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ABSTRACT

Q1 The numerical study of axisymmetric force-free magnetic fields in the unbounded space outside a unit sphere,
presented in the first paper of this series, is extended to treat twisted fields in static equilibrium with plasma pressure
andweight in a polytropic atmosphere. The study considers dipolar magnetic fields all sharing the same boundary flux
distribution on the unit sphere and characterized with (1) a nonlinear distribution of its azimuthal field component
expressed as a power of the poloidal flux function and (2) a plasma distribution varying linearly with the poloidal flux
function. Nonlinear boundary value problems are solved numerically to generate a continuum of solutions with two
parameters to control the total azimuthal flux and the strength of field-plasma interaction. The study includes the
force-free fields of the first paper as a special case. Models with polytropic indices � ¼ 7/6, 14/11 are treated to show
the interplay between the degree of magnetic twist and hydrostatic stratification in determining atmospheric struc-
tures, with particular interests in magnetic flux ropes and their storage of magnetic energy and azimuthal flux at levels
above those bounds applicable to force-free fields. The concluding discussion relates physical insights from the study
to the solar corona and the energetics of coronal mass ejections and flares.

Subject headinggs: MHD — Sun: corona — Sun: coronal mass ejections (CMEs) — Sun: prominences

1. INTRODUCTION

In the first paper of this series, we treated the self-confinement
of nonlinear force-free magnetic fields in axisymmetry outside
a unit sphere representing a theoretical star (Flyer et al. 2004,
hereafter Paper I4). Of special interest to the study was the con-
finement of an azimuthal rope of twisted field by an external field
anchored rigidly to the sphere under the flux-freezing condition
of perfect electrical conductivity. A numerical nonlinear ellip-
tic solver, especially developed for the study, produced several
parametric families of force-free fields that demonstrated two
main results. First, the flux rope can store magnetic energy in mod-
erate excess, of the order of a few percent, of the threshold set
by Aly (1984, 1991) for a spontaneous opening up of the global
field, corroborating recent results (Hu et al. 2003; Wolfson1993,
2003). Secondly, subject to a fixed amount of the poloidal flux
anchored to the unit sphere, the confinement of the flux rope
against its outward expansion sets a limit to the total azimuthal
flux in the theoretical atmosphere. These properties are relevant
to mechanisms of solar coronal mass ejections (CMEs) attrib-
uted to the failure of the confinement of a magnetic flux rope in
the solar corona (see, e.g., Amari et al. 2003a, 2003b; Fan &
Gibson 2003, 2004; Fan & Low 2003). Reviews of CME phe-
nomenology can be found in Aschwanden (2004), Hundhausen
(1999), Howard et al. (1985, 1997), Klimchuk (2001), Low
(2001), and Zhang & Low (2005).

These results on force-free magnetic fields are expected to be
modified for fields stressed by the pressure and weight of the

atmospheric plasma, as pointed out in Paper I. Plasma pressure
and weight play opposite roles in the mechanics of flux-rope
confinement. Plasma weight can serve as an anchor to hold a flux
rope to the base of the atmosphere. In contrast, pressure is not a
confinement agent because it enhances the magnetic pressure to
drive an outward expansion. A low-temperature plasma intro-
duces weight with a small or negligible pressure effect and, by
this consideration, may be an effective way of holding in equi-
librium magnetic flux systems not directly anchored to the at-
mospheric base. This is probably the magnetic role of quiescent
prominences in coronal structures (Tandberg-Hanssen 1995; Low
& Hundhausen 1995; Low 1996, 2001; Fong et al. 2002; Low
et al. 2003; Lionello et al. 2002; Zhang & Low 2004; Low &
Zhang 2004; Hu & Wang 2005). Introducing a hot plasma into
the equilibrium field presents an interesting but more complicated
question of how gravity and pressure may play opposing roles
to aid the confinement of a flux rope. This is the question we ad-
dress in the present paper, by extending the force-free field model
of Paper I to include these plasma effects. The extended model
is treated with a modified version of our numerical elliptic solver
used for Paper I.

It is an idealization to take the atmosphere of a star to be static.
An atmosphere with solar coronal temperatures will always domi-
nate over the field in its outer part to expand into a stellar wind
(Parker 1963). We are suppressing the solar wind phenomenon
in our model in order to address questions relating to conditions of
static equilibrium at the base of the corona. Despite their relative
physical simplicity, magnetic fields in static equilibrium present
formidable nonlinearmathematical problems. The force-free states
of a twisted magnetic field in the unbounded, axisymmetric atmo-
sphere had defied systematic mathematical study until Paper I.
The investigation reported here takes this development a step
further to establish a number of elementary results regarding the
influence of field-plasma interaction on the storage of energy
and azimuthal flux in twisted fields.

In xx 2, 3, and 4 we derive the governing equations, introduce
the polytropic static atmosphere, and present our numerical study
of equilibrium magnetic fields. Our study concentrates on basic
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physical properties in a highly idealized system. With these
properties understood, we relate them to real solar coronal struc-
tures and phenomenology in a concluding discussion in x 5.

2. THE MAGNETOSTATIC EQUATIONS

Consider the axisymmetric, solenoidal magnetic field

B ¼ 1

r sin �

1

r

@A

@�
r̂� @A

@r
âþ Qĵ

� �
; ð1Þ

in terms of its flux function A and the function Q describing the
azimuthal field component. Substituting into the equation for
force balance

1

4�
:< Bð Þ < B�:p� �GM�

r 2
r̂ ¼ 0; ð2Þ

we obtain the two governing equations
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with � ¼ cos �, where we have imposed the conditionQ (r; � ) ¼
Q(A) to satisfy force balance in the’-direction (Hundhausen et al.
1981; Uchida & Low 1981).

We adopt the power-law form of Q introduced in Paper I:

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�

1þ n

r
A 1þnð Þ=2; ð5Þ

where n and � are constants to be freely prescribed. An equation
of state or steady energy transport is required to close the sys-
tem of equations for the unknowns p, �, and A. We adopt the
polytropic model as a convenient closure and concentrate on
magnetic structures.

2.1. The Polytropic Atmosphere

Since the Lorentz force acts perpendicular to B, the static
atmosphere described by equation (2) must support its weight
along each field line by the pressure gradient force. The global
atmosphere is thus composed of hydrostatic elements in indi-
vidual magnetic flux tubes stacked, side by side, in equilibrium
by the Lorentz force. Equation (4) is the hydrostatic relationship
of each atmospheric element along a magnetic line of force of
constant A. Let us introduce the polytropic equation of state with
polytropic index �:

p ¼ c2(A)��; ð6Þ

where c(A) is just a constant on each line of force parameteriz-
ing the amount of mass loaded on the field. Equation (4) can then
be integrated once with respect to r to give

p ¼ P(A)
r0

r1(A)
þ r0

r

� �Nþ1

;

� ¼ P(A)(N þ 1)
GM�
r0

� ��1
r0

r1(A)
þ r0

r

� �N
;

P(A) ¼ c2(A)
1

c2(A)(1þ N )

GM�
r0

� �Nþ1

; ð7Þ

where r0 is a normalization length scale and r1(A) is an integra-
tion constant allowed to vary from one field line to another. We
have replaced the symbol for the polytropic index with � ¼ 1þ
1/N for convenience of notation and refer to N as the polytropic
power index. The problem reduces to the one for a spherically
symmetric, polytropic, hydrostatic atmosphere if we take c and
r1 independent of A (Parker 1963).
On each line of force of constant A, there are two free pa-

rameters defining the polytropic atmospheric element on it: P(A)
fixing the amount of mass in the element, and r1(A) taken to
define the temperature T0 at some reference sphere r ¼ r0 by
the ideal gas law,

T0 ¼
GM�
r0

1

(N þ 1)R0

r0

r1
þ 1

� �
; ð8Þ

where R0 is the gas constant. We may identify r0 to be the
radius of a theoretical star. Negative values of r1 are admitted
for base temperatures T0 lower than the critical value of Tcrit ¼
(GM�/r0)½1/(N þ 1)R0�. In such cases, provided jr1j> r0, the
atmosphere extends to a finite radial distance r ¼ jr1j where p
and � vanish, compatible with vacuum located in r > jr1j. This
outer boundary of the atmosphere is, in general, not spherical
in shape through the dependence of r1 on A. An analytical so-
lution describing such an atmosphere abutting vacuum at its
top, with its magnetic field extending into vacuum, is given in
the Appendix.
Positive values of r1 are obtained for hot atmospheric elements

with T0 > Tcrit that extend radially as far out as the top of the line
of force of a constant A without encountering zeros in p and �.
Moreover, if a line of force should extend to great radial dis-
tances, p and � would be asymptotically uniform in r3 r1. This
property is related to the inverse-square falloff of Newtonian
gravity in which a fixed amount of mass requires a milder
pressure gradient to support its weight the farther out radially the
mass is located. For near-vacuum conditions far from a theo-
retical star, such a uniform far pressure cannot be balanced in the
far reaches. The static mathematical solution is then physically
not admissible and must be replaced with a solution describing a
stellar wind of the Parker (1963) theory.
The problems of hydromagnetic stellar winds are notoriously

intractable (Heinemann & Olbert 1978; Sakurai 1985). The free
boundary problems of static atmospheres with T0 < Tcrit, illus-
trated in the Appendix, are also generally intractable. The mar-
ginal case of jr1j! 1 contains an unbounded static atmosphere
with vanishing pressure and density at infinity. This special case
is the one we select for study in this paper (Low & Smith 1993;
Wolfson & Dlamini 1997). With r1 ! 1, we have

p ¼ P(A)
r0

r

� �Nþ1

; ð9Þ

� ¼ P(A)(N þ 1)
GM�
r0

� ��1
r0

r

� �N

; ð10Þ

and the field equation (3) poses the elliptic equation for A:

@ 2A

@r 2
þ 1� �2

r 2
@ 2A

@�2
þ �An þ 1� �2ð Þ

rN�1

dP

dA
¼ 0; ð11Þ

subject to suitable boundary conditions. Through the solution A,
equations (1) and (7) translate B, p, and � into explicit functions
of space in a state of equilibrium.
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2.2. A Simple Model

The dipole potential field in the space external to a unit sphere
of radius r0, defined as

B ¼ B0

2r 30 cos �

r 3
r̂þ r 30 sin �

r 3
â

� �
; ð12Þ

is generated by the flux function

Apotential ¼ B0r
3
0

sin2�

r
: ð13Þ

We are interested in nonpotential equilibrium states for a mag-
netic field in r > r0 having the same boundary flux as this po-
tential field at r ¼ r0. This field satisfies the boundary conditions

r ¼ 1; A ¼ sin2�;

r ! 1; 9Aj j ! 0;

� ¼ 0; �; A ¼ 0: ð14Þ

Here and elsewhere, unless otherwise stated, we carry out com-
putations in physical units such that B0 ¼ 1 and r0 ¼ 1.

Among the rich variety of models associated with the different
forms of P(A) in equation (9), we select the linear distribution
P ¼ (1=8�) �0 þ �1Að Þ, where �0 and �1 are constants, for nu-
merical investigation:

p ¼ 1

8�

�0 þ 2�1A

rNþ1
; ð15Þ

� ¼ GM�ð Þ�1 N þ 1

8�

�0 þ 2�1A

rN
: ð16Þ

This simple model is useful for a first systematic study of non-
linear magnetostatic equilibria of this type. The field is governed
by

@ 2A

@r 2
þ 1� � 2

r 2
@ 2A

@� 2
þ �An þ �1

1� �2ð Þ
rN�1

¼ 0; ð17Þ

to be solved for A in r > 1 subject to the boundary conditions
given by equation (14).

The current density by Ampere’s law is proportional to

: < B ¼ 1

r sin �

1

r

@Q
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â� @ 2A

@r 2
þ 1� �2

r 2
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@�2

� �
ĵ

� �
:

ð18Þ

Field equation (17) therefore describes the distribution of the equi-
librium azimuthal current density as the sum of two components.
One component is due to a field-aligned current density, param-
eterized by the constant �, that produces noLorentz force but gives
the field a twisted topology. The other component, parameterized
by the constant �1, produces a Lorentz force kept in balance with
the hydrostatic forces of the plasma. If �1 ¼ 0, we regain the
force-free fields of Paper I. In x 2.3 we examine the � ¼ 0,
�1 6¼ 0 equilibrium fields that are purely poloidal with B’ ¼ 0.

2.3. The � ¼ 0 Untwisted Maggnetic Fields

Set � ¼ 0 in field equation (17) to obtain

@ 2A

@r 2
þ 1� �2

r 2
@ 2A

@�2
þ �1 1� �2ð Þ

rN�1
¼ 0; ð19Þ

with the solution

A�¼0 ¼
1

r
þ �1

(N � 1)(N � 4)

1

r
� 1

rN�3

� �� �
sin2�; ð20Þ

satisfying the boundary conditions given by equation (14)
(Hundhausen et al. 1981; Uchida & Low 1981; Low & Smith
1993). Our numerical study is centered on sequences of solu-
tions to the nonlinear field equation (17), subject to the bound-
ary conditions given by equation (14), for an increasing � but a
fixed �1, starting with a � ¼ 0 solution given by equation (20).
This solution assumes (N �1)(N � 4) 6¼ 0, which is sufficient
for our study. If N ¼ 1 or 4, separate calculations are needed
to obtain the proper solutions. We limit our attention to N > 3,
which ensures that all � ¼ 0 magnetic fields have a finite total
magnetic energy in r > 1.

The physical properties are distinct in the two regimes 3<
N < 4 and N > 4. By equation (8), the base temperature T0 is
inversely proportional to N þ 1. At lower base temperatures
with N > 4, the pressure extending to great radial distances is
negligible so that the far field is approximately potential. At
higher base temperatures with 3< N < 4, the far pressure is
significant and it stretches out the far field into a nonpotential
state. We select two representative polytropes from these two
regimes for the study: N ¼ 11/3 and 6. A selection of the � ¼ 0
equilibrium fields from these two regimes is displayed in Fig-
ures 1 and 2 to show their parametric dependence on �1.

Consider first the N ¼ 6 solutions for positive �1. The poloidal
field is a dipole potential field for �1 ¼ 0. This field is increasingly
stretched outward, as �1 increases from 0, to trap a plasma en-
hancement, given by equation (15), in the equatorial region. At
a critical value given by

�1;crit ¼ N � 1; ð21Þ

the field changes parametrically from a purely anchored field
in r > 1 to an anchored field trapping a bubble of completely
closed field lines centered around a local maximum of A. In
the case of N ¼ 6, �1;crit ¼ 5, Figures 1b and 2b show the field
and plasma configuration for �1 ¼ 5 where an O-type magnetic
neutral point has appeared parametrically at r ¼ 1, � ¼ �/2.
For �1 > 5, this O-type neutral point moves parametrically into
r > 1 around which closed poloidal magnetic field lines circu-
late such as seen in the �1 ¼ 10 solution shown in Figures 1c
and 2c. The magnetic bubble is held in equilibrium in part by
the weight of the plasma enhancement contained in it.

Since this poloidal field has an O-type magnetic neutral point
where there is plasma enhancement, the ratio of the plasma to
magnetic pressure is naturally extremely large near this neutral
point. An unorthodox ratio �G defined by Hundhausen et al.
(1981) may be used to better characterize the plasma-field inter-
action on a global scale, namely, the ratio of the plasma pres-
sure along the equator to the magnetic pressure along the polar
axis at the same radial distance. As these authors explain, this
parameter indicates the degree of confinement of the equato-
rial plasma by the high-latitude fields (�G < 1) or the poleward
compression of the latter by the equatorial plasma (�G > 1). For
the solution in Figures 1b and 2b, �G is radially monotonically
decreasing from a peak value of 2.5 at r ¼ 1 to less than unity
at about r ¼ 1:5. If we set �1 ¼ 1:0, �G decreases from 0.5 at
r ¼ 1 to about 0.2 at r ¼ 1:5.

For negative values of �1, the field in the N > 4 polytropic
atmosphere is compressed toward the boundary r ¼ 1; see the
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example in Figures 1a and 2a for �1 ¼ �5. For those solutions
meeting the condition

�1j j< (N �1)(N � 4)j j; ð22Þ

A is positive definite in r > 1. Then, for a fixed value of �0 > 0
sufficiently large to ensure positive definite p and �, a negative
�1 describes a plasma depletion centered around the equator at
the base of the atmosphere. The radially inward compression of
the equilibrium field at the base of the atmosphere produces a
radially outward Lorentz force that partially supports the weight
of the undepleted upper atmosphere. For negative values of �1

violating the condition given by equation (22), a line represent-
ing A ¼ 0 would appear at some large r, marking a flux surface
separating the main atmosphere from a second atmosphere in
which A < 0, located above the line A ¼ 0. A newmagnetic bub-
ble appears in this second atmosphere trapping a density enhance-
ment relative to the background atmosphere. We have no interest
in this regime of the �1 parametric space and have omitted pre-
senting an example in Figure 1.
The global pressure ratio �G for the solution in Figures 1a and

2a starts from a small value at r ¼ 1, depending on the value of
the free amplitude �0 adopted for the background atmosphere.
It then increases with r to a maximum located at a moderate ra-
dial distance before it decreases to 0 at large r. For this solution,

fig. 1afig. 1bfig. 1cfig. 1d
Fig. 1.—Poloidal magnetic lines of force (solid lines) of constant A on the r-� plane in r > 1, superimposed with the lines of force of the potential dipole field (dotted

lines) sharing the same normal flux distribution at r ¼ 1. Both sets of lines carry the same values of A at a constant interval so that they share the same footpoints on
r ¼ 1. (a) N ¼ 6, �1 ¼ �5; (b) N ¼ 6, �1 ¼ 5; (c) N ¼ 6, �1 ¼ 10; (d) N ¼ 11/3, �1 ¼ 3.

Fig. 1a Fig. 1b

Fig. 1c Fig. 1d
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�G is typically larger than unity in r < 2 showing strong plasma-
field interaction in this near region. A smaller amplitude of the
negative �1 would show a similar radial distribution of �G with
values less than unity, corresponding to a stronger dominance of
the magnetic field over the plasma.

Figures 1d and 2d show the equilibrium state with �1 ¼ 3 in
an N ¼ 11/3 polytropic atmosphere. This example in the regime
of 3< N < 4 has an atmospheric temperature large enough so
that its equilibrium pressure is significant at large r to stretch the
far field into a slow decline with distance. A potential dipole field
falls as 1/r3 for large r. This nonpotential equilibrium field falls
more slowly as 1/r8/3 for the N ¼ 11/3 polytropic atmosphere.
An examination of the parameter �G for this solution shows that
it monotonically decreases radially from a value of 1.5 at r ¼ 1

to an asymptotic constant value less than unity. This indicates
a significant field-plasma interaction for all large distances. The
value of �G falls below unity beyond r ¼ 2:5.

For �1 > �1;crit ¼ 8/3, amagnetic bubble formswith enhanced
plasma trapped within. This bubble is too small to be seen in
Figure 1d at the contour levels used to display the field. For even
larger values of �1, which we omit to present, the bubble has a
more elongated shape than those found in the N ¼ 6 polytropic
atmosphere because its pressure is significant at all radial dis-
tances. Negative values of �1 for the polytropic atmospheres
with 3< N < 4 all involve spherical flux surfaces of A ¼ 0
separating a second far atmosphere above it. None of these
models are of interest to our numerical study. In the remaining
subsections and in the next section we examine how these N ¼ 6

fig. 2afig. 2bfig. 2cfig. 2d
Fig. 2.—Contours of constant density on the r-� plane in r > 1 associated with the respective fields displayed in the same panel order in Fig. 1. (a) N ¼ 6, �1 ¼ �5;

(b) N ¼ 6, �1 ¼ 5; (c) N ¼ 6, �1 ¼ 10; (d) N ¼ 11/3, �1 ¼ 3.

Fig. 2a Fig. 2b

Fig. 2c Fig. 2d
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and 11/3 poloidal fields are modified when we introduce twist
into the equilibrium field by setting � 6¼ 0 and B’ 6¼ 0.

We are interested in the magnetic energy of the � ¼ 0 mag-
netic field:

E0 ¼
Z
r>1

1

8�
B2
�¼0 dV

¼ 1

3
1þ � 2

1

(2N � 5) N � 1ð Þ2

" #
: ð23Þ

If �1 ¼ 0, B�¼0 is the potential dipole field with E0 ¼ Epot ¼ 1
3
,

the lowest energy for a magnetic field with the prescribed
boundary flux at r ¼ 1. The energy E0 is a monotonically in-
creasing function of � 2

1 , independent of the sign of �1 despite
the difference in topology between fields of �1 equal but op-
posite in sign. Paper I shows that the energy E of a force-free
field in r > 1 is bounded above by a quantity defined entirely
by the boundary flux at r ¼ 1. In contrast, the energy E0 in the
presence of field-plasma interaction increases monotonically
with increasing �1. Given a sufficiently massive atmosphere, its
weight can serve to anchor a magnetic field of any magnitude
against its natural tendency to expand out of the atmosphere.

3. PLASMA WEIGHT ON TWISTED MAGNETIC FIELDS

We now turn to the general solutions for the boundary value
problems posed by equations (17) and (14). These equations de-
scribe a polytropic atmosphere of power index N containing a
twisted field characterized with a twist index n and a fixed dipolar
flux distribution at r ¼ 1. We use a numerical solver, described
below, to construct families of solutions spanned by the constants
� and �1 parameterizing the degrees of magnetic twist and field-
plasma interaction. We do not know if the solutions constructed
by our solver are, indeed, all the possible solutions to each of the
boundary value problems treated. It was pointed out in Paper I
that for the force-free fields, i.e., with �1 ¼ 0, there are upper
bounds on � above which no solutions to the boundary value
problems exist. If �1 6¼ 0, existence of a solution is similarly
subject to certain upper bounds on �, not trivial to derive. For
our purpose of discovering basic structural properties as illus-
trated by explicit solutions, it suffices that our solver is capable
of obtaining a diverse continuum of solutions spanned by a finite
range of � for each prescribed �1.

Among the numerical solutions we have constructed, the
models with polytropic indices N ¼ 6 and 11/3 are qualitatively
representative of the structural properties we have found. They
represent solutions in the regimes 3< N < 4 and N > 4. In this
section we describe some particular solutions for these models
as a first step in examining these explicit solutions, beginning
with a brief summary of the numerical methods we use and the
general physical properties we may anticipate. In the next sec-
tion we examine a survey of physical properties exhibited collec-
tively by an entire continuum of solutions.

3.1. Numerical Mathematics

The numerical elliptic solver, described in the Appendix of
Paper I, has been modified to treat the new boundary value prob-
lems. We remind the reader that this solver uses (1) Newton’s
iteration for the treatment of nonlinearity (Fornberg 1988), (2) a
pseudospectral representation of the solution for high numeri-
cal accuracy (Fornberg 1996), (3) effective far-field asymptotic
boundary conditions, and (4) a pseudo–arc length continuation
method to ensure the proper continuation of the solution sequence

past turning points (for an overview of continuation methods see,
for example, Keller 1987; Allgower & Georg 1992). The compu-
tational domain is rendered finite by first limiting the unbounded
domain to 1< r < r1 for some sufficiently large outer radius r1
and then stretching that truncated domain with a transformation
s ¼ log r and using the redefined angular coordinate � ¼ �/2��.
We should point out that the source term in equation (17) asso-
ciated with a cross field current density may dominate in the far
regime for N < 4, requiring a modification of the far boundary
conditions in the original numerical code to account for it.
We pick a fixed value of �1 for an atmosphere with a fixed

polytropic power index N and a magnetic field of a fixed power-
law index n. Then we proceed to construct all the solutions for �
parametrically increasing from zero. The starting point of each
solution branch (i.e., sequence) is by definition the purely poloidal
field given by equation (20). We then march along the solution
branch, where an auxiliary pseudo–arc length parameter has been
introduced as the independent variable. The parameter � then be-
comes an unknown and is determined along with the solution A
by the Newton iterations. This methodology allows us to continue
smoothly through all turning points where otherwise the Jacobian
would be singular. Computation in each case ends when the solu-
tion branch indicates a convergence to a limit solution, a mathe-
matical feature already encountered in Paper I. The boundary
value problems for force-free fields in Paper I are, in fact, a special
case of our boundary value problems, namely, the case of �1 ¼ 0
for which the starting solution of each sequence is just the po-
tential dipole field.

3.2. Preliminary Physical Considerations

In the presence of field-plasma interaction, the energy Etotal

of the atmosphere has three parts, the magnetic energy, the poly-
tropic thermal energy, and the gravitational potential energy,
given below, respectively:

M �; �1ð Þ ¼
Z
r>1

B2

8�
dV ; ð24Þ

U �; �1ð Þ ¼
Z
r>1

Np dV ; ð25Þ

W �; �1ð Þ ¼ �
Z
r>1

�GM�

r
dV ; ð26Þ

where the thermal energy involves the polytropic index � ¼
1þ 1/N . A modified derivation of the hydromagnetic virial
theorem of Chandrasekhar (1961) for a static atmosphere gives

Etotal ¼M þ U þW

¼ 3� Nð ÞU þ 1

4

Z
r¼1

B2
r � B2

� � B2
’ � 8�p

� 	
sin � d�;

ð27Þ

from which we get an expression for the magnetic energy,

E ¼
Z
r>1

B2

8�
dV

¼�
Z
r>1

3p� �GM�
r

� �
dV

þ 1

4

Z
r¼1

B2
r � B2

� � B2
’ � 8�p

� 	
sin � d� ð28Þ

(see Low & Smith 1993).
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In Paper I we have used the notationEtotal for the total magnetic
energy of a force-free field in r > 1. Our notation is consistent
with that of Paper I. In the absence of field-plasma interaction,
we have a force-free field for which E � Etotal with p and � for-
mally set to zero:

E ¼ Etotal

¼ 1

4

Z
r¼1

B2
r � B2

� � B2
’

� 	
sin � d�: ð29Þ

In this case the magnetic energy E is bounded above by the in-
tegral limited to just the term B2

r at r ¼ 1 in the integrand. This
bound limits the amount of magnetic energy that can be stored
in the atmosphere irrespective of how twisted the force-free
field is. In the presence of field-plasma interaction, the magnetic
energy E, given by equation (28), contains the positive definite
term�Wassociated with the gravitational binding energy of the
atmosphere (Low 1999; Hu et al. 2003). So long as this term is
sufficiently large, E can be as large as the atmosphere is massive.
This is the basic effect of anchoring magnetic flux with mass in
the equilibrium atmosphere.

The total azimuthal flux in r > 1 is of interest:

F’ �; �1ð Þ ¼
Z
r>1

B’r dr d� ð30Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�

1þ n

r Z
r>1

A 1þnð Þ=2 dr
d�

sin �
: ð31Þ

The equilibrium fields we examine can all be characterized by
the manner in which a total azimuthal flux F’ is to be distributed
in r > 1, held in equilibrium by the tension force of a stretched
poloidal field anchored to r ¼ 1 and by the weight of the atmo-
spheric plasma. These two anchoring effects are countered by
the expansive tendency of the magnetic and plasma pressures.

The equilibrium magnetic energy E and the azimuthal flux F’
are not simply related. By its definition, E generally increases
with the physical insertion of more poloidal and azimuthal flux.
In our numerical solutions, the amount of poloidal flux anchored
to r ¼ 1 is fixed by a common dipolar flux at that boundary for
all solutions. We are then faced with the interesting question of
how much azimuthal flux such a poloidal field may confine and
how that confinement might be aided by the weight of a poly-
tropic atmosphere.

The relationship between E and F’ is made complicated by the
fact that for a fixed value ofF’ ,E depends on how compactly that
total azimuthal flux could be packed spatially. Thus, states of
large F’ are likely to have high magnetic energy, but the precise
level of that high energy is greatly dependent on the specific
spatial distribution of the azimuthal flux. Of particular interest to
us is the formation of an azimuthal flux rope in the axisymmetric
atmosphere as a means of compactly packing the azimuthal flux
F’ to the low atmosphere where the anchored poloidal field is
strong. With these physical anticipations, we now turn to par-
ticular solutions for their explicit properties.

3.3. The N ¼ 6, �1 > 0 Polytropic Atmospheres

Consider theN ¼ 6, n ¼ 5 sequence of solutions with �1 fixed
at the critical value �1;crit ¼ 5 shown in Figure 3. We recall that
the starting solution of the sequence is the poloidal field given by
equation (20) with these parametric values. This starting solu-
tion is shown in Figure 1b. The left and middle panels of Figure 3
are in the same formats used to represent force-free solution

sequences in Paper I. At fixed �1, the solution sequence is rep-
resented in the left panel of Figure 3 in terms of the magnetic
energy E as a multivalued function of the parameter �. This so-
lution curve curls into a limit point in the manner already seen in
the force-free field solution curves of Paper I.

The solution sequence may also be characterized by the total
azimuthal flux F’ in the atmosphere r > 1 as a function of �,
shown in the middle panel of Figure 3. While a set of multiple
solutions share common values of �, they have different F’.
Along the solution curve defined by the E(�) in the left panel, F’
increases monotonically to reach a maximum value of about 2
corresponding to the limit point of the E representation of the
solution curve.

For our purpose in this paper, we combine the two repre-
sentations of the solution curve to produce a third representation
shown in the right panel of Figure 3, displaying E as a function
of F’ along the solution curve. This is physically a more mean-
ingful representation, one that illustrates the variation of the
magnetic energy E with a monotonically increasing azimuthal
flux F’ .

The different representations of the solution curve identify two
special equilibrium states that capture the basic physics of field
confinement in the open atmosphere. The states of maximum
magnetic energy and maximum azimuthal flux are not the same.
In Figure 3, the maximum energy Emax � 1:52 occurs at a mod-
erate azimuthal flux of F’(Emax) � 1:4. Magnetic energy, as the
integral of magnetic pressure in the atmosphere, is large by virtue
of the compact packing of this moderate azimuthal flux into a
flux-rope structure near the base of the atmosphere. The max-
imum azimuthal flux F’; max � 2 occurs at the limit point where
E ¼ Elimit � 1:45, slightly lower than Emax. This larger flux is
more diffusely distributed than that in the state at Emax.

Figure 4 shows the equilibrium state located with an asterisk
on the solution curve of Figure 3. Consider the plot of constant
flux function A in the r-� plane. A significant B’ component
directs these lines of force out of that plane in three-dimensional
space. The set of constant-A lines completely closed in r > 1
describe, with B’ 6¼ 0, a rope of twisted flux running equato-
rially around the unit sphere. Superimposed on these lines are
the dashed lines displaying the contours of constant density,

Fig. 3.—Solution sequence for N ¼ 6, n ¼ 5, �1 ¼ 5 described in the text.
The blowup in the left panel shows the neighborhood of the E(�) limit point.
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decreasing as anN ¼ 6 inverse power of the radial distance (see
eq. [16]). The plasma, in its linear dependence on A, is diffusely
distributed such that its morphology does not give any hint of
the flux-rope topology of the magnetic field. A suitable, highly
nonlinear dependence of the plasma distribution on A is required
if, combined with its polytropic radial falloff with r, it is to show
a morphological correlation between plasma distribution and
magnetic field. We have chosen to avoid this complication in this
first numerical study.

The field and plasma configuration shown in Figure 4 is
characteristic of the solutions in the set shown in Figure 3. The
magnetic flux rope is trapped at the base of the atmosphere by
two agents: the overlying magnetic field anchored to r ¼ 1, as
well as the weight of the concentration of plasma in the equa-
torial region low in the atmosphere. A physical way of inter-
preting the density distribution in Figure 4 is not to look at it in
terms of their global contours of constant density but to follow
the fall of density with increasing r along individual field lines
of constant A. Along such a line, the Lorentz force has no com-
ponent and the observed fall of density is associated with a hy-
drostatic fall of the polytropic pressure to support the plasma
weight with its gradient force. This interpretation gives the phys-
ical idea of a flux rope trapping a heavy plasma in its lower part,
under gravitational stratification and frozen into the field under
high electrical conductivity.

It is instructive to compare the solution sequence in Figure 3
with the n ¼ 5 force-free field sequence of Paper I matching
the same boundary flux at r ¼ 1. The two sequences may be
regarded to be examples of how a certain amount of azimuthal
flux F’ can be trapped in equilibrium by the poloidal field. For
the n ¼ 5 force-free field sequence of Paper I, the maximum
magnetic energy Emax � 1:35 occurs at F’(Emax) � 1:1 and the
maximum azimuthal flux F’; max � 1:7 occurs at Elimit � 1:33.
The �1 ¼ 5 sequence of the same power index n ¼ 5 in Figure 3
shows these two corresponding states to be confining greater
azimuthal fluxes at greater energies, as the result of field-plasma
interaction. Moreover, the plasma weight permits the configu-

ration of the flux rope to form near r ¼ 1, whereas no such struc-
ture is found in the force-free field sequence of Paper I.
Figure 5 shows the � sequence of the �1 ¼ 5 magnetostatic

equilibria with a higher n ¼ 7 power law for the magnetic twist.
The E(�) solution curve shows a more dramatic spiral. The az-
imuthal flux F’ is again a monotonically increasing function
along the solution curve, reaching a maximum of about 2.3. The
curve E as a function of F’ shows a more pronounced oscillation
after E has descended from its maximum value. The two special
states are Emax � 1:8 occurring at F’(Emax) � 1:1 and F’;max �
2:3 occurring at Elimit � 1:61. Compare this �1 ¼ 5 sequence
with the n ¼ 7 force-free field sequence of Paper I with the same
boundary flux distribution at r ¼ 1. For these force-free fields,
Emax � 1:6 occurring at F’(Emax) � 1, and F’;max � 1:65 oc-
curring at Elimit � 1:45. Both magnetic energy and azimuthal
flux of each of these two special states are enhanced by field-
plasma interaction, relative to the force-free fields.
The higher index of n ¼ 7 implies a spatially more confined

azimuthal flux around and within the closed-loop fields near the
base where A takes a local maximum. With the linear depen-
dence of p and � on A in equation (15), no local maxima in p and
� are found because of their strong power-law decline with in-
creasing radial distance. As we have pointed out for the n ¼ 5
solutions, it is conceivable that a highly nonlinear, complex de-
pendence of p and � on A may produce local plasma maxima
locatedwithin themagnetic flux rope, a complicationwe postpone
to a future study. It should also be pointed out that despite the
simple stratification of the plasma, it produces the complexity
of a flux rope, not readily anticipated in such nonlinear solutions.
Figure 6 shows the field topologies for representative equi-

librium states identified as labeled along the solution curve in
Figure 5. Each of these contour plots of constant A contains
refined contour intervals, which are not necessarily equispaced,
in order to display the fine topological details of the field lines.
These field lines point out of the r-� plane in three-dimensional
space with a significant B’ . We have omitted the contours of
constant density in Figure 6 to avoid cluttering the figures. The
density is of the simple stratifications morphologically similar
to the n ¼ 5 states shown in Figure 4.
This set of field topologies should be compared to those of

n ¼ 7 force-free fields in Paper I. In the force-free field sequence,

Fig. 4.—Contours of constant A (solid lines) and of constant density (dashed
lines) for the solution located by an asterisk in the sequence shown in Fig. 3.
With B’ 6¼ 0, the completely closed contour of A represents an azimuthal rope
of twisted magnetic flux.

Fig. 5.—Solution sequence for N ¼ 6, n ¼ 7, �1 ¼ 5 described in the text.
The blowup in the left panel shows the neighborhood of the E(�) limit point.
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Fig. 6.—Contours of constant A for select solutions identified as labeled in the sequence shown in Fig. 5. Density contours are omitted to avoid cluttering the field-
line displays.



magnetic islands of closed lines parametrically form one at a
time and move out of the atmosphere. In each case, the flux-rope
field counts on the poloidal flux alone to confine the outward
expansive tendency of the trapped azimuthal flux F’. In the se-
quence in Figure 6, we find a similar parametric development of
magnetic islands, but more than one island can be found. The
double islands, each being a local maximum in A, trap a local
enhancement in mass, and its weight plays a role in anchoring
each flux rope in local equilibrium.

3.4. The N ¼ 6, �1 < 0 Polytropic Atmospheres

Negative values of �1 in equation (15) require a fixed �0

sufficiently large to ensure that p and � are positive definite.
These solutions describe an equatorial depletion of plasma near
the base of the atmosphere. Figure 7 displays the � sequence of
solutions for �1 ¼ �5 of the N ¼ 6 polytropic atmosphere, with
the twist power-law index n ¼ 5. Figure 8 displays representa-
tive configurations of constant-A field lines and constant density
from this family of solutions. Examine these field-plasma con-
figurations before looking at the solution curve. The equatorial
density depletion near the base is characterized with an X-point
(i.e., a saddle point). It is the compressed field in this region that
holds the region against self-collapse. As a function of � at fixed
radial distance, the depletion is strongest at the equator where
� ¼ � /2. Along the equatorial radial line � ¼ � /2, the density
increases from the base to a maximum value at the X-point
before decreasing with radial distance beyond. It will be inter-
esting but outside the scope of our study to consider the linear
stability of such a stratification. Although this stratification is
susceptible to the Raleigh-Taylor overturning in the absence of
magnetic fields, the curvature force of the magnetic field may
suppress this effect. A proper calculation is needed to draw any
definite conclusion about the stability of this stratification. A
balance between these two effects working in competition to
produce an overall stability has been demonstrated elsewhere
(Hundhausen & Low 1994).

One might have expected that the depletion of plasma at the
base of the atmosphere creates a circumstance that promotes
trapping azimuthal flux by the weight of the undepleted upper
atmosphere. This expectation is not met in the n ¼ 5 solutions in
Figures 7 and 8, none of which exhibit a flux-rope topology. This
is in spite of the strong B’ ¼ (1/r sin �)½2�/(nþ 1)�1/2A(nþ1)/2 at
the base near the equator as indicated by larger values of � for
which solutions exist as compared to the �1 > 1 case given in
Figure 3. The large field-aligned current associated with larger
values of � in the compressed field near r ¼ 1 is associated with
a highly sheared dipolar field rather than a flux-rope topology. In
the �1 > 0 solutions, the confinement of the azimuthal flux by
the poloidal flux is achieved by a distension of the poloidal flux
by the pressure force of the azimuthal flux. With an equatorial
depletion of plasma parameterized by a negative �1, the high
plasma pressures in the high latitudes compress the poloidal field
into the equatorial depletion region so that only a small amount
of poloidal flux penetrates into the far radial distances. This small
amount of poloidal flux in the greater space of the upper at-
mosphere cannot confine much azimuthal flux in that region.
The main part of the azimuthal flux is thus compacted into the
plasma-depleted region. Both poloidal and azimuthal fluxes in
this region are compressed to give the required Lorentz force
needed to support the weight of undepleted upper atmosphere.
This sets limits to the amount of azimuthal flux to be confined.
For an n ¼ 5 spread of the azimuthal flux over the poloidal flux
function A, these limits are severe. For N ¼ 6, n ¼ 5, �1 ¼ �5,

the solution sequence in Figure 7 is associated with Emax � 1:2
occurring at F’(Emax) � 1 and F’;max � 1:5 occurring at Elimit �
1:18, respectively lower than those corresponding energies and
azimuthal fluxes of the n ¼ 5 force-free fields of Paper I.
Increasing n from 5 to 7 and keeping �1 ¼ �5, the case shown

in Figures 9 and 10 allows for a more compact azimuthal flux
rope so that magnetic flux ropes are found in the equilibrium
solutions. In Figure 9, the n ¼ 7 sequence is characterized with
Emax � 1:41 occurring at F’(Emax) � 0:8 and F’; max � 1:9
occurring at Elimit � 1:29, showing a better capacity to trap en-
ergy and azimuthal flux than the n ¼ 5 sequence with the same
value for �1 ¼ �5. Compared with the n ¼ 7 force-free fields,
the equilibrium field in Figure 9 has a lower maximum energy
Emax than that of the force-free field but has a greater maximum
azimuthal flux F’;max. The former is expected from the com-
pression of the poloidal field by the high plasma pressures in the
high latitudes. The latter may be explained in the following way.
At n ¼ 7, flux ropes allow for a greater packing of the azimuthal
flux into the density-depleted region for effective confinement
by the weight of the undepleted upper atmosphere. It should be
pointed out that the flux ropes of �1 ¼ 5 contain plasma en-
hancements that resist compression. In contrast, the flux ropes of
�1 ¼ �5 are depleted of plasma and can be greatly compressed
as is evident in the field configurations shown in Figure 10.

3.5. The N ¼ 11/3, �1 > 0 Polytropic Atmospheres

The N ¼ 11/3 polytropic atmosphere has a pressure and
density that are significant at large radial distances. This pressure
counts on the poloidal field to confine it and therefore, by this
consideration alone, we expect less magnetic energy and azi-
muthal flux to be trapped in equilibrium in the N ¼ 11/3 atmo-
sphere compared to the N ¼ 6 atmosphere. On the other hand,
the added mass at large radial distance can contribute a relatively
weak weight to confine the azimuthal flux.
Figures 11 and 12 display the � sequence for N ¼ 11/3,

�1 ¼ 3, n ¼ 5 showing flux-rope formation aided by the weight
of plasma confined to the equatorial region. The maxima Emax �
1:085 and F’;max � 1:35 are respectively lower than the corre-
sponding maxima for the n ¼ 5 force-free fields. The poloidal

Fig. 7.—Solution sequence for N ¼ 6, n ¼ 5, �1 ¼ �5 described in the text.
The blowup in the left panel shows the neighborhood of the E(�) limit point.
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Fig. 8.—Contours of constant A (solid lines) and of constant density (dashed lines) for select solutions identified as labeled in the sequence shown in Fig. 7. The
plasma pressures in the high latitudes compress the poloidal flux into the equatorial density depletion region. No completely closed A lines are found in the entire
sequence of solutions.



flux is weakened by the strong plasma pressure of this atmo-
sphere and has less confining capability for the azimuthal flux.
Flux-rope configurations are found in this sequence such as
shown in Figure 12.

Figures 13 and 14 display the � sequence for N ¼ 11/3,
�1 ¼ 3, n ¼ 7 showing flux-rope formation aided by the weight
of plasma confined to the equatorial region. Flux ropes form
parametrically in the atmosphere along the solution curve as-
sociated with the weak maximum in A in r > 1. A different
presentation of the flux function A is given in Figure 14 to show
its variation in formwithout dwelling on their detailed structures.
Instead of plotting contours of constant A, we horizontally stack
together 30 profiles of A(r; � /2), the solution sequence of A
along the equator � ¼ � /2 as a function of s ¼ log r in the three-
dimensional plots shown. The different profiles are labeled by
the index k that represents the position on the solution curve with
k ¼ 1 being the index for the solution for the potential field and
monotonically increasing to k ¼ 30, the limiting solution in
Figure 13. Since F’ monotonically increases with k, the graphs
reveal the subtle structural changes in the equatorial profile of the
flux function as the azimuthal flux continually increases. Para-
metrically local maxima and inflection points form and disappear.
Better confinement is produced by the increased power-law index
of n ¼ 7 as compared to n ¼ 5. The maxima are Emax �1:22 and
F’;max � 1:96, respectively. The maximum Emax is lower than
that found for the n ¼ 7 force-free fields, but the maximum
F’;max is larger than that found for the n ¼ 7 force-free fields. In
the latter, plasma weight distributed over large radial distances
serves as an additional confinement of the azimuthal flux.

4. THE ENERGY AND FLUX OF THE n ¼ 7 TWISTED
MAGNETIC FIELDS

The particular solutions at fixed values of �1 in Figures 3–14
give us a first acquaintance with the properties of the n ¼ 5 and
7 equilibriumfields in theN ¼ 6 and 11/3 polytropic atmospheres.
This acquaintance prepares us for the discussion in this section
of two properties, magnetic energy storage and azimuthal flux
confinement. This discussion, centered on a collective consid-
eration of the n ¼ 7 equilibrium fields, takes us on the next step
to the physical discussion of the real solar corona in x 5.

4.1. The Aly Energy

The preoccupation with magnetic energy E rather than the
total energy Etotal of the atmosphere, which includes the plasma
energy, comes from two considerations. Under the condition of
high electrical conductivity in the solar corona, a magnetic field
would evolve while retaining its twist, measured in terms of the
relative magnetic helicity, brought along with the field during
its emergence into the atmosphere (Berger 1984; Taylor 1974;
Amari et al. 2000, 2003a, 2003b; Fan 2001; Fan &Gibson 2003,
2004; Gibson et al. 2004; Magara 2004; Manchester et al. 2004;
Lites et al. 1995; Lites & Low 1997; Low 1994, 1996, 2001;
Rust1994; Zhang & Low 2001, 2003, 2005). Suppose this field
evolves in the corona without being ejected out of the corona and
without more flux or helicity injected into it after its emergence.
During its quiescent phase of existence, the field would assume
equilibrium states conserving its relative magnetic helicity but
containing a variable amount of plasma trapped in the field. The
flows along field lines anchored to the atmosphere below the
corona can readily bring mass into or out of the corona to achieve
each state of field equilibrium, depending on the circumstance.
Hence, the energy contributed by the plasma is incidental whereas
the magnetic energy E has the physical significance as described
below in the context of solar CMEs.
The question we consider is whether the magnetic energy E

may exceed the Aly (1984, 1991) energy EAly defined to be the
least of the energies of all the opened fields sharing the same
boundary flux of a given closed equilibrium field. This question
remains of primary interest in the presence of field-plasma in-
teraction because the field is believed on observational grounds
to be the principal driver of an expulsion process producing a
CME. Therefore, the preeruption equilibrium field must satisfy
the necessary condition E >EAly in order to account for the con-
siderable magnetic energy retained in the field that is stretched
opened and left anchored to the base of the corona by the out-
going CME (Aly 1984, 1991; Low& Smith 1993;Wolfson 1993,
2003).
Equilibrium fields involving a field-plasma interaction may

have a negative total energy Etotal because the potential energy is
negative for Newtonian gravity (Low& Smith 1993; Wolfson &
Dlamini 1997; Fong et al. 2002; Low et al. 2003). The condition
Etotal < 0 merely indicates that the atmosphere does not have
sufficient energy to take all its trapped plasma out to infinity and
is stable against such an expulsion. Most quiescent coronal mag-
netic structures probably are stable in this manner. A state with
E >EAly but Etotal < 0 is of considerable interest. Its trapped
mass plays two roles, that of providing stability during the qui-
escent existence of the coronal structure and the other of trig-
gering a CME-like expulsion by mass draining off the magnetic
field in the course of evolution. As the mass drains off, the field
does not attain a potential state if it is endowed with a consid-
erable conserved field helicity. In other words, a certain amount
of magnetic energy is trapped with that conserved helicity (Low
1994, 1996, 2001; Zhang & Low 2005). If the trapped magnetic
energy is large enough for the field to open up spontaneously,
the field will then do so, expelling not all the original mass in
its equilibrium state but only the part of the mass that has not
drained to the atmosphere below.
The energetic requirement of a CME event is more demanding

than that expressed byE > EAly. Consider a commonCMEwith a
mass of 5 ;1015 gmoving at amedian speed of about 500 km s�1.
Its kinetic energy is about 6 ; 1030 ergs. The gravitational escape
speed in the low corona is of the order of 500 km s �1. This in-
dicates that to expel the CME out of the corona requires another

Fig. 9.—Solution sequence for N ¼ 6, n ¼ 7, �1 ¼ �5 described in the text.
The blowup in the left panel shows the neighborhood of the E(�) limit point.
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Fig. 10.—Field topologies of select solutions identified as labeled in the sequence shown in Fig. 9. The inserts show localized flux-rope structures.



6 ; 1030 ergs to account for the work done against gravity, lib-
erating a total energy of about 1:2 ; 1031 ergs. This is clearly a
lower limit since we have not accounted for the energy of the
magnetic flux carried out in the CME. Observation has shown
that the magnetic field opened by a CME typically will reclose
by magnetic reconnection that is interpreted to release the mag-
netic energy residing in the opened magnetic field. This energy
is of the order of a few times 1031 ergs in the form of an X-ray
flare, usually of the two-ribbon type (Hiei et al. 1993; Tripathi
et al. 2004; Amari et al. 2000, 2003a, 2003b). This phenome-
nology suggests a rule of thumb that a preeruption equilibrium

field needs to store energy to account for two comparable pieces:
the energy trapped in the stretched-open field left by the CME
and the kinetic and gravitational potential energy of the CME.
Given an equilibriummagnetic field with magnetic energy E,

we introduce the two energy differentials�E ¼ EAly � Epot and
�E ¼ E � EAly. There are many examples of a CME acceler-
ating to full motion in the upper corona 5–10minutes before the
associated soft X-ray flare commences, the latter interpreted to
be heating produced by magnetic reconnection to reclose a global
field opened by the CME (Hundhausen 1997, 1999). Such a CME
suggests an identification of�E and �E with the associated flare
and the CME, respectively. The tacit assumption is that the CME
in this case is a magnetic flux rope breaking confinement by its
expansive force, to leave behind the anchored part of the global
field in a fully opened state containing�E trapped in a current
sheet (see Fig. 3 in Low 2001). If we accept that a CME and its
associated flare separately liberate a comparable amount of energy
of the order of 1031 ergs, we may loosely set �E ¼ �E to pos-
tulate that a CME-producing magnetic field is required to have
an energy of the order of ECME � Epot þ 2�E. For the dipolar
fields satisfying the boundary conditions given by equation (14),
EAly � 1:66Epot and�E � :66Epot and the storing energy would
then be on the order of ECME � 2:32Epot.
A force-free field with its energy given by equation (29) is

absolutely bounded above by

Eabs ¼
1

4

Z
r¼1

B2
r sin � d�: ð32Þ

For the dipolar fields satisfying the boundary conditions given
by equation (14), Eabs ¼ 2Epot , showing that the postulated en-
ergy ECME cannot be met with a force-free field. Our purpose
in this section is to analyze how well the energy ECME may be
met with the n ¼ 7 equilibrium field. This analysis is physically
germane to the dynamics of the above class of CMEs. It is also
a demonstration, interesting in its own right, on the mechanics
of energy storage in the presence of field-plasma interaction. On
the other hand, we must not overlook certain important general

 �  �

Fig. 11.—Solution sequence for N ¼ 11/3, n ¼ 5, �1 ¼ 3 described in the
text. The blowup in the left panel shows the neighborhood of the E(�) limit
point.

Fig. 12.—Contours of constant A (solid lines) and of constant density
(dashed lines) for the state with E ¼ Emax in the solution sequence shown in
Fig. 11. The completely closed A line represents an azimuthal rope of twisted
magnetic flux.

Fig. 13.—Solution sequence for N ¼ 11/3, n ¼ 7, �1 ¼ 3 described in the
text. The blowup in the left panel shows the neighborhood of the E(�) limit
point.
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issues of energy storage, which are briefly discussed in the next
subsection. These issues motivate and set qualifications on the
results we have obtained.

4.2. General Issues of Magnetic Energy Storage

The magnetic energies of an idealized axisymmetric atmo-
sphere cannot be directly related to the observed energies of real
flares and CMEs. Let us consider this issue in the case of a force-
free magnetic field. Data interpretation suggests that the polar
magnetic fields of the Sun are about 10 G (Hundhausen 1977).
Set Br ¼ 10 G at r ¼ R�, � ¼ 0 to get B0 ¼ 5 G. Then,
Epot � 2:9 ; 1033 ergs, EAly � 4:7 ; 1033 ergs, and�E � 1:9 ;
1033 ergs. If we accept that for force-free fields �E can be as large
as only 8% of EAly, then �E � 3:8 ; 1032 ergs (Hu et al. 2003;
Li & Hu 2003; Wolfson 2003; Paper I). These numbers need
to be scaled down to account for the actual sizes of CMEs.
Although CMEs are large-scale eruptions, they are limited in
lateral extent. That is, they are not eruptions of the entire corona.
Typically, a fully developed CME viewed against the sky may
have latitudinal extent of as much as 90�, but they may originate
from low in the corona with an extent of only 20

�
(see a well-

observed event reported in Zhang et al. 2004). Taking the base
area of such a CME as a fraction of the entire solar surface, the
above energies are scaled by a factor of about 10�2 to give Epot �
2:9 ; 1031 ergs, EAly � 4:7 ; 1031 ergs, �E � 1:9 ; 1031 ergs,
and �E � 3:8 ;1030 ergs. The combined energy in excess ofEpot,
i.e., �E þ �E, is approximately 2:3 ; 1031 ergs.

To the extent that such a simple scaling of energies is indic-
ative of the physics, a force-free flux rope may store energy suf-
ficient to account for the expected total energy of a CME-flare
event. That the above �E is 5 times smaller than�E is troubling
since there are many CMEs that have very weak X-ray flare
associations (Hundhausen 1999, 1997; Burkepile et al. 2004).
Aweak flare is here taken in the sense that its total energy output
is of the order of 1029 ergs and is not detected above the back-
ground soft X-ray produced by the full-disk Sun. Such a flare
may be observed in soft X-ray solar images, but its total output
is in the noise of the full-disk output (Burkepile et al. 2004). Of
particular note is that this type of CME can be massive and
energetic. The event of 1989 March 18 observed by the Solar
Maximum Mission Coronagraph is a CME with a mass of 1016 g
moving at a speed of about 750 km s�1, carrying away kinetic

and potential energies summed up to about 4:5 ; 1031 ergs
(Hundhausen 1997). This CME is not associated with a flare
detectable against the full-disk soft X-ray output of GOES.

The observations of Zhang et al. (2001, 2004) provide some
new insight into the complexity of CME-flare relationship.
These authors found that some fast CMEs observed with SOHO
LASCO, having speeds in excess of 500 km s�1, are associated
with soft X-ray flares that commence at the CME onset with a
close correlation between the CME acceleration andX-ray output.
These authors also confirm the phenomenon of a slow CME that
has no detectable soft X-ray flare. Their fast-CME observations
suggest that for such events, magnetic reconnection of the field
opened by the CME takes place during the acceleration phase of
the CME so that our separation of the flare,�E, and CME, �E,
energies is not justified in this case. A part of �E liberated by
reconnection may thus contribute to driving the CME (Anzer &
Pneuman 1982; Chen & Shibata 2000; Low & Zhang 2002).
The magnitude of such a contribution is an unknown to be de-
termined by future observations and hydromagnetic calculations.
The nature of the actual reconnection is crucial to such a de-
termination. Magnetic twist or helicity can escape as Alfvén
waves along a fully opened magnetic field. But, if the stretched
field begins to reconnect before it becomes fully open, a part of
the magnetic twist may be trapped in the postflare relaxed mag-
netic field. This final nonpotential state implies that not all of
�E can be liberated, further complicating the physics of such a
process.

What is intriguing about the CME energy is that it is ordered
energy: kinetic energy andwork done against solar gravity, not to
mention the energy of the large-scale flux carried away within
the CME. In contrast, flare energy is liberated as dissipative heat,
which is the reason for identifying it with�E due to the presence
of a current sheet in the openedmagnetic field. CMEswith weak-
flare associations suggest the possibility of liberation of a large
amount of ordered energy with little reconnection-generated
heat, implying a preeruption magnetic field with �E being larger
than �E in our idealized model. Such a situation exists if there
is field-plasma interaction. With this motivation, we proceed to
examine our n ¼ 7 solutions for the circumstances under which
�E ¼ �E. That is, we formally accept the energy requirement
set by ECME � Epot þ 2�E and analyze how close Emay get to
ECME, keeping in mind that this is a basic physics demonstration

Fig. 14.—Three-dimensional display of 30 profiles of A(r; � ¼ �/2) along the solution sequence shown in Fig. 13, viewed from two perspectives. The axes are
labeled s ¼ log r, the radial distance expressed in terms of the exponentially stretched coordinate used in the computation, and k is simply an index to represent the
position on the solution curve with k ¼ 1 being the index for the solution for the potential field and monotonically increasing to k ¼ 30, the limiting solution in Fig. 13.
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in its own right. The results obtained should be held with the
qualifications described above.

4.3. The Magnetic Energy of the N ¼ 6, n ¼ 7 Twisted Fields

Recall that Emax is the maximum magnetic energy of the equi-
librium fields making up a � sequence of twisted fields for a fixed
�1. Figure 15 is a plot of Emax in a range of the fixed values of
�1 for the N ¼ 6 polytropic atmosphere, showing a minimum
centered at about �1 ¼ �3. Also plotted is the energy E0(�1) of
the � ¼ 0 poloidal equilibrium magnetic field, given by equa-
tion (23), from which each � sequence starts. The graph E0(�1)
is symmetrical about �1 ¼ 0 because it is independent of the
sign of �1. Indicated with the dotted lines are the energy levels
Epot , EAly, ECME, and Eabs. For each given value of �1, the dif-
ference Emax � E0 is the maximum energy added to the field
through its twist or through its field-aligned current density. In
other words,Emax(�1)� E0(�1) is themaximum energy by amax-
imization over all twisted fields with a fixed �1. The divergence
between the graphs of Emax and E0 for increasing �1 shows that
the atmosphere as a whole is field dominated for larger �1.

Of interest are the following observations: (1) E0 is a slowly
increasing function of j�1j; (2) Emax exceeds the thresholds EAly

and Eabs at �1 > 1:5 and �1 > 5, respectively; and (3) the mini-
mum of Emax shows that plasma depletion characterized with
�1 < 0 lowers this maximum energy stored in the twisted mag-
netic fields, so that none of the �1 < 0 states clear the thresh-
old of EAly. In particular, the �1 ¼ 0 force-free fields, with n ¼ 7
in this set, do not clear the threshold of EAly. In Paper I it was
shown that the n ¼ 9, more tightly wound-up, force-free fields
do clear the threshold of EAly. This suggests that for the n ¼ 9
twisted fields, the Emax(�1) graph would have properties similar
to that shown in Figure 15 but shifted higher in value with better
clearance of the thresholds of EAly and Eabs . It should be pointed
out that the threshold ECME is loosely defined to include equal
amounts of stored magnetic energies for the CME and its asso-
ciated flare. The two phenomena may have a variable ratio of
energies between them so that Eabs, of the same order of mag-
nitude as ECME, could also serve as a reasonable threshold of
energy requirement for a CME/flare event.

Bear in mind that the state of maximum energy does not co-
incide with a state of maximum azimuthal flux. We make this

point by plotting in Figure 15 F’(Emax), the total azimuthal flux
in the state when E ¼ Emax, and the maximum azimuthal flux
F’;max of each � sequence generated for a fixed �1. Both curves
are monotonically increasing in the range of �1 of the plot, from
negative to positive values. For each �1, E ¼ Emax occurs typ-
ically with a total azimuthal flux F’(Emax) of about half of
F’;max. The large magnetic energy Emax is due to a packing of
the flux F’(Emax) into a compact flux rope at the base of the
atmosphere. The atmosphere within the set of n ¼ 7 solutions
is capable of storing twice as much azimuthal flux, as indicated
by the ratio of F’;max to F’(Emax), but only in a more diffused
distribution at an energy lower than Emax.
Negative values of �1 correspond to density depletion in the

equatorial region of the lower part of the atmosphere. Both the
poloidal and azimuthal fluxes are compressed into this depletion
region in order to partially support the undepleted upper atmo-
sphere with their Lorentz force. As we saw from the particular
solutions in x 3, this limits the amount of azimuthal flux that can
be trapped in the atmosphere. Magnetic flux ropes do form in this
regime in �1 with the flux rope depleted of plasma as opposed to
an enhancement in the region of �1 > 0. These characteristic
features of equilibrium underly the shift of the minimum in the
graph of Emax(�1) to the left of �1 ¼ 0 in Figure 15, as well as the
monotonically lower values of F’(Emax) and F’ for increasingly
negative values of �1.

4.4. The Magnetic Energy of the N ¼ 11/3,
n ¼ 7 Twisted Fields

In theN ¼ 11/3 atmosphere, plasma pressure is significant for
all radial distances, distending the far field into a nonpotential
state. This large pressure head at far radial distances relies on
the poloidal field for confinement. The capability of the poloidal
field to also confine the azimuthal flux is correspondingly re-
duced. This property can be seen in the decrease of Emax and
F’;max to their respective minima as �1 increases from 0, shown
in Figure 16. The n ¼ 7 force-free field, with �1 ¼ 0, falls short
of the threshold EAly. With added polytropic pressure as �1
increases from zero, the amount of azimuthal flux is reduced to
enable the poloidal flux to accommodate the addition of plasma
pressure significant at all radial distances. The eventual mono-
tonic increase of Emax(�1) for �1 >1:5 is due to the formation of

Fig. 16.—Graphs of Emax , E0, F’; max, and F’(Emax) as a function of �1 for
N ¼ 11/3 and n ¼ 7. Energy is given in units of Epot , and flux is given in
dimensionless units with B0 ¼ r0 ¼ 1.

Fig. 15.—Graphs of Emax , E0, F’;max, and F’(Emax ) as a function of �1 for
N ¼ 6 and n ¼ 7. Energy is given in units of Epot , and flux is given in dimen-
sionless units with B0 ¼ r0 ¼ 1.
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a plasma-loaded flux rope at the base of the atmosphere to anchor
the global field. For �1 > 2, Emax is approximately shifted by a
positive constant from E0. That is, the twist in the field introduces
a fixed amount of magnetic energy, in contrast to the divergence
of Emax from E0 for the N ¼ 6 atmosphere shown in Figure 15.
With sufficient mass added to both atmospheres, Emax can exceed
all the thresholds marked by dotted lines in Figures 15 and 16.

4.5. Strict Bounds on the Total Azimuthal Flux

Paper I suggests that the axisymmetric, power-law force-free
fields may not have a total azimuthal flux in excess of some
bound fixed by the flux function A given at r ¼ 1. This is only a
conjecture because we have no rigorous assurance that our solver
is exhaustive in determining all the solutions to the boundary
value problems treated. We will take up this conjecture in a
follow-up study, but its relevance to the energy properties in
Figures 15 and 16 is worthy of a brief discussion.

Paper I pointed out that the force-free field in a finite domain
bounded by a rigid wall can have any prescribed total energy E
by taking the field to be sufficiently twisted. In contrast, the
energy of a force-free field in the unbounded domain r > 1 is, by
the Chandrasekhar virial theorem, strictly bounded by Eabs fixed
byA on r ¼ 1, completely independent of the twist of the field. In
unbounded space, a force-free field has to self-confine against
outward expansion. The physical expectation remains that the
more greatly twisted a field is, the more energy it should have,
suggesting that if a force-free field in r > 1 is too highly twisted,
by some quantitative measure of that twist, it will be too ener-
getic to be in equilibrium. Denied equilibrium, such a field must
expand to expel a part of the flux out to infinity, taking some twist
with it. This expulsion leaves behind a less twisted, anchored
part of the field to find equilibrium otherwise forbidden. This
interesting possibility has been suggested to be the basic dynam-
ical origin of CME eruptions (Low 1994, 1996, 2001; Zhang &
Low 2005).

The relative magnetic helicity defined in Berger & Field
(1984) is a quantitative measure of magnetic twist. For our pur-
pose, we use the alternative to measure twist by the amount
of total azimuthal flux F’ in r > 1 for a given poloidal flux
anchored to r ¼ 1. Figures 15 and 16 show that field-plasma
interaction is a means of trapping both magnetic energy and
azimuthal flux at levels beyond those attainable in pure force-
free fields. The amount of plasma in the atmosphere can be var-
iable, being an incidental consequence of the exchange of mass
between the solar corona and the high-density atmosphere below.
On the other hand, the amount of azimuthal flux that has entered
the corona is not easy to destroy, even in the presence of magnetic
reconnection, because of the high electrical conductivity of coro-
nal plasma (Berger 1984). Thus, the drainage of a plasma, trap-
ping an excessive amount of azimuthal flux in the corona, back
to the dense atmosphere below would leave behind this trapped
azimuthal flux. The stage is then set for the field-dominated
corona to expand in a CME-like expulsion to rid the field of its
excessive azimuthal flux.

The nonlinear equilibrium equations are formidable even
under the simplifying idealization of axisymmetry (Courant &
Hilbert 1963). Our numerical solutions serve to illustrate basic
hydromagnetic properties without implying that their distribu-
tions of plasma and magnetic field are realistic representations of
the solar corona. These properties are of two classes, those that
suggest fundamental processes like the above limit on azimuthal
flux in axisymmetric fields and others that relate to realistic prop-
erties of the corona idealized in simple models. We now turn to
the latter class to relate our results to the real corona.

5. SUMMARY AND CONCLUSIONS

We first describe the observed corona and then relate our
numerical solutions to several aspects of the physical picture
described.

5.1. The Observed Corona

The quiescent magnetic fields of the order of 10 G or stron-
ger are largely force-free near the base of the solar corona but
not force-free above a height of about 1–1.5 R� from the base
(Hundhausen 1977; Li et al. 1998; Sun & Hu 2005). All field
lines extending to such heights are combed by the solar wind to
open into interplanetary space (Pneuman&Kopp 1971). Below
such a height, closed fields that are anchored at both ends to the
coronal base trap plasmas in quasi-static equilibrium. These often
take the form of helmet-shaped coronal structures, such as those
in the photograph of the 1988 March 18 total solar eclipse in
Figure 17. This picture registers Thomson-scattered light origi-
nating from the eclipsed Sun. Brightness in the image represents
high columnar plasma density in the optically thin corona (Gibson
et al. 2003). The conspicuous large helmet at the northwest solar
limb in this picture shows a coronal helmet with a three-part
structure. These are the high-density main part of the helmet,
the low-density, small, dark cavity at the helmet base, and, the
knotlike, bright quiescent prominence in the cavity.

Observations have shown that the median 5 ; 1015 g CME
mass is largely of coronal origin. Many CMEs are observed to
erupt from a preexisting coronal helmet (Hundhausen 1999).
The three-part structure of the helmet is preserved during erup-
tion to form a bright, leading dense shell of the CME, a dark
cavity, and the erupted prominence inside the cavity (Illing &
Hundhausen 1986; Gibson & Low 1998, 2000; Cremades &
Bothmer 2004; Ciaravella et al. 2000; Dere et al. 1999). The
CME event of 1980 August 18 displayed in Low (2001) is an
example. Observations and models suggest that the mass of a
quiescent prominence lies in the range 1014–1016 g (Schmahl
& Hildner 1977; Rusin & Rybansky 1982; Gopalswamy &
Hanaoka 1998; Lipscy 1998; Patsourakos & Vial 2002; Gilbert
et al. 2005; Fong et al. 2002; Low et al. 2003). Masses compa-
rable to the median CME mass of 5 ; 1015 g are gravitationally
significant. During eruption, a larger part of the prominence is
drained back to the lower atmosphere while a smaller part is
expelled as the core of the CME (see the discussion and refer-
ences in Low et al. 2003).

Unfortunately, coronal fields on the scale of the helmet cannot
be detected readily, although progress toward achieving that has
been made (e.g., Judge et al. 2002; Kuhn et al. 1999). Promi-
nence observations and theory suggest that the prominence is
a horizontal, lengthy, plasma condensation suspended in a low-
density, larger sized, horizontal magnetic flux rope (Leroy et al.
1983; Leroy 1989; Bommier 1998; Lopez Ariste & Casini 2002;
Low & Hundhausen 1995). This flux rope is suspended low in
the corona running parallel to a magnetic polarity reversal line
on the photosphere below. The coronal helmet is an arcade-like
structure on an even larger scale, straddling the polarity reversal
line. Its fields are closed and rooted at two ends to the two sides
of the photospheric polarity reversal line. The tunnel-like, low-
density cavity at its base is identified with the prominence mag-
netic flux rope. The coronal helmet in Figure 17 has the fortuitous
orientation of having its arcade length along the line of sight. This
explains the visibility of the low-density cavity and the knotlike
prominence seen along its length. Such a coronal helmet is kept
in equilibriumwith the following hydromagnetic features (Low
& Hundhausen 1995). There is the confinement of the helmet
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plasma by the external open fields on its two sides, along which
the solar wind escapes. Inside the helmet, the cavity flux rope
tends to expand out into interplanetary space but is confined by
three agents: (1) the tension force of the closed, anchored helmet
field; (2) the weight of the helmet plasma at coronal tempera-
tures, and (3) the weight of the prominence at chromospheric
temperatures.

5.2. Hydromagnetic Structural Properties

The flux-rope cavity is captured by the �1 < 0 solutions de-
picting an equatorial plasma depletion at the base of the N ¼ 6
polytropic atmosphere. The small size of the cavity in Figure 17
suggests a tight packing of magnetic flux as modeled by a high-n
twisted azimuthal flux rope (see Fig. 10). The N ¼ 6 polytropic
atmosphere is relatively cool with a negligible plasma pressure
at large radial distances where the field dominates. In the real
solar atmosphere, a thin boundary layer separates the plasma-
dominated photosphere from the field-dominated low corona.
This layer comprises the chromosphere, with a variable thick-
ness of 103–104 km where the field is dominant, and a truly thin
layer above it, only a few hundred kilometers thick. The latter,
called the temperature transition region, is where the tempera-
ture rises steeply from about 105 K to the million degree tem-
perature of the corona (Priest 1982; Zirin 1988). In our �1 < 0
solutions for the cool N ¼ 6 atmosphere, the field-plasma inter-
action produces the large-scale field topology of a flux rope,
but the simple stratification of the atmosphere belies the pres-
ence of such a field topology. Past modeling works usually take
the lower boundary of the corona to be an infinitesimally thin
boundary where field is anchored rigidly, as a first approxima-
tion. Our analysis suggests that a spatially resolved boundary

layer may be important for our understanding of the magnetic
structures on scales larger than the stratification scale height.
The ‘‘cool’’ N ¼ 6, �1 > 0 solutions depict global density

enhancement suggestive of the coronal helmet, but its temper-
ature is unrealistically low so that at large radial distances, the
field dominates. The ‘‘hot’’ N ¼ 11/3 atmosphere is physically
more realistic, with dominance of the plasma pressure at large
radial distances. In either case, those �1 > 0 solutions describing
a flux rope are too simple to represent the prominence and cavity
realistically. For a more realistic morphological representation,
we need to modify the simple polytropic plasma distribution
given by equation (15) to more complex dependencies on the
flux function A. The hot atmosphere of theN ¼ 11/3 variety is to
be retained on the global scale, while the cooler chromosphere-
like boundary layer of the N ¼ 6 variety dominates near the
lower boundary to produce a low-density flux rope. In addition,
an even cooler plasma enhancement must be introduced into the
flux rope to represent the prominence mass.
The preceding survey of observations and theory shows that

the prominence and coronal helmet may have roles to play in
magnetic energy storage, as illustrated by our application of
ECME as an energy requirement. It should be emphasized that
ECME has been defined loosely by setting �E ¼ �E. The ratio of
the energy excess �E above EAly to the free energy�E in the Aly
open field varies with the circumstance of the equilibrium field.
This ratio, being independent of the field amplitude B0, describes
an aspect of energy storage distinct from the total stored energy
whose physical magnitude is fixed by B0. The excess �Emay be
as small as 8% above EAly, i.e., �E � 1

5
�E, for a force-free field

with a magnetic flux rope (e.g., Li & Hu 2003; Paper I), but is
larger if that flux rope is confined via field-plasma interaction.

Fig. 17.—Total solar eclipse of 1988 March 18 showing a conspicuous three-part coronal helmet structure at the northwest limb as described in the text.
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For the flux-rope force-free fields, a solar polar field of about 10G,
to fix B0, can account for a total stored energy of the order
of 2:3 ; 1031 ergs, adequate for a CME-flare event. For the fast
CMEs observed by Zhang et al. (2001, 2004), reconnection oc-
curring early in the CME acceleration can liberate a part of �E
associated with the Aly open field to drive the CME. Thus, en-
ergy additional to �E is also available for driving the CME. Fast
CMEs typically originate from active regions where B0 may
be taken larger than used in our numerical estimates in x 4.2, in
which case both �E and�E are significantly larger by their qua-
dratic dependence on B0. It has also been pointed out that force-
free fields of complex, three-dimensional topologies may have
energies significantly exceeding, by more than 8%, the limit EAly

(Choe & Cheng 2002). These considerations show that force-
free magnetic fields may store enough energy needed for CME-
flare events. Field-plasma interaction is just an added degree of
storing magnetic energy above those found in force-free fields.
The presence of a prominence and coronal helmet prior to erup-
tion, with masses of the order of 1015 g or larger in some signifi-
cant events, suggests that this added degree of energy storage is
important for this class of CMEs. The crucial element of a CME-
producingmagnetic structure, with or without field-plasma inter-
action, is the presence of a magnetic flux rope (Low 1994).

5.3. Concluding Remarks

Three-part coronal helmets and their almost daily eruptions
into CMEs suggest that they are the natural products of solar
activity (Gopalswamy et al. 2004; Low 2001; Low & Zhang
2005; Zhang & Low 2005). These helmets are as impressive in

their propensity to erupt into CMEs as they are in their long-lived
existence, days to weeks, prior to eruptions. As long-lived struc-
tures in the corona, they are built up over time to be energetically
ready for spontaneous opening up of fields, CME expulsions,
and flare heating associated with the reclosing of the opened
field. There are two main aspects to understanding this hydro-
magnetic process, both presenting formidable nonlinear mathe-
matical problems. The first is the challenge of understanding
how the rich varieties of equilibrium states and their hydromag-
netic stability and instability would naturally produce the three-
part structures as the observed long-lived coronal structures. The
other is the challenge of understanding the dynamics of CMEs
as a time-dependent expulsion when sufficient magnetic energy
has been stored in a coronal structure to break confinement. The
study we have presented deals with the structural properties of
idealized axisymmetric static atmospheres. Recently, Sun & Hu
(2005) have taken the study of these properties of axisymmetric
atmospheres to include the presence of the solar wind. These
studies are steps toward answering the larger physical questions
posed above.
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APPENDIX

N ¼ 3 COOL POLYTROPIC ATMOSPHERE

We derive in closed form the global solution describing an N ¼ 3 polytropic atmosphere embedding a dipolar poloidal (B’ ¼ 0)
magnetic field. Take the pressure and density defined by the polytropic equation (7) to be of the form

p ¼ a0A
r0

r
� r0

r1

� �4

; ðA1Þ

� ¼ 4a0A
GM�

r0

� ��1
r0

r
� r0

r1

� �3

; ðA2Þ

where a0 is a free constant associated with the linear dependence of p and � on the magnetic flux function A. We have redefined r1 to be
a positive constant, with p and � vanishing at r ¼ r1 > r0. This sets r ¼ r1 to be the top of the atmosphere at a cool polytropic
temperature so that we may set p and � to be zero in the vacuum region r > r1 where a magnetic field may exist. The spherical surface
r ¼ r1 is therefore a free boundary across which the magnetic field B must be matched into a potential field in r > r1. In order for B
not to exert a discrete Maxwell stress on that boundary, Bmust be continuous across r ¼ r1 (Roberts 1967). Such free boundary prob-
lems are formidable in general, but an analytical solution can be constructed for our special case.

The problem we need to solve is posed by the field equations for a poloidal field:

@ 2A

@r 2
þ 1� �2

r 2
@ 2A

@�2
þ 4�a0r

2 1� � 2
� � r0

r
� r0

r1

� �4

¼ 0; r < r1; ðA3Þ

@ 2A

@r 2
þ 1� �2

r 2
@ 2A

@�2
¼ 0; r > r1; ðA4Þ

to be solved for A in r > 1 subject to the boundary conditions given by equation (14), supplemented by the boundary condition that
both A and its derivatives are continuous across the free boundary r ¼ r1. In the units used in the paper that render B0 ¼ r0 ¼ 1, the
desired solution is of the form

A ¼ AP þ Apotential; ðA5Þ
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where Apotential is a potential field defined for r > 1 and AP is the particular solution to equation (A3) that is constructed to be zero
everywhere in r > r1 but takes the form

AP ¼ � 2�a0
15r 41

F rð Þ sin2�;

F ¼ 60r 21 r
2 log

r

r1

� �
þ 60r1r

2 r1 � rð Þ þ 30r 2 r1 � rð Þ2 þ 20r r1 � rð Þ3� 5 r1 � rð Þ4 þ 2

r
r1 � rð Þ5; ðA6Þ

in r < r1. By this construction AP and its derivatives vanish at r ¼ r1. It therefore follows that the solution given by equation (A5) and
its derivatives are continuous everywhere in r > 1. Subject to the boundary conditions given by equation (14), we take Apotential to be
the potential dipole field

Apotential ¼ 1þ 2�a0
15r 41

Fjr¼1

� �
sin2�

r
: ðA7Þ

Substitution of A into equation (A1) gives the pressure and density distributions in r < r1, keeping in mind that, by definition, p and
� are zero in the vacuum region r > r1. Figure 18 displays an illustrative solution. We leave the reader to explore these interesting
solutions and return to the paper where we concentrate on static atmospheres that extend out to infinity.
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