
Department of Applied Mathematics
Preliminary Examination in Numerical Analysis

August 2022

Instructions. You have three hours to complete this exam. Submit solutions to four
(and no more) of the following six problems. All problems have equal value.

Please start each problem on a new page. You MUST prove your conclusions or show
a counter-example for all problems unless otherwise noted.
Write your student ID number (not your name!) on your exam.

Problem 1: Root finding
Consider the root finding problem f(x) = 0 for f ∈ C2(R). For an initial guess x0 near the single
root α, consider the iteration scheme:

xk+1 = xk − γ0f(xk)

Where γ0 =
1

f ′(x0)
. Sometimes this method is called the chord iteration.

(a) Rewrite the chord iteration in terms of a fixed point iteration for a function g(x). State
necessary conditions (in terms of f(x) and x0) for the convergence of this scheme to the root
x = α of f(x).

(b) Consider the function f(x) = sin(3πx)+8x− 4. One can show it has a unique, simple root at
α ≃ 0.58607509. Find a set of initial points x0 for which the chord iteration, if it converges
to α, does so quadratically.

(c) Recall that the Newton iteration for approximating a root of f(x) is given by

xk+1 = xk + pk

where pk = −f(x)/f ′(x).
Consider now an inexact Newton iteration where the update to the approximation at step k
is qk where qk is an approximation of pk = −f(x)/f ′(x). (The chord iteration is an example
of an inexact Newton iteration.) This iteration is defined by

xk+1 = xk + qk.

Write down an expression for the error of the inexact Newton method ek+1 = xk+1 −α at the
(k + 1)th step in terms of the error of the (exact) Newton method at the (k + 1)th step.

(d) Assume the difference between the updates in the Newton and inexact Newton iterations at
step k + 1 satisfy

|pk − qk| ≤ ηk|f(xk)|

where ηk is small; i.e. your approximate update is close to the Newton update.
With this bound and your solution from part (c), derive an upper bound for the error ek+1 of
the inexact Newton step. Determine the convergence rate of this method.
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Solution:

(a) The chord iteration is a fixed point iteration scheme for the function

g(x) = x− γ0f(x)

We know g ∈ C2(R), and g′(x) = 1− γ0f
′(x). By continuity of g′(x), we know that if

|g′(α)| = |1− γ0f
′(α)| < 1

Then the chord iteration will converge linearly to α for x0 in a neighborhood of α and

lim
n→∞

α− xn+1

α− xn
= 1− γ0f

′(α)

The inequality implies that 2 > γ0f
′(α) > 0, i.e., 2 > f ′(α)/f ′(x0) and f ′(x0) must be the

same sign as f ′(α).

(b) We know that for x0 sufficiently close to α, our fixed point iteration will converge at least
quadratically if g′(α) = 0. That is,

g′(α) = 1− γ0f
′(α) = 0

This means we must choose x0 such that f ′(x0) = f ′(α). We notice that the derivative of
f(x) is a periodic function, with period 2/3. So, assuming the iteration converges, the choice
x0 = α+ (2/3)k for k ∈ Z will converge at least quadratically.

(c) Given the definition for the inexact Newton iteration:

xk+1 = xk + qk

ek+1 = (xk + pk)− α+ (qk − pk)

Which means the error is the sum of two terms: the exact Newton error and the difference
between the exact and inexact Newton steps.

(d) We take the estimate obtained in the point above,

|ek+1| ≤ |xk + pk − α|+ |qk − pk|
≤ C|ek|2 + ηk|f(xk)|

|f(xk)| = |f(xk)− f(α)|. By the Mean Value Theorem, there exists ζ between xk and α such
that |f(xk)| = |f ′(ζ)ek| ≤ |f ′(ζ)||ek|. Finally, since f ′(x) is assumed to be continuous, there
exist M such that |f ′(x)| ≤ M on this interval. So,

|ek+1| ≤ C|ek|2 + ηk|f ′(ζ)| ≤ C|ek|2 + ηkM |ek|

This tells us that the inexact Newton will converge quadratically only if ηk is small enough
(smaller or comparable to |ek|). Otherwise, it will converge linearly.

2



Problem 2: Quadrature
For functions defined on a closed interval [0, 1], we want to compute the definite integral

I[f ] =

∫ 1

0
f(x) log(1/x)dx

that is, with a logarithmic weight function log(1/x) = − log(x). It is possible to find a basis
of orthogonal polynomials Pn(x) for the corresponding weighted inner product, and use them to
derive n-point Gaussian quadratures with nodes xnk and weights ωn

k . In this problem, you will
explore these polynomials and techniques for creating the corresponding Gaussian quadrature.

(a) Let P0(x) = 1. Use Gram-Schmidt or another technique to find P1(x). Find the corresponding
quadrature node x11 and weight ω1

1 for the 1-point Gaussian quadrature rule.

You may use the formula
∫ 1
0 xm log(1/x)dx = 1

(m+1)2
.

(b) A general result for orthogonal polynomials is the interlacing theorem: considering the par-
tition of [a, b] into n + 1 subintervals with endpoints a < x1n < x2n · · · < xnn < b, there is a
unique node for the n+ 1 rule on each of these intervals.
Based on this information, state a quadratically convergent algorithm to find the quadrature
nodes for the (n+ 1) rule, given accurate nodes for the n point rule.

(c) The family Pn satisfies a recursion formula of the form:

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x)

Consider the normalized family Qn(x) = Pn(x)/
√
hn, with hn =

∫ 1
0 Pn(x)

2 log(1/x)dx. Given
that βn = hn/hn−1, find a recursive formula for Qn(x) of the form:

√
βn+1Qn+1(x) = (x− αn)Qn(x)−

√
βnQn−1(x)

(d) Consider the recursive formula above for n = 0, 1, 2, 3. Show that x = λ is a node of the 4
point Gaussian quadrature if and only if it is an eigenvalue of a symmetric, tridiagonal matrix
with diagonal [α0, α1, α2, α3] and super / sub diagonal [

√
β1,

√
β2,

√
β3].

Indicate why deriving this eigenvalue problem using the normalized polynomials might be
preferable to solving the eigenvalue problem with the polynomials from the original recursive
formula.

Solution:

(a) We use the Gram-Schmidt process to find:

P1(x) = x− < x, 1 >ω

< 1, 1 >ω
1 = x− 1

4

So the single quadrature node is x11 = 1/4. We can find the corresponding weight by requiring
that this rule integrate constants exactly. That yields:

∫ 1

0
log(1/x)dx = 1 = ω1

1

3



(b) Each quadrature node xn+1
k is one of the roots of Pn+1(x), and by the interlacing theorem, it

is between ak = xnk−1 and bk = xnk (where a1 = a, bn+1 = b).
Our algorithm would use bisection until the midpoint lies in the basin of convergence for the
Newton iteration:

ym+1
k = ymk − Pn+1(y

m
k )/P ′

n+1(y
m
k ).

Newton would then be used until the desired accuracy was achieved.

(c) We substitute Pn(x) =
√
hnQn(x) in the original recursive formula. We then divide both sides

by
√
hn:

√
hn+1Qn+1(x) = (x− αn)

√
hnQn(x)− βn

√
hn−1Qn−1(x)√

hn+1√
hn

Qn+1(x) = (x− αn)Qn(x)−
hn
hn−1

√
hn−1√
hn

Qn−1(x)√
βn+1Qn+1(x) = (x− αn)Qn(x)−

√
βnQn−1(x)

(d) We write down the formulas for n = 0, 1, 2, 3, separating the term xPn(x):

√
β1Q1(x) + α0Q0(x) = xQ0(x)√

β2Q2(x) + α1Q1(x) +
√
β1Q0(x) = xQ1(x)√

β3Q3(x) + α2Q2(x) +
√
β2Q1(x) = xQ2(x)√

β4Q4(x) + α3Q3(x) +
√
β3Q2(x) = xQ3(x)

We plug in x = λ and collect these equations in matrix form:


0
0
0√

β4Q4(λ)

+


α0

√
β1 0 0√

β1 α1
√
β2 0

0
√
β2 α2

√
β3

0 0
√
β3 α3



Q0(λ)
Q1(λ)
Q2(λ)
Q3(λ)

 = λ


Q0(λ)
Q1(λ)
Q2(λ)
Q3(λ)


If λ is one of the roots of Q4(x), the first term above vanishes and hence it is an eigenvalue
of the symmetric tridiagonal matrix, with eigenvector [Q0(λ), Q1(λ), Q2(λ), Q3(λ)]. Since Q4

has 4 distinct simple roots, it follows that the spectra of this matrix is the set of 4-point
Gaussian quadrature nodes.

If we use the original recursive formula, the resulting matrix will be tridiagonal, but non-
symmetric which is less preferable from an algorithmic point of view.
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Problem 3: Interpolation / Approximation
The Chebyshev polynomials of the third kind, sometimes known as airfoil polynomials, are defined
as

Vn(x) =
cos(n+ 1

2)θ

cos θ
2

where x = cos θ, n non-negative integer.
There is a table of trigonometric identities provided at the end of this problem for your convenience.

(a) Show that the Chebyshev polynomials of the third kind satisfy the recursion:

V0(x) = 1

V1(x) = 2x− 1

Vn+1(x) = 2xVn(x)− Vn−1(x)

(b) Show that these polynomials are an orthogonal basis for polynomials in [−1, 1] with respect
to the inner product:

< f, g >=

∫ 1

−1
f(x)g(x)

√
1 + x

1− x
dx

That is, with weight function w(x) =
√

1+x
1−x .

Hint: Decide which representation of the polynomials will make the integrals the easiest.

(c) Let q(x) =
∑2

k=0CkVk(x) be the polynomial that minimizes

min

∫ 1

−1
(ex − p(x))2

√
1 + x

1− x
dx

over the space of all polynomials of degree ≤ 2.

Using the results from part (b) derive explicit formulas for the coefficients C0, C1, C2.
You do not have to evaluate the formulas for the coefficients.

Table of trigonometric identities

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)
sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

sin2(θ/2) = (1− cos θ)/2
cos2(θ/2) = (1 + cos θ)/2

tan2(θ/2) = (1− cos θ)/(1 + cos θ)
cos(α) cos(β) = 1

2(cos(α+ β) + cos(α− β))
sin(α) sin(β) = 1

2(cos(α− β)− cos(α+ β))

Solution:

5



(a) V0(x) =
cos(θ/2)
cos(θ/2) = 1 follows directly from the definition.

To show V1(x) =
cos(3θ/2)
cos(θ/2) = 2 cos θ − 1, we use angle summation formulas:

cos(3θ/2)

cos(θ/2)
= cos θ − sin(θ) sin(θ/2)

cos(θ/2)

= cos θ − 2 sin2(θ/2)

= cos θ + cos θ − 1 = 2x− 1

In order to demonstrate the recurrence relation, we note that the numerator of 2xVn(x)
is 2 cos(θ) cos(n + 1/2)θ. We use the trigonometric identity 2 cos(α) cos(β) = cos(α + β)
+ cos(α− β):

2 cos(θ) cos(n+ 1/2)θ = cos(n+ 3/2)θ + cos(n− 1/2)θ

Dividing both sides of this equation by cos(θ/2) yields the recurrence relation.

(b) We write down the inner product of Vn and Vm, and then change integration variables from
x to θ.

< Vn, Vm > =

∫ 1

−1
Vn(x)Vm(x)

√
1 + x

1− x
dx

=

∫ π

0

cos(n+ 1/2)θ cos(m+ 1/2)θ

cos2(θ/2)

√
1 + cos θ

1− cos θ
sin θdθ

Using half angle formulas, we can see that

1 + cos θ

1− cos θ
=

cos2 θ/2

sin2(θ/2)
= cot2(θ/2)

sin θ

cos2(θ/2)
= 2

sin(θ/2)

cos(θ/2)
= tan(θ/2)

So, we get

< Vn, Vm > = 2

∫ π

0
cos(n+ 1/2)θ cos(m+ 1/2)θdθ

=

∫ π

0
cos(n+m+ 1)θ + cos(n−m)θdθ

When n ̸= m, this inner product is thus equal to 0.
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(c) Because the basis of polynomials we are using is orthogonal, we have formulas for each coef-
ficient in terms of inner products with f(x) = ex. Using the recurrence relation, we find that
V2(x) = 4x2 − 2x− 1. We can then find that:

C0 =
< ex, V0 >

< V0, V0 >
=

∫ 1
−1 e

xw(x)dx∫ 1
−1w(x)dx

C1 =
< ex, V1 >

< V1, V1 >
=

∫ 1
−1 e

x(2x− 1)w(x)dx∫ 1
−1(2x− 1)2w(x)dx

C2 =
< ex, V2 >

< V2, V2 >
=

∫ 1
−1 e

x(4x2 − 2x− 1)w(x)dx∫ 1
−1(4x

2 − 2x− 1)2w(x)dx
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Problem 4: Linear algebra

(a) State and apply the Gerschgorin theorem to the matrix

A =

 1 ϵ ϵ
ϵ 2 ϵ
ϵ ϵ 2


with ϵ << 1.

It is often possible to improve the Gerschgorin bounds on the eigenvalue estimate by first
applying a similarity transformation to the matrix A involving a diagonal matrix Dn =
diag(d1, . . . , dn).

(b) Prove that a reduction in the error bound of one eigenvalue for the matrix above must occur
at the expense of relaxing the bounds for the remaining eigenvalues.

(c) Let D3 = diag(1, kϵ, kϵ), show that the bounding radius for λ1 ∼ 1 can be reduced from
ρ1 = 2ϵ to 2ϵ2.

(d) How would you use the Gerschgorin circle for λ ∼ 1 to compute a numerical approximation
for the eigenvalue in that ball?

Solution:

(a) The Gerschgorin circle theorem says that all eigenvalues live in the union of the balls in the
complex plane defined by

|λ− aii| ≤
n∑

j=1//j ̸=i

|aij |.

Applying this theorem to the problem we find that the eigenvalues live in the balls

|λ− 1| ≤ 2ϵ and |λ− 2| ≤ 2ϵ

in the complex plane.

(b)

D−1AD =

 1
d1

0 0

0 1
d2

0

0 0 1
d3

 1 ϵ ϵ
ϵ 2 ϵ
ϵ ϵ 2

 d1 0 0
0 d2 0
0 0 d3


=

 1 ϵd2d1 ϵd3d1
ϵd1d2 2 ϵd3d2
ϵd1d3 ϵd2d3 2


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The Gerschgorin circle theorem eigenvalue balls are

|λ1 − 1| ≤ ϵ

(∣∣∣∣d2d1
∣∣∣∣+ ∣∣∣∣d3d1

∣∣∣∣)
|λ2 − 2| ≤ ϵ

(∣∣∣∣d1d2
∣∣∣∣+ ∣∣∣∣d3d2

∣∣∣∣)
|λ3 − 2| ≤ ϵ

(∣∣∣∣d2d3
∣∣∣∣+ ∣∣∣∣d2d3

∣∣∣∣))
Suppose our goal is to reduce the size of the circle for λ1, then |d2| << |d1| and |d3| << |d1|.
This means that ∣∣∣∣d1d2

∣∣∣∣ > 1 and

∣∣∣∣d1d3
∣∣∣∣ > 1.

Thus the circles for λ2 and λ3 are larger than the original circles.

(c)

D−1AD =

 1 kϵ2 kϵ2
1
k 2 ϵ
1
k ϵ 2


Thus the circle centered at 1 now has radius 2kϵ2.

(d) One way to use the circle theorem to find an eigenvalue is to use a shifted inverse power
iteration where the shift lies in the circle of the eigenvalue you are looking for.
Note: The similarity transformation may not help with the eigenvalues in concentric circles.
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Problem 5: Numerical ODE

(a) Derive the coefficients c0, c1 and c2 for the backward differentiation formula

c0un+1 + c1un + c2un−1

which has a truncation error that is second order for approximating u′(tn+1).
You must derive the truncation error for this problem.
Be mindful of where you are approximating the derivative.

(b) Show that applying this scheme to approximate the solution of the ODE

u′ = f(t, u)

is convergent.

For the remainder of this problem consider a stiff linear system of ODEs of the form

du

dt
= Au, u(0) = u0 (1)

where A is a negative definite matrix.

(c) Explain what is meant by a stiff system.

(d) Determine if the scheme derived in part (a) is suitable for solving the stiff system of ODEs
(1).

Hint: You don’t have to derive the entire region stability domain. It suffices to establish
stability for the part of the complex plane that is relevant for the system in (1).

Solution:

(a) We are approximating the derivative at tn+1 so we will use Taylor expansions around that
point for the other two terms in the expression. Also since we want a second order method,
we should go out to the third derivative.

u(tn) = u(tn+1)− hu′(tn+1) +
h2

2
u′′(tn+1)−

h3

3!
u(3)(tn+1) + · · ·

u(tn−1) = u(tn+1)− 2hu′(tn+1) +
4h2

2
u′′(tn+1)−

8h3

3!
u(3)(tn+1) + · · ·

To get a second order approximation, we need to add these expressions together in a way
that the u′′ term is destroyed. To do this, I’ll take 4 times the first equation and subtract the
second.
The result is

4u(tn)− u(tn−1) = 3u(tn+1)− 2hu′(tn+1) +
4h3

3!
u(3)(tn+1) + · · ·
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Now all we have to do is solve for u′(tn+1) to get our approximation.

u′(tn+1) =
−4u(tn) + u(tn−1) + 3u(tn+1)

2h
+

2h2

3!
u(3)(tn+1) + · · ·

So our constants are c0 =
3
2h , c1 = − 2

h , and c2 =
1
2h .

(b) To show that method is convergent, we need to show that it is consistent and stable. Since
the truncation error goes to zero as h → 0, the method is consistent.
To determine stability, we need to look at the roots of the corresponding characteristic poly-
nomial:

p(λ) = −3

2
λ2 + 2λ− 1

2
.

If all the roots lie inside the unit ball in the complex plane, then the method is stable.
The roots are λ = −1 and λ = 1/3. Both lie in the unit ball so the method is stable.
Since the method is both consistent and stable, it is convergent.

(c) A differential equation is called stiff if there is requirement on the time step size for the time
stepping method to be stable when applied to it.

(d) A negative definite matrix is a Hermitian (symmetric in the case of real matrices) matrix that
has negative eigenvalues.
To determine the region of stability for the method we found in part (a), we must apply it to
test problem:

u′(t) = αu

for α < 0 and determine for what values of h the method is convergent.
Applying the method to this problem, we find the characteristic polynomial is

(−hα− 3

2
)r2 + 2r − 1

2

We need to look at the roots of this polynomial. I will simplify that equation

(2hα+ 3)r2 − 4r + 1 = 0

They are

r =
2±

√
1− 2hα

2hα+ 3

Note that r = 2+
√
1−2hα

2hα+3 > 1 for all h. Thus the method is not stable for this problem.
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Problem 6: Numerical PDE
Consider the advection equation

ut + ux = 0 (2)

with periodic boundary conditions.

(a) Consider solving (2) by first discretizing ux in space via the centered difference approximation

ux ≈ u(x+ h, t)− u(x− h, t)

2h
.

Using this discretization, write down the matrix A such that (2) can be written as

ut = Au. (3)

(b) Consider solving the ODE system (3) using explicit Euler in time. Using properties of A,
show that this scheme is unsuitable for solving (2). Explain what the failure mechanism is.
(You may state the domain for explicit Euler without proof.)

(c) Consider solving (2) using the discretization

un+1
m − un−1

m

2k
+

unm+1 − unm−1

2h
= 0

where unm = u(mh, nk), k denotes the time step size and h denotes the space step size. Use
von Neumann analysis to determine the amplification factor and the region of stability.

Solution:

(a) The matrix A is given by

A =



0 − 1
2h 0 · · · · · · 0 1

2h
1
2h 0 − 1

2h 0 · · · · · · 0
0 1

2h 0 − 1
2h 0 · · · 0

... . . . . . . . . . 0 · · · 0

... . . . . . . . . . · · · · · · 0
0 · · · · · · 0 1

2h 0 − 1
2h

− 1
2h 0 · · · · · · 0 1

2h 0


(b) The region of absolute stability for explicit Euler is the circle centered at −1 with radius 1

in the complex plane. A is skew-symmetric thus all of it’s eigenvalues are purely imaginary.
Thus the condition of the eigenvalues lying in the region of stability for explicit Euler is not
met and the method is not guaranteed to converge.

(c) We begin this problem by plugging unm = eatneibxm into the difference equation. This yields
the following equation

ea(tn+k)eibxm − ea(tn−k)eibxm

2k
+

ea(tn)eib(xm+h) − ea(tn)eib(xm−h)

2h
= 0
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We now remove the common factor of eatneibxm to get

1

2k

(
η − 1

η

)
− i sin(bh)

h
= 0

where η = eak is the amplification factor. This is a quadratic in η and we know that the
region of stability is the where |η| ≤ 1 where

η = i
k

h
sin(bh)±

√
1− k2

h2
sin2(bh).

We need to investigate conditions on k and h that will force |η| ≤ 1.
If 1− k2

h2 sin
2(bh) ≥ 0. Then

η1 = i
k

h
sin(bh) +

√
1− k2

h2
sin2(bh)

and

η2 = i
k

h
sin(bh)−

√
1− k2

h2
sin2(bh)

and |ηj |2 = 1 for j = 1, 2.

Then we find that 0 ≤ k2

h2 sin
2(bh) ≤ 1. Since | sin2(bh)| ≤ 1, we find that the condition is that

0 ≤ k
h ≤ 1.

If 1− k2

h2 sin
2(bh) < 0, then k2

h2 sin
2(bh) > 1 and we can write the amplification factors as

η1 = i
k

h
sin(bh) + i

√
k2

h2
sin2(bh)− 1

and

η2 = i
k

h
sin(bh)− i

√
k2

h2
sin2(bh)− 1

.
Then |ηj |2 = 2 k2

h2 sin
2(bh)− 1 for j = 1, 2. Thus we need

2
k2

h2
sin2(bh)− 1 < 1

which means that k2

h2 sin
2(bh) < 1 which is a contraction to our assumption about 1 −

k2

h2 sin
2(bh) < 0.

Thus the only way that method can be stable is if k
h < 1.
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