
Department of Applied Mathematics 
Preliminary Examination in Numerical Analysis 

August 19, 2019 , 10 am – 1 pm.  
 
Submit solutions to four (and no more) of the following six problems. Show all your work, and justify all 
your answers. Start each problem on a new page, and write on one side only. No calculators allowed. 
Do not write your name on your exam. Instead, write your student number on each page. 
 

 
 

Problem 1. Root finding 

Consider a random variable X with continuously-differentiable probability density   0p x  . The 

cumulative distribution function (cdf) is ( ) ( ) .
x

F x p t dt


   Note that lim ( ) 1.x F x    
 
(a) Show that  F x  is invertible, i.e., 1( )F y  exists for (0,1).y   
 
(b) Let 1( ).x F y  Write Newton's method to solve for x given  (0,1)y  using only evaluations of the 

functions ( )p x  and ( ).F x   
 
(c) Explain why the method is locally at least quadratically convergent for every (0,1).y   
 

 
Problem 2. Quadrature 

Consider the integral 
0

( )f x dx


  where f is continuous, '(0) 0f  , and ( )f x  decays like 1x    with 0   in 

the limit .x    
 



(a) Suppose you apply the equispaced composite trapezoid rule with n subintervals to approximate

0
( )

L
f x dx . What is the asymptotic error formula for the error in the limit n with L fixed? 

 
(b) Suppose you consider the quadrature from (a) to be an approximation to the full integral from 0 to

 . How should L increase with n to optimize the asymptotic rate of total error decay? What is the 
rate of error decrease with this choice of L? 

 
(c) Make the following change of variable (1 ) / (1 ),x L y y    ( ) / ( )y x L x L    in the original 

integral to obtain
1

1
( )LF y dy

 . Suppose you apply the equispaced composite trapezoid rule; what is 
the asymptotic error formula for fixed L? 

 
(d) Depending on , which method - domain truncation or change-of-variable - is preferable?  
 

 
 

 



 

Problem 3. Linear algebra 

(a) Given two self-adjoint (Hermitian) matrices, A and B, where B is a positive (or negative) definite 
matrix, show that the spectrum of the product of such matrices, AB, is real. 

 
(b) Using 2 2   matrices, construct an example where the product of two real symmetric matrices does 

not have real eigenvalues. 
 
Solution: 

(a)  

Consider the eigenvalue problem , 0.ABx x x   We have , ,ABx Bx x Bx      and observe that ,ABx Bx   is real 

since for any y, , , , .Ay y y Ay Ay y         Also for 0,x   , , 0x Bx Bx x       since B is a positive self-adjoint 
operator (less than zero if B is negative definite). We therefore conclude that   is real. 

(a) Alternative solution 

Say B is positive definite (PD) (else use same argument as below with -B).  1/ 2B  then exists and is also PD (form it 
with same eigenvectors as for B but use square root for each eigenvalue). AB has the same eigenvalues as 

1/2 1/2 1/2 1/2( )B AB B B AB   (similarity transform). The latter matrix is Hermitian, so its eigenvalues are all real. 

(b)  

 

 

 



Problem 4. Interpolation / Approximation 

Let function 1[ , ]nf C a b ,  ( 1)| ( ) |nf x M   and ( )nE f  be the error of its best approximation by a 
polynomial of degree n. Show that the accuracy of the best polynomial approximation improves rapidly as 
the size of the interval [ , ]a b  shrinks, i.e., show that 

12( ) .
( 1)! 4

n

n
M b aE f

n

     
  

Hint: Use the Chebyshev nodes  1 1 2 1
2 2 2 1
( ) ( )cos

n
x b a b a  


    

  to construct a polynomial approximation 

of f. 
 

 

 
 
Alternative (similar) solution: 
 
Consider first [ , ] [ 1,1].a b    The formula for the error in Lagrange interpolation gives 

( 1)

0

| ( ) || ( ) | max ( )
( 1)!

n n

n x l
l

f xE f x x
n





 
  . With Chebyshev nodes,  1

0

1 1( ) ( ) .
2 2

n

l nn n
l

x x T x


    Stretching / 

contracting / shifting the interval from one of length ( )b a  to one of length 2 does not affect function 

vales, it multiplies first derivatives by  
2

b a 
 
 

, second derivatives by 
2

2
b a 

 
 

, ... , n+1st derivative by  

1

.
2

nb a  
 
 

 For the original interval [ , ],a b  we thus get 
1 11 1 2| ( ) | .

( 1)! 2 2 ( 1)! 4

n n

n n
b a M b aE f M

n n

             
  

 
 
 
 
 
 
 
 



 
  
Problem 5.  Numerical ODE 

There exists a one parameter family of 2-stage, second order Runge Kutta methods for solving the ODE 
' ( , ( ))y f x y x . With step size h in the x-direction, and the parameter   arbitrary, these can be written as 

(1)

(2) (1)

( , )
( , )

n n

n n

d h f x y
d h f x h y d 
 


  
   

(1) (2)
1

1 11
2 2n ny y d d
 

     
 

  

(a) Verify that these schemes, for all values of  , indeed provide second order accuracy. 

 Hint: Recall that '( ) ( , ( ))y x f x y x , by the chain rule, implies ''( ) .f fy x f
x y
 

 
 

  

(b) Show that these schemes, for all ,  have exactly the same stability domain. 

(c) Verify that this domain, along the negative real axis, extends exactly over the interval [-2,0]. 

Solution: 

(a) Using the formulas for (1)d  and (2)d , we get 

2
1

11 ( , ) ( , ) ( )
2 2n n n n n n

h f fy y hf x y f x y h hf O h
x y

 
 

                
   

             2 3 2 31 1( , ) ( ) ' '' ( )
2 2n n n n n n

f fy hf x y h f O h y hy h y O h
x y

  
           

. 

Each step has a local error 3( ),O h  giving a second order scheme when integrated over time.  

Note that Taylor expansion is our ONLY available approach for verifying an RK-method’s order of 
accuracy. In contrast to for linear multistep methods, it is insufficient to either (i) test by applying to 
increasing degree monomials, or (ii) make deductions from the method’s stability domain. 

(b) The stability domain is obtained by applying the scheme to the ODE ' .y y  We obtain then  

  
(1)

(2) ( )
n

n n

d h y
d h y hy


 

 


 
  

and 2 2
1

1 1 11 ( ) .
2 2 2n n n n n n n ny y h y h y h y y h y h y     
 

         
 

 Setting ,h   this is a linear 

recursion relation with the characteristic equation 211 .
2

r      The stability domain is given by all   

(complex) such that | | 1r  . 

(c) Writing the stability domain equation as 11 (2 )
2

r       shows that, for   real, the condition | | 1r   is 

satisfied precisely for 2 0.     

 



 

Problem 6.  Numerical PDE 

(a) Verify that the PDE  
3

3

u u
t x

 


 
 is well posed as an initial value problem. 

(b)  Consider solving it numerically using the scheme  

1 1
2 2

3

( 2 , ) ( , ) ( , ) ( 2 , )( , ) ( , )
2

u x h t u x h t u x h t u x h tu t k x u t k x
k h

         
  . 

Determine this scheme’s stability condition.  

Hint:  The 2 -periodic function  ( ) 2sin (1 cos )f      oscillates in between 3 3 .
2

    

 

Solution: 

(a) Let ( , ) ( ) .i xu x t t e   Substituting this into the PDE gives 3'( ) ( ),t i t     with the general solution 
3

( ) (0) .i tt e     With both   and t real, it thus holds that | ( ) | | (0) |,t   showing that no Fourier mode 
can grow in time. 

(b) Let /( , ) .t k i xu x t e   Substituting this into the scheme gives, after some quick simplifications

   1 12 2
3 3 32 2

1 1 1 2sin ( 1 cos ) ( )
2

i h i h i h i h i ie e e e h h g
k h h h

      


  
          

 
 where 

( ) 2sin ( 1 cos )g       and .h   Apart from one sign, the function ( )f   in the Hint matches ( ).g   

We note however that ( ) ( ),g f     so also ( )g   oscillates between 3 3 .
2

   

 As an alternative to studying this quadratic in ,  we can at this point simply refer to the stability domain for 
leap-frog time stepping (which is the interval from –i to +i along the imaginary axis). Using the hint, we thus 

need  3

3 3 1,
2

k
h

  i.e. 3

2 .
3 3

k
h

  

 


