Department of Applied Mathematics

Preliminary Examination in Numerical Analysis
August 19,2019, 10am -1 pm.

Submit solutions to four (and no more) of the following six problems. Show all your work, and justify all
your answers. Start each problem on a new page, and write on one side only. No calculators allowed.
Do not write your name on your exam. Instead, write your student number on each page.

Problem 1. Root finding
Consider a random variable X with continuously-differentiable probability density p(x)>0. The

cumulative distribution function (cdf) is F(x):j_x p(t)dt. Note that lim __ F(x)=1.
@ Show that F(x) is invertible, i.e., F™(y) exists for y(0,2).

(b) Let x=F(y). Write Newton's method to solve for x given ye(0,1) using only evaluations of the
functions p(x) and F(x).

(©) Explain why the method is locally at least quadratically convergent for every y e (0,1).

Solution: (a) There are many ways to prove this. Possibly the simplest is to note first that F(x)
is continuous. Next, if you pick any y € (0, 1) there is always an 2 such that F(zp) < y and an 2
such that F(x1) > y (since lim,;—_~ F'(z) = 0 and lim, o F'(z) = 1). Then by the intermediate
value theorem, there must be an & between 2y and 21 such that F(z) = y, i.e. F~!(y) = 2. This
value of x is unique because F' is strictly increasing.

(b) Define f(z) = F(z) —y. We are looking for a root of f(z), so

_ @)
f'(zk)

Note that f/(z) = p(x), so Newton’s method becomes

T4l = Tk

F(xr) —y

Tyl = T —
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(¢) The function f(z) = F(2) — y has a smooth positive derivative f'(z) = p(x) > 0, so the root is
simple. Newton’s method converges quadratically for smooth functions with simple roots.
Problem 2. Quadrature

Consider the integral j: f (x)dx where f is continuous, f'(0)=0, and f(x) decays like x™** with >0 in

the limit x - o.



€)] Suppose you apply the equispaced composite trapezoid rule with n subintervals to approximate
.[OL f (x)dx . What is the asymptotic error formula for the error in the limit n — oo with L fixed?

(b) Suppose you consider the quadrature from (a) to be an approximation to the full integral from 0 to
o . How should L increase with n to optimize the asymptotic rate of total error decay? What is the
rate of error decrease with this choice of L?

(©) Make the following change of variable x=L1+y)/(@-y), y=(x—-L)/(x+L) inthe original

integral to obtainj_l1 F_(y)dy . Suppose you apply the equispaced composite trapezoid rule; what is
the asymptotic error formula for fixed L?

(d) Depending on « , which method - domain truncation or change-of-variable - is preferable?

Solution: (a) The asymptotic error formula for the equispaced composite trapezoid rule is

2

Bdf]~ o (’) [7(0) - F(L)].

(b) The domain truncation error is

o0 L*f\
/ f(x)da ~ :
L X

We want to match the domain truncation error and the quadrature error, so

1 i fIA" -, .
~ =12<”> [£/(0) - £'(L)] -

f'(L) = 0 as L — oo, so it is subdominant; the dominant balance is

1 £ (L)’
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Solving for L we find

With this choice the total error scales as

12"2 —a/(2+a)
(7)

. 2/(2
as n — oo. Answers without prefactors are accepted L ~ n*/(*t@

2 /(2
) and error ~ n2¢/(2+a)

(c) After change of variables the integrand is

2L 1+y
F = ~f|L =1].
L(v) (1—3/)3'/< 1—11)



The asymptotic error formula is
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Examining the expression for Fr(y) it is evident that it might have a singularity at y = 1, if f does
not decay quickly enough. Since f(z) ~ then

-1-a
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From this expression it’s clear that to avoid infinite Fl"(l) we need a > 2. If 0 < a < 2 then we
simply don’t have an asymptotic error formula.

(d) The domain-truncation approach leads to an error that scales as n~2%/(2+®)_ The rational change
of variables leads to an error that scales as n=2, but only for @ > 2. If @ > 2 the transformed integral
has a faster rate of convergence; otherwise it is safer to use the domain truncation (or a different
change of variables).

Problem 3. Linear algebra

€)] Given two self-adjoint (Hermitian) matrices, A and B, where B is a positive (or negative) definite
matrix, show that the spectrum of the product of such matrices, AB, is real.

(b) Using 2x2 matrices, construct an example where the product of two real symmetric matrices does
not have real eigenvalues.

Solution:

(@)

Consider the eigenvalue problem ABx = Ax, x# 0. We have (ABx, Bx) = 1(x, Bx) and observe that ( ABx, Bx) is real
since for any y, (Ay,y) =y, Ay) =(Ay,y). Also for x =0, (x,Bx)=(Bx,x) >0 since B is a positive self-adjoint
operator (less than zero if B is negative definite). We therefore conclude that 2 is real.

(a) Alternative solution

Say B is positive definite (PD) (else use same argument as below with -B). B"? then exists and is also PD (form it
with same eigenvectors as for B but use square root for each eigenvalue). AB has the same eigenvalues as

BY?(AB)B Y2 = BY?’AB"? (similarity transform). The latter matrix is Hermitian, so its eigenvalues are all real.

(b)

Consider an example with

0 1 1 0
A(l 0) and B(O _1).

where the eigenvalues of both matrices are 1 and —1 (the matrices are
symmetric but indefinite). It is easy to check that the eigenvalues of AB
are pure imaginary, ¢ and —i.



Problem 4. Interpolation / Approximation

Let function f eC""[a,b], | f™(x)|<M and E, (f) be the error of its best approximation by a

polynomial of degree n. Show that the accuracy of the best polynomial approximation improves rapidly as
the size of the interval [a,b] shrinks, i.e., show that

E, (1)< [b‘—aJ
(n+1)!

Hint:  Use the Chebyshev nodes x, =3 (b+a)+; (b—a) cos(”z“l) to construct a polynomial approximation
of f.

Solution. The error term of interpolation by a polynomial of degree n + 1 is
| (n+1) (l)l n
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where zy are the n + 1 nodes at which the values of f are given. On the right hand
side of the inequality, change variables to the interval [—1,1],

1 1
r=z(y)= 5 (b+a)+ = (b—a)y, ye[-1,1]

and use the Chebyshev nodes. We obtain

(n+1) (o de (n+1) (.. n B :
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and observe that

We arrive at

(n+1) (,. - n+1 - B e
[k — gl 1111\ \f (a ('/))’ b—a [Tt (v)] < 2M b—a .
(II+1)' 2 on (Il+1)' 4

Alternative (similar) solution:

Consider first [a,b]=[-1,1]. The formula for the error in Lagrange interpolation gives

| E,(f)]<max, |fn+ 1(),)|H(x X) ﬁ(x—X.)

contracting / shlftlng the interval from one of length (b—a) to one of length 2 does not affect function

. With Chebyshev nodes,

= %Tml(x) Sz_ln Stl’etchlng /

2
vales, it multiplies first derivatives by (b;zaj , second derivatives by [b;zaJ , ..., N+1% derivative by

n+l n+l n+l
[BJ . For the original interval [a,b], we thus get | E, (f)|< 1 1y [b—a) __2M (b—a) :
2 (n+1)12" 2 (n+1)!



Problem 5. Numerical ODE

There exists a one parameter family of 2-stage, second order Runge Kutta methods for solving the ODE
y'= f(x,y(x)). With step size h in the x-direction, and the parameter « arbitrary, these can be written as

d¥ =hf(x,y,)
d® =hf(x, +ahy, +ad®)

1 1
=y +{1-—|d® +—d®
yn+1 yn ( Z(Zj Z(Z
(@) Verify that these schemes, for all values of « , indeed provide second order accuracy.

Hint: Recall that y'(x) = f (x, y(x)), by the chain rule, implies y"(x) =Z—f+ f%.
X

(b) Show that these schemes, for all «, have exactly the same stability domain.

(© Verify that this domain, along the negative real axis, extends exactly over the interval [-2,0].

Solution:
(a) Using the formulas for d® and d®, we get
1 h of of
=y +|1-— |hf (x,y.)+—] f(x,y.)+ah—+ahf —+O(h?
yn+1 yn ( 20{} (n yn) 20[( (n yn) a 6X a ay ( )j
1 of of 1
=y +hf(x.,y)+=h*| —+ f— |[+O(h*)=y_ +hy '+ =h*y "+O(h?).
Y (nyn)2 (ax ayj (h) =y, Yo+ SN7Ys (h%)

Each step has a local error O(h*), giving a second order scheme when integrated over time.

Note that Taylor expansion is our ONLY available approach for verifying an RK-method’s order of
accuracy. In contrast to for linear multistep methods, it is insufficient to either (i) test by applying to
increasing degree monomials, or (ii) make deductions from the method’s stability domain.

(b) The stability domain is obtained by applying the scheme to the ODE y'= Ay. We obtain then

d® =hay,
d® =hA(y, +ahy,)

and y, ., =Y, +(1—2i) hay, +2ihﬂu(yn +ahly )=y +hly, +%h212yn. Setting hA =¢&, this is a linear
(04 (04

recursion relation with the characteristic equation r=1+¢& +%§2. The stability domain is given by all &£

(complex) such that |r|<1.

(© Writing the stability domain equation as r =1+%§(2 + &) shows that, for & real, the condition |r|<1 is

satisfied precisely for —2<¢£ <0.



Problem 6. Numerical PDE

3
@) Verify that the PDE Z—l: =Z—l: is well posed as an initial value problem.
X
(b) Consider solving it numerically using the scheme
u(t+k,x)—u(t—k,x) —zu(x—2h,t) +u(x—h,t)—u(x+h,t) +;u(x+2h,t)
2k - h? '
Determine this scheme’s stability condition.
Hint: The 27 -periodic function f(6)=2sin6(1+cosd) oscillates in between J_rT.

Solution:

(@) Let u(x,t) = a(t)e'*. Substituting this into the PDE gives « '(t) = —iow’a(t), with the general solution
a(t) =a(0)e . With both  and t real, it thus holds that | a(t) |=| «(0)|, showing that no Fourier mode
can grow in time.

(b) Let u(x,t) =n"*e'*. Substituting this into the scheme gives, after some quick simplifications

1 1 _ 1 1 —2iwh —iwh iwh | 1 .2iwh) _ i . _ i
ﬁ(n—;J_F(—Ze +e e+ e )_F(25|na)h(—1+COSwh))_Fg(Q) where

g(8) =2sin0(-1+cosH) and O = wh. Apart from one sign, the function f(6) in the Hint matches g(@).

33

We note however that g(@)= f (0 + x), so also g(0) oscillates between J_rT.

As an alternative to studying this quadratic in 7, we can at this point simply refer to the stability domain for
leap-frog time stepping (which is the interval from —i to +i along the imaginary axis). Using the hint, we thus

%ﬂ<l,ie K < 2

..F ﬁ.

need



