Newton's method for 2-point ODE BVP

Consider the IV problem

\[y''(x,s) = f(x,y(x,s),y'(x,s)) \quad \text{; } \quad y(a,s) = \alpha \quad \text{; } \quad y'(a,s) = \beta \]

(Emphasize in notation the s-dependence.)

To apply Newton, we need to calculate \(\frac{dy}{ds} \bigr|_{x=a} \).

Idea 1: Introduce \(z(x,s) = \frac{dy(x,s)}{ds} \). This \(\beta \) is then \(z(b,s) \).

2. By differentiating the ODE wrt. \(s \), get an ODE for \(z(x,s) \). Solve that IVP to obtain \(z(b,s) \).

Carryout:

Original ODE:

\[y''(x,s) = f(x,y(x,s),y'(x,s)) \]

Its s-derivative:

\[\frac{d}{ds} [y'(x,s)] = \frac{\partial f}{\partial y} \frac{dy}{ds} + \frac{\partial f}{\partial y'} \frac{dy'}{ds} \]

So ODE for \(z(x,s) \):

\[z''(x,s) = f_y \cdot z + f_{y'} \cdot z' \]

Its ICs:

\[z(a,s) = \left. \frac{dy}{ds} \right|_{x=a} = 0 \]

\[z'(a,s) = \left. \frac{d}{dx} \left[\frac{\partial}{\partial s} y(x,s) \right] \right|_{x=a} = \left. \frac{\partial}{\partial s} \left[\frac{\partial}{\partial x} y(x,s) \right] \right|_{x=a} = \frac{\partial}{\partial s} \left[\frac{\partial}{\partial x} y(x,s) \right] \right|_{x=a} = 1 \]

Procedure:

Let \(S_0 \) be an initial guess; for ex. \(S_0 = \frac{\beta - \alpha}{b-a} \).

Then iterate

\[S_{n+1} = S_n + \frac{\beta - y(b,S_n)}{z(b,S_n)} \]

Note: Solve together for \(y \) and \(z \) across \([a,b]\) as one coupled system of 4 first-order ODEs.