion relation. It is convenient to utilize the independent
variable θ in the simple wave initial value problem (51) rather than µ, achieved through
the relation (56). Then, for 0 < θ � 1, (51) becomes

(59)
dϕ
dθ

=
1
2

sec2 µ1, ϕ(θ2) = θ2 + µ2.

The solution evaluated at the harmonic edge, θ = 0, then yields ϕ1 ≡ ϕ(0) = µ2 +
(1− 1

2 sec2 µ1)θ2. Now we recover the harmonic edge angle from (50),

(60) β1 = cot−1 ωk(k1, µ1) = cot−1 ωϕ(ϕ1, µ1)
kϕ(ϕ1, µ1)

∼ µ1 + 3 sec2 µ1θ2.

The soliton edge simple wave problem reduces similarly to

(61)
dϕ̃
dθ

=
1
2

sec2 µ1, ϕ̃(0) = µ1.

Evaluating at θ = θ2 and inserting into (54) gives

(62) β2 ∼ µ1 +
1
2

sec2 µ1θ2.

Both (60) and (62) agree with the alternative approach in [26].

4.5. Hypersonic regime. The hypersonic regime M1 � 1, θ2 � 1 such that
M1θ2 = O(1) or, equivalently, 0 < µ1 ∼ θ2 � 1, was studied in [16] by an asymptotic
reduction of the (2+0)D NLS equation to a (1+1)D NLS equation. One might naively
try to utilize the small amplitude analysis from the prior section with µ1 small. How-
ever, this does not provide the correct results. We now recover the hypersonic results
through asymptotics of the Whitham modulation equations. When 0 < µ � 1, the
DSW locus (43) yields the simple wave relation

(63) θ2 ∼ 2(µ2 − µ1), 0 < µi � 1.

Since θ and µ are small, we observe from (33) that ϕ = O(µ). The simple wave initial
value problem for the harmonic edge (51) asymptotically simplifies tremendously to

(64)
dϕ
dµ

= 1, ϕ(µ2) = 3µ2 − 2µ1.
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1366 HOEFER, EL, AND KAMCHATNOV

Solving (64) and evaluating at the harmonic wave edge we obtain ϕ1 ≡ ϕ(µ1) =
2µ2 − µ1. Inserting this result into (50) yields the harmonic edge angle

(65) β1 = cot−1 ωk(k1, µ1) = cot−1 ωϕ(ϕ1, µ1)
kϕ(ϕ1, µ1)

∼ µ2
1 + 4µ1θ2 + 2θ22

θ2 + µ1
.

Utilizing the asymptotic substitution µ1 ∼ 1/M1, the result (65) was also found in [16].
The soliton edge is analyzed in a similar way for 0 < µ � 1, resulting in the

simple wave ODE

(66)
dϕ̃
dµ

= 1, ϕ̃(µ1) = µ1,

with solution ϕ̃(µ) = µ. Then ϕ̃2 ≡ ϕ̃(µ2) = µ2 and (54) yield the soliton edge angle

(67) β2 = cot−1 ω̃(k̃2, µ2)
k̃2

= cot−1 q̃(ϕ̃2, µ2) cos ϕ̃2

q̃(ϕ̃2, µ2) sin ϕ̃2
∼ µ2 ∼ µ1 +

1
2
θ2,

which agrees with [16].

4.6. Simple oblique DSW. In order to investigate oblique DSWs across a
wide parameter regime, we numerically solve the ODEs (51) and (53), utilizing the
DSW locus (43), for the oblique DSW angles β1 and β2, respectively, as well as for
the downstream flow properties. The problem as formulated (cf. Figure 1) involves
two free parameters, which we choose to be the upstream Mach number M1 and the
downstream flow angle θ2. These are the two natural input parameters for supersonic
flow past a corner.

First we compare predictions for the oblique DSW angles β1,2 with the small
amplitude and hypersonic predictions from subsection 4.4 and subsection 4.5, respec-
tively, in Figure 4. Recall that both asymptotic regimes require 0 < θ2 � 1 and either
M1 = O(1) or M1θ2 = O(1) in the small amplitude or hypersonic regime, respectively.
The regimes of validity are borne out by our computations although the soliton edge
angle β2 exhibits better than expected agreement with the asymptotics.

Representative results for the full oblique DSW construction are shown in Figures
5 and 6. Several features are noticeable. In both figures, the oblique DSW ceases to
exist when the downstream flow is subsonic, M2 < 1. The dispersionless equations

Fig. 4. Oblique DSW angles versus upstream Mach number for three values of the flow angle θ2.
These plots highlight the limitations of the small amplitude (dashed) and hypersonic (dash-dotted)
asymptotic regimes when compared with the full construction (solid).
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OBLIQUE SPATIAL DISPERSIVE SHOCK WAVES 1367

Fig. 5. Oblique DSW parameters for fixed upstream Mach number M1 = 2 (solid), M1 = 3
(dashed), M1 = 4 (dash-dotted). Both β1 and β2 are plotted in the lower-right panel (β1 > β2).
Numerically extracted quantities from supersonic flow with θ2 = 10◦ over a corner with M1 = 4 are
filled circles.

Fig. 6. Oblique DSW parameters for fixed corner angle θ2 = 10◦ (solid), θ2 = 20◦ (dashed),
θ2 = 25◦ (dash-dotted). Numerically extracted quantities from supersonic flow with θ2 = 10◦ over a
corner are filled circles.

(39) are elliptic in the subsonic regime so our construction is no longer valid. In Fig-
ure 6, we observe that the DSW soliton edge amplitude saturates (as = ρ2) for both
θ2 = 20◦ and θ2 = 25◦. This soliton amplitude saturation corresponds to cavitation
or the development of a region of zero density. A more careful examination shows
that saturation occurs when the downstream flow angle and DSW soliton edge angle
coincide θ2 = β2. Further increase of the flow angle θ2 requires a modification of the
DSW fitting procedure. This modification was carried out in the hypersonic regime
[16] but we do not do so here.

We further explore parameter space with time-dependent numerical simulations
of supersonic flow past a corner. We incorporate a time-dependent linear potential in
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1368 HOEFER, EL, AND KAMCHATNOV

the NLS equation (1) that models the effect of a corner with angle θ2 moving through
a confined, quiescent fluid. Initial data correspond to the steady state within a static
confining potential. For t > 0, the corner moves at a constant speed determined
by M1. A sufficiently large domain was used to resolve the development of oblique
DSWs with a grid spacing of 0.25 for a pseudospectral Fourier spatial discretization
and fourth order Runge–Kutta time stepping. The numerical method is described in
detail in [26].

Figures 5 and 6 include a comparison of direct numerical simulations applied to
the asymptotic theory, yielding excellent agreement. There are restrictions on the
validity of the asymptotic theory, which we now discuss in the next subsection.

4.7. Admissibility. For a DSW approximated by the DSW fitting method, as
herein, it must satisfy certain causality conditions and admissibility criteria [13]. The
causality conditions for an oblique DSW are analogous to the Lax entropy conditions
for hyperbolic systems [36] and ensure that the second, dispersionless characteristic
family associated with λ+ carries data into the DSW region. They are

(68) λ−(0, µ1) < cotβ1 < λ+(0, µ1), λ+(θ2, µ2) < cotβ2, β1 > β2.

These conditions have been verified in the small amplitude [26] and hypersonic [16]
regimes. We have numerically verified these relations to hold for discrete values of
0 < θ2 < π/2 and 1 < M1 < 20 when 1 < M2, i.e., for supersonic downstream flow.

The DSW fitting method breaks down when the underlying assumption of the
existence of a simple wave solution to the Whitham equations no longer holds [22].
Two possible mechanisms for such a breakdown are a loss of genuine nonlinearity
in the Whitham equations or zero dispersion, which ultimately result from a loss of
monotonicity. Because it incorporates exact reductions of the Whitham equations at
the harmonic and soliton edges, the DSW fitting method provides a means to test for
simple wave breakdown at the DSW edges. Breakdown manifests at a DSW edge when
its speed, or angle in our case, experiences an extremum as one of the edge parameters
is varied [22, 13]. We find that β2(M1,M2) with M2 fixed, exhibits a minimum
when M1 = Mgnl(M2). This minimum corresponds to the occurrence of a linearly
degenerate point or the loss of genuine nonlinearity at the oblique DSW soliton edge.
For M1 > Mgnl(M2), the simple wave assumption no longer holds, placing a restriction
on the validity of the DSW fitting method. We remark that genuine nonlinearity, or
convexity of the nonlinear flux in the scalar case, has significant consequences for the
structure of DSWs [14]. We have also computed β1 with fixed M2 and β1,2 with fixed
M1 and find no extrema.

Although for certain parameters the oblique DSW may be causal and admissible,
it is unstable. It is well known that line dark solitons are unstable to long wavelength
transverse perturbations [34]. As of yet, there is no full analysis of DSW instability but
because the oblique DSW exhibits a dark soliton edge, the dark soliton’s instability
properties are effectively inherited by the DSW. The instability type, convective or
absolute, depends on the Mach number M of the background flow [30, 26]. If M >
Mcr, then any localized perturbation along an oblique dark soliton, considered at a
fixed point, decays in time, i.e., the instability is “convected away” by the flow. When
M < Mcr, absolute instability, perturbations grow in time at any fixed point in space.
The critical Mach number Mcr depends on the normalized dark soliton amplitude
0 < ν = as/ρ̄ ≤ 1 and exhibits the bounds 1 < Mcr(ν) / 1.4374 and the small
amplitude asymptotics Mcr = 1 + 2

9ν
4 + O(ν6) [26]. For larger ν, Mcr(ν) must be

computed. The Mach number of the oblique DSW flow adjacent to the soliton edge
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Fig. 7. Phase diagram depicting the region of (θ2,M1) parameter space (gray) where oblique
DSWs are causal (M2 > 1), admissible (M1 < Mgnl), convectively unstable (M2 > Mcr), and non-
cavitating (θ2 < β2). Numerical simulations of flow past corner: –causal, admissible, convectively
unstable, M1 = 4, θ2 = 25◦; –causal, admissible, absolutely unstable, M1 = 3.5, θ2 = 30◦; –not
causal, M1 = 2, θ2 = 30◦; –cavitation, M1 = 5.5, θ2 = 30◦.

is M2. Therefore, we predict a convectively unstable oblique DSW when M2 > Mcr
and an absolutely unstable oblique DSW otherwise.

The four conditions for a causal (M2 > 1), admissible (M1 < Mgnl), convectively
unstable (M2 > Mcr), and noncavitating (θ2 < β2) (valid) oblique DSW, are depicted
in the shaded region of the phase diagram in Figure 7. Our oblique DSW construction
is valid across a range of upstream Mach numbers M1 and downstream flow angles
θ2. We find a maximum valid flow angle of θ2 ≈ 30◦, where M1 ≈ 3.8.

Figure 7 shows the time evolution, in the reference frame of the corner, of four
distinct regimes of the phase diagram. The valid region is represented by the simu-
lation annotated with a filled circle where an oblique DSW develops; the transverse
instability is apparent, but ultimately convects away from the corner, leaving two
distinct angles that enclose the oscillatory oblique DSW. The simulation annotated
by a filled triangle develops in a similar fashion, but due to absolute instability, waves
invade the oblique DSW, migrating down to the corner. A more violent instability
occurs for acausal parameter choices, represented by the filled pentagon. The down-
stream flow is predicted to be subsonic and is accompanied by the unsteady, forward
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propagation of dispersive waves. Absolute instability corresponds to the breakup of
the wavetrain into vortices that eventually overwhelm the flow. We also include a
simulation of the cavitating regime, annotated by the filled square, where an oblique
DSW forms that is effectively “attached” to the corner. In the hypersonic regime,
cavitating DSWs were shown to no longer exhibit a dark soliton edge [16]. Rather,
the edge is described by a nonmodulated periodic wavetrain adjacent to a modulated
region whose envelope decays to the harmonic wave edge.

While the simulations depicted in Figure 7 show the distinction between convec-
tive and absolute instability, longer time DSW stability can be more complicated. In
the case of convective instability, a large number of vortices are generated and are
initially convected away from the corner. However, these vortices can reflect off of
the boundary and interact with the DSW. This results in wave generation that can
eventually propagate throughout the DSW, effectively rendering it unstable for long
enough evolution time. One way to avoid this effect is to terminate the ramp at some
finite distance away from the corner so that the generated vortices do not reflect off
the boundary. This is what was done for the example identified by the filled circle in
Figure 7 where the ramp was terminated at x = 55.

5. Discussion and conclusion. We have constructed the theory of steady,
oblique, two-dimensional spatial DSWs in the framework of the defocusing NLS equa-
tion. This problem is of fundamental interest as a dispersive counterpart of the
classical gas dynamics problem but also is motivated by actual physical applications
in superfluid dynamics and nonlinear optics where the NLS equation is an accurate
mathematical model. The prototypical flow past corner problem has been considered
that elucidates the key properties of steady oblique DSWs. The main development of
the paper is that the theory has been constructed for general supersonic flows, without
additional simplifying assumptions (small corner angle or highly supersonic oncoming
flow) enabling one to asymptotically reduce the description of steady oblique DSWs
to solving a Riemann problem for an integrable equation: either KdV or (1+1)D NLS
[19, 20, 16]. In contrast, the full (2+0)D defocusing NLS equation is not integrable
and also exhibits a number of qualitative, structural differences compared to the above
asymptotic (1+1)D models. Thus, the previously existing theory of steady oblique
DSWs required significant development.

In this paper, we have employed the simple wave DSW fitting method [10, 13],
which is based on Whitham nonlinear modulation theory [46] and is applicable to
nonintegrable systems of dispersive hydrodynamics. We determine the definitive char-
acteristics of a steady oblique DSW: its locus and the bounding angles. We have iden-
tified the range of input parameters (the Mach number of the upstream flow M1 and
the corner angle θ2) for which the constructed simple wave modulation description is
valid. The main restrictions include causality inequalities and the condition of gen-
uine nonlinearity of the modulation equations. An additional restriction of the simple
wave DSW theory specific to the defocusing (2+0)D NLS equation is the requirement
of the absence of DSW cavitation. For sufficiently large flow deflection angles, an
additional wave structure exhibiting points of zero density in the region adjacent to
the corner can occur.

Importantly, admissible stationary oblique DSWs exhibit instability, either con-
vective or absolute. The convectively unstable DSWs are effectively stable in the
laboratory reference frame [30, 25, 26] and so can be manifested in an experiment,
although a full DSW stability theory has not yet been developed. Convective insta-
bility is a unique property of steady oblique two-dimensional DSWs which contrasts
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them to their unsteady one-dimensional counterparts, which are always stable. When
the Mach number of the downstream flow is smaller than a critical value Mcr, the
convective instability is replaced by absolute instability and further, by a noncausal,
subsonic regime. The boundaries of the regions in the θ2,M1 phase plane correspond-
ing to the various oblique DSW generation regimes have been identified numerically.

The constructed theory of stationary oblique DSWs suggests several directions of
further research. A natural next step would be the generalization of the developed
theory to more complicated geometries such as supersonic NLS flow past an airfoil
exhibiting two types of oblique DSWs with contrasting asymptotic behaviors (see
[20, 16] for the descriptions in the frameworks of integrable asymptotic reductions).
The development of the full theory of oblique DSW stability remains an important
open problem. Yet another closely related open problem is the description of transonic
dispersive flows. Finally, due to the common structure of the dispersionless equations,
the analysis performed here can be generalized to other Eulerian dispersive hydrody-
namic systems [22, 13] such as shallow water waves.

Appendix A. Simple wave ODEs. In this appendix, we derive the simple
wave ODEs (51) and (55) utilizing the parametric representation (30) and (31) of the
linear dispersion relation.

A.1. Harmonic edge. The zero amplitude modulation equations are the dis-
persionless equations (39) for the averaged variables (ρ,u) or, equivalently, (ρ, µ, θ),
coupled to the conservation of waves (38), where ω corresponds to the linear disper-
sion relation (27). For a simple wave, the relations (45) and (47) hold, determining
ρ = ρ(µ) and θ = θ(µ). This leaves two modulation equations

A

[
µ
ϕ

]
y

+B
[
µ
ϕ

]
x

= 0,

A =
[

1 0
qµ sinϕ qϕ sinϕ+ q cosϕ

]
, B =

[
λ+ 0

qµ cosϕ qϕ cosϕ− q sinϕ

]
,

(69)

where we have used the parametric representation (30), (31) with parameter ϕ for
the linear dispersion relation. This system has two characteristic speeds: λ+, the
dispersionless characteristic, and

(70)
qϕ cosϕ− q sinϕ
qϕ sinϕ+ q cosϕ

=
ωϕ
kϕ

= ωk,

the group velocity of linear waves. A simple wave along the λ+ characteristic cor-
responds to the Prandtl–Meyer expansion fan (42) in dispersionless dynamics. For
the DSW, we seek the simple wave along the ωk characteristic. The goal is to deter-
mine the appropriate wavenumber k at which to evaluate the group velocity given the
Riemann initial data (15). The left eigenvector

(71) lT =
[
qµ(cosϕ− ωk sinϕ) ωk − λ+

]
,

satisfies the relation lTB = ωkl
TA. Applying lT to (69) results in the characteristic

form

(72) lTA

[
dµ

dϕ

]
= 0.
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We seek a solution in the form ϕ = ϕ(µ), yielding the simple wave ODE

dϕ
dµ

=
qµ(cosϕ− λ+ sinϕ)

sinϕ(λ+qϕ + q) + cosϕ(λ+q − qϕ)
,(73)

that simplifies to the ODE in (51). The zero wavenumber condition at the soliton
edge k(ϕ, µ2) = 0 = ω(ϕ, µ2) corresponds to q(ϕ, µ2) = 0 and the initial data

(74) ϕ(µ2) = θ(µ2) + µ2.

A.2. Soliton edge. For the soliton edge, we utilize the conjugate dispersion
relation (52), defined parametrically according to

k̃ = q̃ sin ϕ̃, ω̃ = q̃ cos ϕ̃, q̃ = 2ρ1/2
(

1− sin2(ϕ̃− θ)
sin2 µ

)1/2

.(75)

A similar calculation to that in the previous section with q → q̃, ϕ → ϕ̃ leads to the
same simple wave ODE

dϕ̃
dµ

=
q̃µ(cos ϕ̃− λ+ sin ϕ̃)

sin ϕ̃(λ+q̃ϕ̃ + q̃) + cos ϕ̃(λ+q̃ − q̃ϕ̃)
,(76)

that can be simplified to (55). The zero amplitude condition k̃(ϕ̃, µ1) = 0 = ω̃(ϕ̃, µ1)
at the harmonic edge provides the initial condition q̃(ϕ̃, µ1) = 0 or

(77) ϕ̃(µ1) = θ(µ1) + µ1 = µ1.
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in an atomic superfluid gas, Phys. Rev. Lett., 117 (2016), 245301.

[36] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock
waves, CBHS-NSF Regional Conf. Ser. in Appl. Math. 11, SIAM, Philadelphia, 1973.

[37] P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-de Vries
equation: i, Comm. Pure Appl. Math., 36 (1983), pp. 253–290.

[38] P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-de Vries
equation: ii, Comm. Pure Appl. Math., 36 (1983), pp. 571–593.

[39] P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-de Vries
equation: iii, Comm. Pure Appl. Math., 36 (1983), pp. 803–830.

[40] L. P. Pitaevskii and S. Stringari, Bose-Einstein condensation, Clarendon, Oxford, 2003.
[41] P. Sprenger and M. A. Hoefer, Shock waves in dispersive hydrodynamics with nonconvex

dispersion, SIAM J. Appl. Math., 77 (2017), pp. 26–50.
[42] T. P. Simula, P. Engels, I. Coddington, V. Schweikhard, E. A. Cornell, and

R. J. Ballagh, Observations on sound propagation in rapidly rotating Bose-Einstein con-
densates, Phys. Rev. Lett., 94 (2005), 080404.

D
ow

nl
oa

de
d 

08
/2

1/
17

 to
 1

31
.2

31
.1

53
.1

90
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1374 HOEFER, EL, AND KAMCHATNOV

[43] S. Venakides, Long time asymptotics of the Korteweg-de Vries equation, Trans. Amer. Math.
Soc, 293 (1986), pp. 411–419.

[44] W. Wan, S. Jia, and J. W. Fleischer, Dispersive superfluid-like shock waves in nonlinear
optics, Nature. Phys., 3 (2007), pp. 46–51.

[45] G. B. Whitham, Non-linear dispersive waves, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng.
Sci., 283 (1965), pp. 238–261.

[46] G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.

D
ow

nl
oa

de
d 

08
/2

1/
17

 to
 1

31
.2

31
.1

53
.1

90
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Introduction
	DSW fitting
	Previous results

	Problem formulation
	Corner boundary value problem

	Properties of the stationary NLS equation
	Spatially periodic solution
	Whitham modulation equations
	Dispersionless regime

	Oblique DSWs
	DSW locus
	Harmonic wave edge angle
	Solitary wave edge angle
	Small amplitude regime
	Hypersonic regime
	Simple oblique DSW
	Admissibility

	Discussion and conclusion
	Appendix A. Simple wave ODEs
	Harmonic edge
	Soliton edge

	References

