
Solving Scalar Nonlinear Equations
Atkinson Chapter 2, Stoer & Bulirsch Chapter 5

1 With linear systems we started with existence, uniqueness (both were review), and sensitivity to pertur-
bations. For scalar nonlinear equations solutions might not exist, or might not be unique; there’s no general
theory. Naturally there’s no general theory for sensitivity either.

Notice that any scalar equation can be written as

f(x) = 0

in which case we’re ‘rootfinding’ or as
g(x) = x.

We will start by considering equations in the form g(x) = x. We can (seemingly arbitrarily) define an
iteration

xk+1 = g(xk).

If it converges then it converges to x = g(x). The value of x that solves x = g(x) is called a ‘fixed point’
and the iteration above is called a ‘fixed point iteration.’

E.g. solve 0 = x2 − c with c > 0; roots are α± = ±
√
c. Let g(x) = x2 − c + x so that g(x) = x when

0 = x2 − c. Note that there are lots of ways to choose a function g here.

xk+1 = g(xk) = f(xk) + xk = xk + x2k − c.

Draw the path of xk. Appears to converge to −
√
c for some range of x0, but looks like it won’t ever converge

to
√
c.

-3 -2 -1 1 2

-2

2

4

1

For this same nonlinear equation we could use g(x) = c/x; the solutions g(x) = x are ±
√
c. Draw the

path of xk. Appears to converge to both roots if you start close enough.

-3 -2 -1 1 2

-6

-4

-2

2

4

6

2 (Atkinson §2.5) How can we rigorously analyze the behavior of the iteration? We will find that (i) if the
initial condition is ‘close enough’ to a solution, and (ii) if the function g is ‘nice enough’ near the solution,
then the iteration will converge.

Close Enough First we find an interval with the property that the iteration remains within the interval for
all time, i.e. an interval [a, b] that g(x) maps into itself: a ≤ g(x) ≤ b for all a ≤ x ≤ b. E.g. for g(x) = c/x
the interval [c, 1] maps to itself (or [1, c] if c > 1). This guarantees that the iteration will remain in this
interval for all k (if started in the interval). Of course the interval isn’t useful to us unless it contains a
solution, but we have the following result:

Lemma: (Atkinson 2.4) If g(x) is continuous on [a, b] and a ≤ g(x) ≤ b for x ∈ [a, b] then there is at
least one solution to g(x) = x in [a, b].

The proof considers that g(x) − x is continuous on [a, b]. By assumption a ≤ g(a) ⇒ g(a) − a ≥ 0 and
g(b) ≤ b⇒ g(b)− b ≤ 0. By the IVT there must be at least one zero of g(x)− x in the interval.

Nice Enough We’ve already assumed g is continuous on the interval in question. For convergence we need
something a little stronger: Lipschitz continuous with constant less than 1:

∃ 0 < λ < 1 : |g(x)− g(y)| < λ|x− y| ∀x, y ∈ [a, b]

(Lipschitz continuity is |g(x) − g(y)| ≤ K|x − y|. The condition above is slightly stronger than Lipschitz
continuity.)

Lemma: (Atkinson 2.5) If g satisfies the Lipschitz condition above and a ≤ g(x) ≤ b for x ∈ [a, b] then
(i) x = g(x) has a unique solution α in [a, b] and (ii) the iteration will converge to α for any initial condition
in the interval.1

1For those who care, this is a specific example of the more general Banach fixed-point theorem. We don’t prove the fully
general theorem here, we just do a very specific 1D version of it.

2

Proof:

(i) Suppose there are two solutions α = g(α), β = g(β). Plug x = α, y = β into the assumption and
simplify:

|g(α)− g(β)| = |α− β| < λ|α− β|

if α 6= β then this implies λ > 1, a contradiction. (Reductio ad absurdum)

(ii) Plug in x = α and y = xk:

|g(α)− g(xk)| = |α− xk+1| < λ|α− xk|.

By induction, |ek| < λk|e0|, so it must converge.

In summary, if g has certain properties (‘nice enough’) and x0 starts ‘close enough’ (how close is close
enough depends on the function g) then the iteration will converge to the fixed point.

3 The above lemmas give sufficient conditions for the existence of a solution and for convergence to that
solution. But the conditions are not always easy to check; in particular it can be hard to find an interval
that maps to itself. It turns out that we can assume something a little stronger and easier to check.

Theorem (Atkinson 2.7) If g(x) is continuously differentiable in a neighborhood of the fixed
point α and |g′(α)| < 1 then there is some ε > 0 such that the iteration will converge for all
x0 ∈ [α− ε, α+ ε].

Proof: If |g′(α)| < 1 then by continuity of g′ there is some ε > 0 such that |g′| ≤ λ < 1 for all x ∈ [α−ε, α+ε].
Now suppose that we have an initial guess in this interval. Then

α− x1 = g(α)− g(x0) = g′(ξ0)(α− x0)

which is basically Taylor’s theorem, aka the mean value theorem. The number ξ0 is between α and x0.
Taking absolute values and using |g′| ≤ λ we have

|α− x1| ≤ λ|α− x0| ≤ ε

where the last inequality uses |α − x0| < ε. So we know that if we start within the interval then we’ll stay
in the interval for all k. Furthermore, repeated application of the same argument as above implies

|α− xk| ≤ λk|α− x0|.

The fact that λ < 1 implies that lim |α− xk| = 0, i.e. the iteration converges.

If we don’t know whether a solution exists at all, then we have to fall back on lemma 2.4: find an interval
that maps to itself and where g is continuous. Usually you know the solution exists and you just want
to know whether the iteration will converge for ‘close-enough’ initial conditions. Theorem 2.7 answers this
question.

It’s worth noting that the condition in Theorem 2.7 is not necessary-and-sufficient. In particular, if
|g′(α)| = 1 you might still be able to get convergence.

3

4 Rate of Convergence. Supposing again that g is continuously-differentiable and satisfies the conditions for
convergence with fixed point x = α. Taylor’s formula says

α− xk+1 = g(α)− g(xk) = g′(ξk)(α− xk)

for some ξk between α and xk. Take absolute values, divide, and take the limit:

lim
k→∞

∣∣∣∣α− xk+1

α− xk

∣∣∣∣ = lim
k→∞

|g′(ξk)| = |g′(α)|.

So for continuously-differentiable g, the rate of convergence is ‘linear’ unless g′(α) = 0.

If g′(α) = 0 then the iteration will converge (since 0 < 1), but how fast? In the above analysis just use a
higher-order Taylor expansion.

Theorem (Atkinson 2.8) Assume that g is p times continuously differentiable at the fixed point
α, and that g′(α) = . . . = g(p−1)(α) = 0 but g(p)(α) 6= 0. Then the iteration converges and there
is some λ 6= 0 such that

lim
k→∞

|errork+1|
|errork|p

= λ.

Comment ‘Linear convergence’ means that the error goes to zero exponentially fast with increasing k:

|errork| ≤ λk|error0| for some 0 < λ < 1.

‘Quadratic convergence’ is p = 2 in Theorem 2.8; it would look like

|errork+1| ≤ λ|errork|2

which is faster than exponential as a function of k.

5 Convergence rates & computational cost. Suppose that you have a linearly converging method; then for
large k the error is

|ek| ≈ λ|ek−1|

for some 0 < λ < 1. Suppose that at step k − 1 = 999 the error is |ek−1| ≈ 10−5; then at step k = 1000
the error is |ek| ≈ λ × 10−5. How many steps to increase your accuracy by one digit to ≈ 10−6? It takes
k ≈ log(10)/ log(λ) steps. For a linearly converging method in the asymptotic regime, the number of correct
digits increases linearly with the number of steps.

Suppose that you have a quadratically converging method; then for large k the error is

|ek| ≈ λ|ek−1|2

for some 0 < λ. Suppose that at step k− 1 = 999 the error is |ek−1| ≈ 10−5; then at step k = 1000 the error
is |ek| ≈ λ × 10−10. I.e. you approximately double the number of digits at each step. (If λ = 10 then the
number of digits at step k is twice what it was at step k−1, minus one digit.) For a quadratically converging
method in the asymptotic regime, the number of correct digits increases exponentially (e.g. as 2k) with the
number of steps.

Clearly higher-order methods converge a lot faster, but you should always consider the cost of a single
step. If a single step of the higher-order method is ten times as expensive than the linear method, then
the linear method might still be a better choice. There is always some number K such that the quadratic
method is more accurate than the linear method for k > K, but there’s also always a finite precision (e.g. 16
digits in double precision). The real question is how much work it takes to get to the desired precision, and
sometimes a linear method could be better than a quadratic method by this metric.

4

6 Aitken extrapolation. (Atkinson §2.6) Assume we have a linearly-converging fixed-point iteration with
continuously-differentiable g

lim
k→∞

xk = α, 0 < |g′(α)| < 1.

If we can get an estimate of the error, then we could add the error to the current iterate to produce a better
guess. We don’t have access to the error, but we have access to xk − xk−1. So, consider

α− xk = α− xk−1 − (xk − xk−1).

The error formula says
α− xk = g′(ξk−1)(α− xk−1).

If we’re close to the root then g′(ξk−1) ≈ g′(α), so

α− xk ≈ g′(α)(α− xk−1).

Plug this in above:

α− xk ≈
α− xk
g′(α)

− (xk − xk−1).

Solve for the error

α− xk ≈
g′(α)

1− g′(α)
(xk − xk−1).

If you have an estimate for g′(α), then you can get an improved guess for the solution by adding your
estimate of the error

x̂k = xk +
g′(α)

1− g′(α)
(xk − xk−1).

We can estimate |g′(α)| as follows

λk =
xk − xk−1
xk−1 − xk−2

, k ≥ 2

Re-arrange

λk =
α− xk−1 − (α− xk)

(α− xk−2)− (α− xk−1)

Use

α− xk = g′(ξk)(α− xk−1), α− xk−2 =
α− xk−1
g′(ξk−2)

to get an expression involving only α− xk−1

λk =
α− xk−1 − g′(ξk−1)(α− xk−1)

(α− xk−1)/g′(ξk−2)− (α− xk−1)

Now divide out α− xk−1
λk =

1− g′(ξk−1)

1/g′(ξk−2)− 1

Now take the limit and recall our assumption that the sequence is converging

lim
k→∞

λk =
1− g′(α)

1/g′(α)− 1
= g′(α).

This implies
λk ≈ g′(α) for large k.

7 Aitken extrapolation. Review: If you have an estimate for g′(α), then you can get an improved guess for
the solution by adding your estimate of the error

x̂k = xk +
g′(α)

1− g′(α)
(xk − xk−1).

5

We can estimate g′(α) as follows

λk =
xk − xk−1
xk−1 − xk−2

, k ≥ 2

We showed above that
λk ≈ g′(α) for large k.

Aitken’s method first computes {xk} using the fixed-point iteration, then computes

x̂k = xk +
λk

1− λk
(xx − xk−1).

This is not too useful since you might as well just compute the last iteration, not the whole sequence.
Steffensen instead suggested the following iteration:

(0) Run your fixed-point method until it looks like it’s starting to converge. Then set the three most recent
estimates to x2, x1, and x0. This is the initial condition for Aitken extrapolation.

(1) Set x3 = x2 + λ2

1−λ2
(x2 − x1)

(2) Set replace x0 with x3, then compute new x1, x2 using the fixed point iteration.

(3) Return to (1) (until convergence)

This doesn’t look like a fixed-point iteration any more, but it can be written that way. First simplify a
bit:

x̂k = xk −
(xk − xk−1)2

(xk − xk−1)− (xk−1 − xk−2)
. (2.6.8)

We want to write x̂k = xk+1. Use xk−1 = g(xk−2) and xk = g(xk−1) = g(g(xk−2)) to write the RHS above
as a function of xk−2:

x̂k = g(g(xk−2))− (g(g(xk−2))− g(xk−2))2

(g(g(xk−2))− g(xk−2))− (g(xk−2)− xk−2)
=

xg(g(x))− g(x)2

g(g(x))− 2g(x) + x
= G(xk−2).

So this new method is equivalent to a fixed-point iteration of the form

xj+1 = G(xj).

It can be shown that if the original iteration converges with order p > 1 then the updated method con-
verges with order 2p − 1. If the original method is linear (p = 1), then the updated method is at least of
order 2. (Stoer & Bulirsh, Theorem 5.10.13.)

8 Return to f(x) = 0. Suppose you know that f(x) is continuous on [a, b] and f(a)f(b) < 0. Then there
must be a root somewhere in (a, b). The ‘bisection’ method computes f((a + b)/2). If it is the same
sign as f(a) then there must be a root in the right half of the interval, and vice versa. Bisection iterates
this process to convergence. The size of the region containing the root decreases by a factor of 2 at each step.

9 f(x) = 0. Newton’s method produces a local linear approximation to f at xk, then finds the root of this
local linear approximation and sets that equal to xk+1. The local linear approximation is

f(x) ≈ L(x) = f(xk) + f ′(xk)(x− xk).

Setting L(x) = 0 and letting the solution be xk+1 yields

xk+1 = xk −
f(xk)

f ′(xk)
.

This is a fixed-point iteration with

g(x) = x− f(x)

f ′(x)
.

6

First ask whether fixed points of g are actually roots of f :

g(x) = x ⇒ f(x)

f ′(x)
= 0⇒ f(x) = 0.

OK, now assume that g is continuously-differentiable at the fixed point. This assumes that f is twice-
continuously-differentiable. Then

g′(x) = 1− 1 +
f(x)f ′′(x)

(f ′(x))2
.

If f ′ 6= 0 at the fixed point then g′ = 0 and convergence is faster than linear. To find out how fast, take
another derivative (now assuming f (3) is continuous!):

g′′(x) =
(f ′(x))2f ′′(x) + f(x)f ′(x)f (3)(x)− 2f(x)(f ′′(x))2

(f ′(x))3
→ f ′′(x)

f ′(x)
.

Assuming that f ′′ 6= 0 at the fixed point, convergence will be quadratic. If f ′′ = 0 then we might have faster
than quadratic convergence.

10 Suppose that f ′ = 0 at the fixed point but f ′′ 6= 0. Then to evaluate g′ at the fixed point we use could
use L’Hopital’s rule and find

g′(α) =
1

2
.

So for a ‘double’ root, Newton’s method still converges, but linearly rather than quadratically. If f ′ = f ′′ = 0
but f ′′ 6= 0 at the fixed point you can keep using L’Hopital’s rule, but there’s an easier way.

A root of order p of a smooth function f is a number α such that

f(x) = (x− α)ph(x), h(α) 6= 0.

At a root of order p,
f (k)(α) = 0, k = 1, . . . , p− 1.

Plug this into the expression for g′(x) and simplify:

g′(x) =
f(x)f ′′(x)

(f ′(x))2
= h(x)

p(1− p)h(x) + (x− α)(2ph′(x)− (x− α)h′′(x))

(ph(x) + (x− α)h′(x))2
.

If we evaluate at x = α we find

g′(α) = 1− 1

p
.

So for any finite-order multiple root (p > 1), and provided that f is sufficiently differentiable, Newton’s
method will converge linearly.

Interestingly, if you know the order of the root beforehand and modify Newton’s method to

xk+1 = xk − p
f(xk)

f ′(xk)

you recover quadratic convergence.

Or, define

F (x) =
f(x)

f ′(x)
.

F has a simple root at α, so Newton’s method applied to F will converge quadratically. This requires extra
function evaluations, including the second derivative of f .

7

12 Secant method (Atkinson §2.3). If you don’t have access to f ′(x) (e.g. because the way you evaluate
f(x) is to give x to some black-box software package), you can’t use Newton’s method. But you can use a
“Quasi-Newton” method that approximates the derivative f using a difference:

f ′(xk) ≈ f(xk)− f(xk−1)

xk − xk−1
= mk.

Instead of solving for the root of the linearization L(x), you solve for the root of the approximate linearization
(the ‘secant’ line)

S(x) = f(xk) +mk(x− xk).

Solve for the root of S(x) and set this equal to the next iterate

xk+1 = xk −
fk
mk

.

The error analysis is somewhat involved and the analysis itself is not terribly educational (see Atkinson).
We simply present the result: If the initial condition is ‘close enough’ to a simple root of a ‘nice enough’
function f , then the method converges faster than linearly but slower than quadratically.

13 We now specialize to a specific kind of scalar nonlinear equation: Finding polynomial roots. The methods
described in Atkinson §2.9 are not widely used, and the widely-used method is not described in Atkinson
§2.9. The standard method nowadays (e.g. in Matlab’s polynomial root finder) is to find the eigenvalues of a
‘companion’ matrix. Recall that the eigenvalues of a matrix A are the roots of the characteristic polynomial
det[A− λI].

If we start with a polynomial
p(x) = a0 + a1x+ . . .+ anx

n

we can construct a ‘companion’ matrix whose characteristic polynomial is the proportional to the polynomial
p. Then we can find the eigenvalues of the companion matrix using methods discussed in APPM 5610
(Numerics II) and in APPM 5620: Numerical Linear Algebra.

First assume wlog that an 6= 0 and notice that the roots of p are the same as the roots of

p(x)/an = c0 + c1x+ . . .+ cn−1x
n−1 + xn.

Now construct the matrix 
0 1 0 · · ·

0 1 0 · · ·

· · · · · · 0 1
−c0 −c1 · · · −cn−2 −cn−1

 .
Notice that if α is a root, then the vector

(1, α, α2, · · · , αn−1)

is an eigenvector with eigenvalue α. To verify, plug the vector and value into the formula Ax = λx. The
first n− 2 equations all have the form αk = αk, while the last equation has the form

−c0 − c1α− · · · − cn−1αn−1 = αn.

You can alternatively expand the determinant of the companion matrix along the bottom row and find that
the characteristic polynomial is proportional to the original polynomial, so they have the same roots.

Of course you can also apply Newton’s method if you prefer. The above analysis works if you have
coefficients for the polynomial with respect to the monomial basis. If you have coordinates of the polynomial
in an orthogonal basis like Chebyshev or Legendre, the above idea can be applied but using a ‘colleague’ or
‘comrade’ matrix. We might come back to that when we learn about orthogonal polynomials.

8

14 Although we won’t really cover methods for finding polynomial roots, we can cover sensitivity of the
solution to perturbations in the coefficients, just like for linear systems.

Lemma (S&B Theorem 6.9.8, section 5.8) Let ξ be a simple root of the polynomial p(x) and let g be a
polynomial of degree less than or equal to that of p. For sufficiently small values of ε, there is an analytic
function ξ(ε) that is a simple root of

pε(x) = p(x) + εg(x)

with ξ(0) = ξ. (No proof; requires analysis of eigenvalues of perturbed matrices; see e.g. S&B §5.8.)

The fact that ξ is an analytic function means that it has a convergent Taylor expansion, so for small-
enough ε

ξ(ε) ≈ ξ(0) + ξ′(0)ε

The derivative will tell us the sensitivity. Take the derivative of pε(ξ(ε)) = 0 wrt ε, then set ε = 0:

ξ′(0)p′(ξ(0)) + g(ξ(0)) = 0 ⇒ ξ′(0) = − g(ξ(0))

p′(ξ(0))
.

Example (Wilkinson, 1959): p(x) = Π20
i=1(x − i). Roots are all simple and well-separated. Look at the

sensitivity of the last root x = 20.

p′(x) =

20∑
j=1

Π20
i=1,i6=j(x− i).

Evaluate at x = 20; every term that has a factor of x− 20 will be zero, and there is only one term without
that factor, so

p′(20) = 19!

That’s great! The sensitivity is g(20)/p′(20) = g(20)/19! which should be small. Suppose you want to
perturb the constant coefficient which is a0 = 20!, and you set a0 ← (1 + ε)a0, i.e. g(x) = a0. So the root of
the perturbed polynomial, for small ε, is

ξ(ε) ≈ 20− ε20!

19!
= 20(1− ε).

Perhaps not as small as you thought. What if you perturb the second-to-last coefficient a19 ← a19(1 + ε)

a19 = −(1 + 2 + . . .+ 20) = −210, i.e. g(x) = a19x
19.

So the root of the perturbed polynomial, for small ε, is

ξ(ε) ≈ 20 + ε
210× 2019

19!
.

The sensitivity is ≈ 0.9× 1010.

What about the root x = 1? p′(1) = −19!. If you perturb a0 ← a0(1 + ε) you find

ξ(ε) ≈ 1 + 20ε

If you perturb a19 you find

ξ(ε) ≈ 1− ε210

19!
.

This behavior is typical: roots are more sensitive to changes in coefficients of higher order, and roots far
from the origin are more sensitive to perturbations.

9

Solving Nonlinear Systems of Equations
Atkinson §2.10, Stoer & Bulirsch Chapter 5

1 Fixed-point iteration!
xk+1 = g(xk).

Theory is very similar to 1D. One can consider the case of contractive maps (Lipschitz constant less than
1), but we will jump straight to the continuously-differentiable case, which often occurs in practice. In 1D
we saw that if g′(α) < 1 (continuously-differentiable) then there is an interval that maps to itself, and that
the iteration will converge to the fixed point for any ‘close enough’ initial condition. We used a 1D Mean
Value Theorem g(α)− g(x) = g′(ξ)(α− x) for some ξ between α and x. We need a generalization of this to
multiple dimensions.

Consider a scalar function of multiple variables gi(x). Along a line connecting two points α and x, this
is just a univariate function so the 1D MVT applies:

gi(α)− gi(x) = (∇gi)|Tξ (α− x)

where ξ is a point along the line connecting α and x. If we have a vector of functions g = {gi}ni=1, we can
just apply this repeatedly

g(α)− g(x) = G̃(α− x).

The catch is that G̃ is not the Jacobian matrix of g evaluated at some point. Instead, the ith row of G̃ is
the ith row of G (the Jacobian) evaluated at some point ξi.

(Brief review) g(x) is a vector of functions {gi(x)}ni=1. The gradient of a scalar function is a column
vector ∇gi = (∂x1gi, ∂x2gi, . . . , ∂xngi)

T . The Jacobian of g is a matrix whose rows are the transposes of the
gradients

G =


∇gT1
∇gT2

...
∇gTn

 .

Theorem If g is continuously-differentiable, and the ∞-norm of the Jacobian matrix G at the fixed point
is strictly less than 1, then there is an open ball (we need convexity) containing the fixed point such that all
iterations started within the ball converge to the fixed point.

(It’s convenient to consider the ‖ · ‖∞ norm, which is the max row sum, since each row of G̃ is a row of
the Jacobian.)

Proof: By assumption ‖G‖∞ < 1 at the fixed point; since G is continuous, there must be some non-empty
closed ball B centered on the fixed point where

max
x∈B
‖G‖∞ ≤ λ < 1.

Since we’re using the ∞ norm (max row sum), and since each row of G̃ is a row of G, we have

max
x∈B
‖G̃‖∞ ≤ max

x∈B
‖G‖∞

For any point x in this ball we have

‖α− xk+1‖∞ = ‖g(α)− g(xk)‖∞ = ‖G̃(α− xk)‖∞ ≤ ‖G̃‖∞‖α− xk‖∞ ≤ λ‖α− xk‖∞, 0 < λ < 1.

This implies convergence.

2 Newton’s method for f(x) = 0. For a nonlinear system just replace division by inversion

xk+1 = xk − F−1k fk

10

where Fk is the jacobian matrix of f at xk. Naturally you do this in a two-step process

First solve Fkδk = −fk, then set xk+1 = xk + δk.

First we will show that this converges, using the fixed-point theory.

g(x) = x+ δ(x)

G(x) = I + ∆(x)

where ∆(x) is the Jacobian matrix of δ. We find this by implicit differentiation

F(x)δ(x) = −f(x)

Hδ + F∆ = −F

where H is the Hessian (It’s a third-order tensor). Now plug in δ = −F−1f and solve for ∆

∆ = F−1
(
−F +HF−1f

)
Our fixed-point theory is based on the Jacobian of the iteration function evaluated at the fixed point, so we
want to evaluate ∆ at the solution, i.e. where f = 0, so

∆|the solution = −I

which implies
G = 0 at the solution.

This proves convergence (if the function is ‘nice enough’ and the initial condition is ‘close enough’), and
suggests faster-than-linear convergence. The proof assumes that F is invertible in a neighborhood of the
solution, which is just like assuming that the root is ‘simple’ in the 1D case.

3 Proof of quadratic convergence for Newton’s method for systems. Closely follows S&B §5.3. First note
that in the 1D case we have the standard result

f(x)− f(y)− f ′(x)(x− y) =
f ′′(ξ)

2
(x− y)2

that follows from the Taylor expansion of f about x. If f ′′ is nice enough then we’ll have

|f(x)− f(y)− f ′(x)(x− y)| ≤ c

2
|x− y|2

for all x and y in some set, and we can use this to establish quadratic convergence.
There is an n-dimensional version of the Taylor expansion, but it’s unwieldy and we don’t need its full

detail. Instead we just need an expression for

‖f(x)− f(y)− F(x− y)‖

and we want it to be bounded above by a constant times ‖x − y‖2. An appropriate expression is given by
the following

(S&B Lemma 5.3.1) If F (the Jacobian of f) exists for all x in a convex region C0 ⊂ Rn and if
a constant γ exists with

‖F(x)− F(y)‖ ≤ γ‖x− y‖

for all x,y ∈ C0, then for all x,y ∈ C0 we have

‖f(x)− f(y)− [F(y)](x− y)‖ ≤ γ

2
‖x− y‖2.

11

Proof: Consider ϕ(t) = f(y + t(x− y)) for t ∈ [0, 1], which has derivative

ϕ′(t) = [F(y + t(x− y))](x− y).

The quantity we care about can be written as

ϕ(1)− ϕ(0)− ϕ′(0) = f(x)− f(y)− [F(x)](x− y).

We can also write this as

ϕ(1)− ϕ(0)− ϕ′(0) =

∫ 1

0

(ϕ′(t)− ϕ′(0))dt.

We can write the integrand as follows

ϕ′(t)− ϕ′(0) = [F(y + t(x− y))− F(y)](x− y).

Now note that by the assumptions on the function f we have

‖ϕ′(t)− ϕ′(0)‖ = ‖[F(y + t(x− y))− F(y)](x− y)‖ ≤ γt‖x− y‖2.

We can use this to provide a bound on the expression of interest:

‖f(x)− f(y)− [F(x)](x− y)‖ ≤ γ‖x− y‖2
∫ 1

0

tdt =
γ

2
‖x− y‖2.

We’re now in a position to prove quadratic convergence. We’ve already proven convergence for a class of
functions, so let’s skip the convergence proof in S&B Theorem 5.3.2 and forge ahead on our own. First note
that

xk+1 = xk − F−1k fk ⇒ Fk(α− xk+1) = Fk(α− xk) + fk = Fk(α− xk) + fk − f(α).

So we can write
‖α− xk+1‖ = ‖ − F−1k (f(α)− fk − Fk(α− xk)) ‖

≤ ‖F−1k ‖‖f(α)− fk − Fk(α− xk)‖

We’re now in a position to use Lemma 5.3.1 to get

‖α− xk+1‖ ≤
γ

2
‖F−1k ‖‖α− xk‖

2.

In summary, as long as F is Lipschitz continuous in the sense of 5.3.1 and ‖F−1‖ is not infinity at the root
(i.e. it’s a simple root), then we have quadratic convergence.

4 Unconstrained optimization (Atkinson §2.12?). This is a large topic and we only touch on it very briefly.
Consider trying to minimize the function ψ(x) ≥ 0 over x ∈ Rn. If the function ψ is continuously differen-
tiable then minima must occur at critical points defined by ∇ψ = 0. If we’re trying to find a value of x where
∇ψ = 0 then we’re solving a nonlinear system of n× n equations of the form f(x) = 0 where f(x) = ∇ψ.
We can apply a fixed-point iteration or, if the Hessian matrix of ψ is available we can use Newton’s method.

The following is basically just a quick review of topics from multivariate calculus. If we can find a critical
point it might not be a local minimum; it could be, e.g., a saddle point or a maximum. If ψ is twice
differentiable, then you can check if your critical point is a minimum by evaluating the Hessian (the matrix
of second partial derivatives) at the critical point. The critical point is a minimum when the Hessian is
positive definite or semi-definite.

12

