Department of Applied Mathematics
Preliminary Examination in Numerical Analysis
August 2022

Instructions. You have three hours to complete this exam. Submit solutions to four
(and no more) of the following six problems. All problems have equal value.

Please start each problem on a new page. You MUST prove your conclusions or show
a counter-example for all problems unless otherwise noted.
Write your student ID number (not your name!} on your exam.

Problem 1: Root finding

Consider the root finding problem f(z) = 0 for f ¢ C?*(R). For an initial guess xy near the single
root ¢, consider the iteration scheme:

a1 = zi — Tof(zk)

Where L Sometimes this method is called the chord iterution.
FMETY

(a) Rewrite the chord iteration in terms of a fixed point iteration for a function g(x). State
necessary conditions (in terms of f(z) and xg) for the convergence of this scheme to the root
z = o of f(xz).

(b) Consider the function f(z) = sin(3wx) + 8z ~ 4. One can show it has a unique, simple root at
a ~ 0.58607509. Find a set of initial points xy for which the chord iteration, if it converges
to a, does so quadraetically.

(¢} Recall that the Newton iteration for approximating a root of f(x) is given by
Tpel = X+ Py

where pp = — f(x)/ f'(2).

Consider now an inezact Newton iteration where the update to the approximation at step &
is g1 where g is an approximation of p; = — f(z)/f/(z). (The chord iteration is an example
of an inexact Newton iteration.) This iteration is defined by

Ths1 = Th + G

Write down an expression for the error of the inexact Newton method ey = 341 — o at the
(k + 1)'" step in terms of the error of the {exact) Newton method at the (k + 1)'® step.

(d) Assume the difference between the updates in the Newton and inexact Newton iterations at
step k + 1 satisfy

Pr — aqr| < el f(z)l

where 7 is small; i.e. your approximate update is close to the Newton update.
With this bound and your solution from part (c), derive an upper bound for the ervor ;. of
the inexact Newton step. Determine the convergence rate of this method.



Problem 2: Quadrature
For functions defined on a closed interval [0, 1}, we want to compute the definite integral

1
1] = ]0 f(z) log(1/2)dz

that is, with a logarithmic weight function log(1/xz) = —log(x). It is possible to find a basis
of orthogonal polynomials P,(z) for the corresponding weighted inner product, and use them to
derive n-point Gaussian quadratures with nodes a2} and weights wf. In this problem, you will
explore these polynomials and techniques for creating the corresponding Gaussian quadrature.

(a)

(b)

(d)

Let Py(x) = 1. Use Gram-Schmidt or another technique to find P;(z). Find the corresponding
quadrature node x} and weight w]} for the 1-point Gaussian quadrature rule.

You may use the formule fol ™ log(1/z)dx = ﬁg

A general result for orthogonal polynomials is the interlucing theorem: considering the parti-
tion of [a, b] into n + 1 subintervals with endpoints a < z} < z2-.. < 2% < b, there is a unique
node for the n + 1 rule on each of these intervals.

Based on this information, state a quadratically convergent algorithm to find the quadrature
nodes for the (n + 1) rule, given accurate nodes for the n point rule.

The family P, satisfies a recursion formula of the form:
Poy1(@) = (z — ap) Pu(z) — BaPa-i(2)

Consider the normalized family Q,(x) = Py(x)/vhy,, with by, = fol P, (z)?log(1/xz)dx. Given
that 8, = ha/hn_y, find a recursive formula for @, (z) of the form:

\Y ﬁn+lQn+1(-’5) (I — 0n)Qn(z) - \/ﬁ_nQn 1(17)

Consider the recursive formula above for n = 0,1,2,3. Show that z = A is a node of the 4
point Gaussian quadrature if and only if it is an eigenvalue of a symmetric, tridiagonal matrix

with diagonal [ag, a1, a2, a3] and super / sub diagonal [\/B1, B2, vVB3).

Indicate why deriving this eigenvalue problem using the normalized polynomials might be
preferable to solving the eigenvalue problem with the polynomials from the original recursive
formula.

Problem 3: Interpolation / Approximation
The Chebyshev pelynomials of the third kind, sometimes known as airfoil polynomials, are defined

as

cosin + %,]9

Val@) = =y (6% Loy ¥\\®

Cos 2

where x = cosf, n non-negative integer.

There is « table of trigonometric identities prowvided at the end of this problem for your convenience.
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{a) Show that the Chebyshev polynomials of the third kind satisfy the recursion:
Vo(z) =1
Vilz) = 2z -1
Vari(z) = 22Vi(z) = Via(z)

(b) Show that these polynomials are an orthogonal basis for polynomials in [—1, 1] with respect
to the inner product:

1
< fog>= f fa)g(z) A

That is, with weight function w(z) = /=,

l=2

Hint: Decide which representation of the polynomials will make the integruls the casiest.

(¢} Let g(z) = Zf o CrVi(x) be the polynomial that minimizes

nnnf {e* — 1))2ﬁ dx

over the space of all polynomials of degree < 2.

Using the results from part (b} derive explicit formulas for the coefficients Cy, C;, Cy.

You do not have to evaluate the formulas for the coefficients.

Table of trigonometric identities

cos{er + 3) = cos{a) cos(B) — sin(a) sin(f)
sin{a + ) = sin{e) cos(B) + cos(a) sin(5)
sin?(#/2) = (1 - cos ) /2
cos?(8/2) = (1 + cosf)/2
tan?(8/2) = (1 — cos8)/(1 + cos§)
cos{a) cos(f3) = iz(.::cns(oc + 8) + cos{a — 3))
sin{a) sin(3) = 5(cos(av — B) — cos(a + F))

Problem 4: Linear algebra

{(a) State and apply the Gerschgorin theorem to the matrix

1 ¢ ¢
A=1|¢€¢ 2 ¢
€ € 2

with € << 1.

It is often possible to improve the Gerschgorin bounds on the eigenvalue estimate by first
applying a similarity transformation to the matrix A involving a diagonal matrix D, =
diag(dy, ..., dn).



(b) Prove that a reduction in the error bound of one eigenvalue for the matrix above must occur
at the expense of relaxing the bounds for the remaining eigenvalues.

{c) Let D3 = diag(1, ke, ke), show that the bounding radius for A} ~ 1 can be reduced from
p1 = 2e to 2¢°,

{(d) How would you use the Gerschgorin circle for A ~ 1 to compute a numerical approximation
for the eigenvalue in that ball?

Problem 5: Numerical ODE
(a) Derive the coefficients ¢g, ¢; and ¢y for the backward differentiation formula
Cotng1 + Criy + Coltyy )

which has a truncation error that is second ovder for approximating u’(f,41).
You must derive the truncation error for this problem.
Be mindful of where you are approximating the derivative.

(b) Show that applying this scheme to approximate the solution of the ODE
' = f(t,u)

is convergent.

For the remainder of this problem consider a stiff linear system of QDEs of the form
du
dt

where A is a negative definite matrix.

= Au, u(0) =ug (1)

(c) Explain what is meant by a stiff system.

(d) Determine if the scheme derived in part (a) is suitable for solving the stiff systemn of ODEs

(1).

Hint: You don’t have to derive the entire region stability domain. It suffices to establish
stability for the part of the complex plane that is relevant for the system in (1).

Problem 6: Numerical PDE
Consider the advection equation

U+ tty =0 i2)
with periodic boundary conditions.
{a} Consider solving (2) hy first discretizing w; in space via the centered difference approximation
wy u{z + h,t) —ulz — h,t)
2h
Using this discretization, write down the matrix A such that (2) can be written as

u; = Au. [3:|



(b} Consider solving the ODE system (3) using explicit Euler in time. Using properties of A,
show that this scheme is unsuitable for solving {2). Explain what the failure mechanism is.
(You may state the domain for explicit Euler without proof.)

{¢) Consider solving (2) using the discretization

n+1 n—1 i . |
Uy  — Uy + Upipl — Wy —0

2k 2h
where uj, = u{mh,nk}, k& denotes the time step size and h denotes the space step size. Use
von Neumann analysis to determine the amplification factor and the region of stability.




