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Theory of Magnetodynamics Induced by Spin Torque in Perpendicularly Magnetized Thin Films
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A nonlinear model of spin-wave excitation using a point contact in a thin ferromagnetic film is
introduced. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-
torque experiments. Numerical simulations of the fully nonlinear model predict excitation frequencies in
excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and
redshift of the frequency at currents large enough to invert the magnetization under the point contact. The
theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode’s nonlinear
frequency shift is found by use of perturbation techniques, whose results agree with those of direct
numerical simulations.
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FIG. 1 (color online). Magnetic multilayer with magnetization
~M precessing in the free layer with frequency !̂. The magneti-

zation of the lower ferromagnetic layer is fixed with orientation
m̂F. A nonmagnetic spacer is sandwiched between two ferro-
magnetic layers. Typical parameters are: r� � 20 nm and � �
5 nm.
Microwave generation due to spin-momentum transfer
(SMT) in a thin magnetic multilayer is of current interest
with potential applications in communications. Initial pre-
dictions based upon a linear theory [1] were recently
verified experimentally [2–4]. In Refs. [2,4], microwaves
were generated by the application of a dc current through a
nanocontact to a magnetic multilayer (see Fig. 1). Recent
nonlinear theories have neglected spatial variation [5].
In this study, a nonlinear theory of spatially nonuniform
magnetodynamics is developed and analyzed.

The system depicted in Fig. 1 has been shown experi-
mentally to give rise to microwaves caused by steady-state
precession of magnetization in the ferromagnetic free layer
(Ni80Fe20) [4]. A magnetic field ~H0 is applied perpendicu-
lar to the film plane. When a dc current, I, is applied
through a point contact into the multilayer Co90Fe10=Cu=
Ni80Fe20, the conduction electrons’ spins induce a torque
on the magnetization in the free layer due to conservation
of angular momentum [1,6]. This torque opposes the
damping of the free layer and produces dynamics. Slonc-
zewski’s linear theory of spin-wave excitation for point
contacts on magnetic multilayers predicts a threshold cur-
rent for the excitation of precession [7]. However, it does
not accurately predict the experimentally observed fre-
quencies nor the dependence of the frequency on current.

Understanding the SMT effect in point contacts with a
perpendicular geometry is of great interest as it yields the
narrowest linewidths and highest output powers [4,8] when
compared to other SMT geometries, such as nanopillars [3]
and in-plane fields [9]. In addition, this highly symmetric
configuration is most amenable to analytical study. Insights
derived from this simpler geometry may aid in solving the
more advanced problem of oblique angled fields.

In this Letter we derive a new complex cubic Ginzburg-
Landau (CGL) equation for weakly nonlinear excitations.
Dipole coupling and exchange nonlinearities result in fre-
quencies higher than Slonczewski’s predictions. Steady-
state precessing modes for a nonlinear vectorial model are
found via numerical integration. The calculated frequen-
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cies lie in the range of experimental observations [4].
Using this model, much higher frequencies (0.2 THz) are
predicted for systems with contact radii on the order of
r� � 3 nm. The saturation and redshift of frequency for
currents large enough to invert the magnetization under the
point contact are predicted. This is a direct consequence of
the exchange term included in our model.

Zero temperature dynamics of the free layer magnetiza-
tion ~M can be described by the vectorial equation

@ ~M
@�
� �j�j�0

~M� ~Heff|�������������{z�������������}
precession

�
2

M2
sT2

~M� � ~M� ~Heff�|������������������{z������������������}
Landau-Lifshitz damping

� �� ~x� ~M� � ~M� m̂F�|����������������{z����������������}
Slonczewski SMT torque

; (1)

where the precessional and damping terms are driven by
the effective magnetic field ~Heff � H0ẑ�Mzẑ�

2�D
��0Msh

r2 ~M. This field consists of the applied magnetic
field, the demagnetizing field due to axial dipole coupling,
and the exchange field [10]. Crystalline anisotropy is as-
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sumed to be negligible. The Landau-Lifshitz form of
damping is a commonly used phenomenological term
that drives the magnetization to align with the total field.
The Slonczewski SMT torque term is derived in [1] and
assumes a large, bulk ferromagnetic layer with fixed mag-
netization direction ẑ. The SMT torque term is derived
from semiclassical considerations and conserves angular
momentum. As such, inclusion of such a term into the
Landau-Lifshitz equation is helpful for gaining insight
into the coarse-grained dynamics of the system. Relevant
parameters are the gyromagnetic ratio (�), Planck’s con-
stant (h), the free space permeability (�0), the exchange
parameter (D), the saturation magnetization (Ms), and the
transverse relaxation time (T2); �� ~x� is the SMT driving
term.

The magnetization is assumed to have rotational sym-
metry: the spatial variation of the magnetization depends
solely on the distance r from the center of the point contact.
Then, the driving term, �, is given by

��r� �
I@��

2M2
s��r2

�e
��r� � r�;

��r� � r� �
� 1 r � r�

0 r > r�
;

where � is the SMT efficiency, � is the thickness of the free
layer, e is the charge of an electron, r � �x2 � y2�1=2, and
��r� � r� is the Heaviside step function defining the point
contact to be a circle of radius r�. The efficiency � is in
principle a complicated function of many parameters, in-
cluding (but not limited to) microscopic details of the
interfaces in question [7,11]. Many of the approximations
used in the calculation of � ignore the lateral geometry of
the actual experiments, choosing instead to use a more
tractable 1D calculation. Since � is difficult to approxi-
mate, let alone calculate, and is not the subject of this
Letter, we will treat � as a constant fitting parameter.

By taking the dot product of Eq. (1) with ~M, one sees
that the magnetization of the free layer is locally conserved
for all times, i.e., j ~Mj � Ms. Consider the standard nor-
malization, ~m � ~M=Ms � �mx;my;mz�, t � !M�, � �
r=lex, where !M 	 ��0Ms and the exchange length is
lex 	

�������������������������������
2�D=��0Msh

p
. For the analysis, it is convenient

to encode the transverse components of ~m, ~m? � �mx;my�,
in the complex quantity m � mx � imy. Evaluating the
vector cross products in (1) leads to

i
@m
@t
� �mr2mz � �mz � i	�r2m� �mz � h�m

� ifj���� � �� � 	�h�mz�gmzm� i	fjrmzj
2

� jrmj2gm

@mz

@t
� �Im �m�r2m� � f	�h�mz� � j���� � ��gjmj

2

� 	fr2mz � �jrmj
2 � jrmzj

2�mzg:

(2)
26720
The dimensionless parameters for applied field, damping,
and current are, respectively,

h �
H0

Ms
; 	 �

2

��0MsT2
; j �

@�

2M2
se�0�r2

��
I:

The coupled system (2) is equivalent to the model (1).
Since the patterned multilayer mesa used in experiments
is 2 orders of magnitude wider than the point contact [4],
we assume that the multilayer has infinite extent in the xy
plane, hence 0 � � <1.

The nominal parameter values used in this Letter are
r� � 20 nm, � � 0:26, D � 4 meV 
 nm2, Ms �
640 kA=m, � � 5 nm, � � 1:85� 1011 Hz=T, !M �
23:68 GHz, lex � 6:40 nm, and 	 � 0:0112. We show
that by using only � as a fitting parameter, the theoretical
data match experiment well. Except where noted, the
parameter values h � 1:1 and �� � 3:12 are used.

In order to develop a perturbation scheme, we introduce
a small parameter, a

2

2 � 1, and a rescaling of Eq. (2), m �
a ~m. The parameter a represents the magnitude scale of the
transverse magnetization at the center of the point contact.
Using the approximation, mz � 1� a2

2 j ~mj
2 for the satura-

tion condition, substituting this approximation into Eq. (2),
and keeping only first-order terms in a2, we find that ~m
satisfies a CGL-type equation,
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dipole coupling

� ij�� 	�h� 2��j ~mj2 ~m

�  ~mr2 ~m� � 2�1� i	�jr ~mj2� ~m|��������������������������{z��������������������������}
nonlinear exchange

g: (3)

Seeking a steady-state solution of the form ~m��; t� �
ei!̂t
���, !̂ � h� 1�! yields a nonlinear eigenvalue
problem with boundary conditions
�0� � 1, d
=d��0� �
0, lim�!1
��� � 0. The corresponding linear eigenvalue
problem was solved by Slonczewski [7] with two real
eigenvalues ! and j and bessel type eigenfunctions. This
suggests the asymptotic expansions
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(4)

The terms 
�0�, !�0�, and j�0� correspond to Slonczewski’s
linear solution.

The predicted frequency of the ground state mode, !̂�
h� 1�!�0�, is valid only for very small amplitudes a,
whereas experiments produce much higher frequencies [4].
The nonlinearity in (3) gives rise to a frequency shift
which, through the use of the Poincaré method [12], helps
explain this disparity.
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FIG. 2 (color online). Spatial dependence of fully nonlinear
modes with excitation current and frequency. Top: transverse
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Bottom: axial components mz. For j � jmax, the transverse mode
magnitude is no longer monotonically decreasing since the axial
component of magnetization is negative (mz < 0) in the point
contact. Frequency and current values for each mode are shown
as circles in Fig. 3.
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FIG. 3 (color online). Precession frequency as a function of
current with comparison between fully nonlinear modes [direct
numerical simulation of Eq. (2)], the perturbation result (5), and
experiments conducted using r� � 20 nm point contacts [4].
Large circles represent the frequency and current of modes
plotted in Fig. 2. The straight lines were generated by perturba-
tion theory [Eq. (5)] for the contact radii denoted. Note the
excellent agreement between numerical simulation, perturbation
theory, and experiment for small currents. The parameters have
nominal values except � � 0:8.
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Nonlinear solution:—The first-order nonlinear fre-
quency and critical current shifts !�1� and j�1� are deter-
mined by the linear system

Re �I2� Im �I1�

Im �I2� �Re �I1�

� �
!�1�

j�1�

" #
�

Re �I3� � Im �I4�

Im �I3� � Re �I4�

� �
;

where Ik depend only on the leading-order solution:
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The above perturbation method provides a means for
calculating the nonlinear frequency and current shifts, !�1�

and j�1�, of a mode solution to (3) and helps explain
experimental results [2]. The frequency and critical current
have a parabolic dependence on the transverse amplitude a

!̂� h� 1�!�0� �
a2

2
!�1�; j� j�0� �

a2

2
j�1�: (5)

We note that using Eqs. (5), the relation between !̂ and j is
linear because both scale as a2.

The first-order nonlinear contributions from Eq. (3) due
to exchange and dipole coupling were compared. Using
Eqs. (5), the frequency and current dependence as parame-
trized by a were calculated when the exchange and dipole
coupling nonlinearities were removed from the calculation.
We find that if nonlinear exchange terms are ignored, the
relative error in the slope d!̂=dj is approximately 10% for
r� � 20 nm, whereas for r� < 12 nm the relative error is
greater than 25%.

Experiments [4] show that for large currents, and hence
larger amplitudes, the frequency/current relationship sig-
nificantly deviates from linearity. In order to account for
this, Eq. (2) was solved numerically using the projection
method where one renormalizes the magnetization after
each time step in order to preserve the local conservation of
~M [see [13] ]. The steady states of this parametrically

forced/damped system are attractors. The initial condition
m��; 0� � a
�0���� was evolved in time over a large do-
main (0 � � � 100) until the solution relaxed to a steady
state. The mode frequency was numerically recovered
from the phase of the precessing transverse component as
!̂ � d

dt argm�0; t��, t! 1.
Typical modes, their frequencies, and currents are shown

in Fig. 2. The transverse mode envelope �m � ��m2
x �

m2
y�

1=2 and the y component of magnetization my show
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slow decay, which means that spin waves are continually
radiating away from the point contact, and hence energy
from the contact region is lost into the surrounding
medium.

The plot of frequency versus current in Fig. 3 shows a
comparison between numerical simulation of (2), pertur-
bation theory (5), and experiment [4]. For current excita-
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FIG. 4 (color online). Frequency as a function of applied field
h. Comparison between fully nonlinear modes [direct numerical
simulation of Eq. (2)] and experiments [4]. Parameters are I �
10 mA and fitted � � 0:5. Inset: maximum frequency (�) and
current (�) vs contact radius.

PRL 95, 267206 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2005
tions larger than jmax, the solitary-wave mode structure
becomes highly nonlinear (compare with Fig. 2). There is
a maximum frequency and corresponding current for a
given physical system �jmax; !̂max�. As the dashed mode
in Fig. 2 shows, frequency saturation corresponds to mag-
netization precession along the equator near the center of
the point contact (mz � 0). For currents less than jmax, the
transverse mode magnitude has a monotonically decreas-
ing dependence on r. For larger currents, the mode is not
monotonic and develops interesting structure inside the
point contact.

Figure 3 shows that, as the point contact size is in-
creased, the slope of frequency versus current decreases
because the slope depends on SMT torque (inversely pro-
portional to r2

�) and damping due to spin-wave generation
[inversely proportional to r� in the linear approximation
[7] ]. The comparison of the simulated results ( � ) with
experiment is remarkable when the SMT efficiency is taken
to be � � 0:8. As the experimental values of the frequency
level out, full saturation is being reached. This is the first
model to qualitatively capture this type of behavior.

Nominal values for � are on the order of 0.25 for most
ferromagnetic metals [14]. The fact that � > 0:25 is used to
fit the experimental data suggests that further refinement of
the model is desirable.

The dependence of frequency on applied magnetic field
H0 is depicted in Fig. 4. With the fitted SMT efficiency
parameter, the theory compares well with experiment. The
mode structure is highly nonlinear because the transverse
amplitude is jm�0; t�j � 0:98, which precludes the use of
Eq. (5). However, a full numerical solution is required for
26720
only one particular value of h. Since d!̂=dh � const for
	� 1, once the parameters 	, j, and �� are chosen, the
y-intercept for the approximate linear relationship between
!̂ and h is fixed. The slope of the line does not change. The
theory predicts the slope very accurately. In Fig. 4 inset,
much higher frequencies are predicted by shrinking the
size of the point contact. Using the method stated above,
we predict that frequencies in the 0.2 THz range are
attainable for a point contact with a radius of 3 nm. We
find that as the point contact is made smaller, the current
decreases linearly for the same reasons stated earlier in
regard to the !̂�j� slope, while the frequency increases
in proportion to 1=r2

� due to exchange-mode spin-wave
dispersion.

In summary, a model of magnetic excitations in point
contact structures that includes nonlinearities due to both
exchange and dipole coupling is introduced. Spatially de-
pendent steady-state modes are calculated. This represents
a large step forward in the explanation of the phenomena
observed in recent experiments.
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