
Department of Applied Mathematics
Preliminary Examination in Numerical Analysis

August 2024

Instructions

You have three hours to complete this exam. Submit solutions to four (and no more)
of the following six problems. Please start each problem on a new page. You MUST
prove your conclusions or show a counter-example for all problems unless otherwise
noted. Write your student ID number (not your name!) on your exam.

Problem 1: Root Finding (25 points)

Consider the task of finding the fixed point of the vector function

G⃗(x⃗) =

[
g1(x⃗)
g2(x⃗)

]
where x⃗ = (x, y) and g1(x⃗), g2(x⃗) are in C∞. Let α⃗ = (α1, α2) denote the fixed point of G⃗(x⃗).

(a) Derive conditions on the function G⃗(x⃗) that gaurantee that the fixed point iteration

x⃗k+1 = G⃗(x⃗k)

converges to the fixed point α⃗ for all initial guesses x⃗0 in a neighborhood D of the fixed
point.

(b) Prove that when the condition you found in part (a) is satisified the fixed point iteration
converges linearly.

Solution:

(a) By definition of fixed point and the mean value theorem, we know that

α1 − xk+1 = g1(α1, α2)− g1(xk, yk)

=
∂g1(x̂k, ŷk)

∂x
(α1 − xk) +

∂g1(x̂k, ŷk)

∂y
(α2 − yk)

for some (x̂k, ŷk) on the line connecting (α1, α2) and (xk, yk).

Likewise,

α2 − yk+1 = g2(α1, α2)− g2(xk, yk)

=
∂g2(x̄k, ȳk)

∂x
(α1 − xk) +

∂g2(x̄k, ȳk)

∂y
(α2 − yk)

for some (x̄k, ȳk) on the line connecting (α1, α2) and (xk, yk).

This means that
α⃗− x⃗k+1 = Jk(α⃗− x⃗k)



where Jk is the Jacobian defined by[
∂g1(x̂k,ŷk)

∂x
∂g1(x̂k,ŷk)

∂y
∂g2(x̄k,ȳk)

∂x
∂g2(x̄k,ȳk)

∂y

]

This means that
∥α⃗− x⃗k+1∥ ≤ ∥Jk∥∥(α⃗− x⃗k)∥.

Let M = maxx⃗∈D∥J∥, then
∥α⃗− x⃗k+1∥ ≤ M∥(α⃗− x⃗k)∥.

If M < 1, the fixed point iteration is a contraction and it will converge.

(b)

lim
k→∞

∥α⃗− x⃗k+1∥
∥(α⃗− x⃗k)∥

≤ M

since M is a constant independent of k, the method is first order convergent.
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Problem 2: Interpolation/Approximation (25 points)

We denote the weighted L2 inner-product of two functions u and v by:

(u, v) =

∫ b

a
w(x)u(x)v(x)dx

where w is a positive weight function. We associate to this inner-product the norm

∥u∥L2(a,b) =

(∫ b

a
w(x)(u(x))2dx

)1/2

(a) Let {Ψj}0≤j≤n be a set of nonzero, orthogonal (with respect to (·, ·)) polynomials of degree
less than or equal to n.

The space of polynomials of degree less than or equal to n is denoted by Pn. Prove that the
(Ψ0,Ψ1, . . . ,Ψn) forms a basis for Pn.

(b) Let Φj ’s be a set of polynomials defined by

Φ0(x) = 1, Φ1(x) = x− (x, 1)

(1, 1)

Φj(x) = (x− a)Φj−1(x)− bΦj−2(x), j ≥ 2

with

a =
(xΦj−1(x),Φj−1(x))

(Φj−1(x),Φj−1(x))
b =

(xΦj−1(x),Φj−2(x))

(Φj−2(x),Φj−2(x))

Show that the Φj ’s form a set of orthogonal polynomials.

(c) Let f ∈ C(a, b). Use orthogonal polynomials to derive a general solution to the following
problem

min
p∈Pn

∥f − p∥L2(a,b)

(d) Find the line that best approximates
√
x in the weighted L2 norm on the interval (0, 1). The

weight function is chosen to be w = 1.

Solution:

(a) Let p(x) =
∑n

j=1 αjΦj(x) ∈ Pn. We need to show that the only way p(x) = 0 is if αj = 0 for
all j.

We do this by taking an inner produce with Φl for l = 1, . . . , n.

0 = (0,Φl) =
n∑

j=1

αj(Φj(x),Φl(x))

αl(Φl(x)Φl(x))

since (Φj(x),Φl(x)) = 0 for j = l for j ̸= l. Thus αl = 0 for all l.
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(b) First check that Φ0 and Φ1 are orthogonal.

(Φ0,Φ1) = (1, x− (x, 1)

(1, 1)
)

= (1, x)− (1, 1)(x, 1)

(1, 1)

= (1, x)− (x, 1)

since the inner product is symmetric.

Now we will prove by induction for j >= 2 Assume that Φj form an orthogonal set of
polynomials for j < n. Now we must show that Φn+1 is orthogonal to Φj for all j <= n.
From the recursion we know that

Φn+1(x) = (x− a)Φn(x)− bΦn−1(x)

so

(Φn+1(x),Φj(x)) = ((x− a)Φn(x)− bΦn−1(x),Φj(x))

= ((x− a)Φn(x),Φj(x))− (bΦn−1(x),Φj(x))

= (xΦn(x),Φj(x))− a(xΦn(x),Φj(x))− (bΦn−1(x),Φj(x))

If j ≤ n− 2 all the inner products are equal to zero due to assumed orthogonality.

If j = n− 1, (Φn,Φn−1) = 0 due to assumed orthogonality and the remainder items add to 0.
If j = n, (Φn−1,Φn) = 0 due to assumed orthogonality and the remainder items add to 0.

(c) We will write our approximation as follows

p(x) =
n∑

j=1

αjΦj(x)

. Plugging this into the inner product we get the following expression

(f − p, f − p) = ∥f∥2 − 2

n∑
j=1

αj(f,Φj) +

n∑
j=1

α2
j (Φj ,Φj)

This is an upward facing quadratic of αj . We want to find the minimum of this fuction so we

will take the deriviative wrt αj and set it equal to 0. In the end we the that αj =
−(f,Φj)
(Φj ,Φj)

.

(d) We can use our polynomials given in part (b) and the coefficients in part (c) to get our

approximation. p(x) = (
√
x,Φ0)

(Φ0,Φ0)
− (

√
x,Φ1)

(Φ1,Φ1)
Φ1(x) = 2/3− 1/3x
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Problem 3: Quadrature (25 points)

Consider the task of numerically approximating

I(f) =

∫ b

a
f(x)dx

where f ∈ C∞[a, b].

(a) Derive the trapezoidal rule and corresponding error for approximating I(f).

Useful information:
∫ b
a (x− a)(x− b)dx = −1

6(b− a)3

(b) Find the formula for the composite trapezoidal rule using uniform intervals of size h = b−a
n

where n+ 1 is the number of quadrature points. i.e. the quadrature points are xj = a+ j ∗ h
for j = 0, . . . , n

(c) Derive the error for the composite trapezoidal rule.

Solution:

(a) The trapezoidal rule is based on integrating the linear interpolation with interpolation
points x0 = a and x1 = b. Using this information, we use Taylor’s Theorem with a modified
Lagrange remainder term to rewrite f(x) as

f(x) = f(a)
x− b

a− b
+ f(b)

x− a

b− a
+

f ′′(ηx)

2
(x− a)(x− b)

for some ηx ∈ [a, b].
Integrating the linear approximation we find that the trapezoidal rule is given by

I1(f) =

∫ b

a

[
f(a)

x− b

a− b
+ f(b)

x− a

b− a

]
=

f(a) + f(b)

2
(b− a).

The error in approximating the integral using the trapezoidal rule has an upper bound given
by

E1(f) = I(f)− I1(f) =

∫ b

a

f ′′(ηx)

2
(x− a)(x− b)dx

= f ′′(η)
(b− a)3

12

for some η ∈ [a, b] by the mean value theorem. (See for example Chapter 1 Thm 1.3 of

Atkinson Numerical Analysis text.) The trapezoidal rule is given by I1(f) =
f(a)+f(b)

2 (b− a)

and the error term is E1(f) = f ′′(η) (b−a)3

12 .

(b) In(f) = h
[
f(x0)

2 + f(x1) + · · ·+ f(xn−1) +
f(xn)

2

]
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(c)

En(f) ≤ I(f)− In(f) =
−h3

12

n∑
j=1

f ′′(ηj)

=
−h3n

12

 1

n

n∑
j=1

f ′′(ηj)


=

−h3n(b− a)

12(b− a)

 1

n

n∑
j=1

f ′′(ηj)


We know that

min
x∈[a,b]

f ′′(x) ≤ 1/n

n∑
j=1

f ′′(ηj) ≤ max
x∈[a,b]

f ′′(x).

Since f ′′(x) is continuous in [a, b], there exists an η ∈ [a, b] such that

1/n
n∑

j=1

f ′′(ηj) = f ′′(η).

Thus En(f) =
−h2(b−a)

12 f ′′(η) for some η ∈ [a, b].
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Problem 4: Linear Algebra (25 points)

Let A ∈ Rn×n a normal matrix with eigenvalues λi and corresponding eigenvectors u⃗i (forming an
orthonormal basis of Cn). Further, assume that |λ1| > |λ2| ≥ · · · ≥ |λn|. Note that this
assumption implies (λ1, u⃗1) are real. We consider the power method to obtain the dominant
eigenpair (λ1, u⃗1), given an initial guess for the eigenvector z⃗0:

w⃗k+1 = Az⃗k

z⃗k+1 =
w⃗k+1

||w⃗k+1||∞

λk+1 =
z⃗∗kw⃗k+1

z⃗k
∗z⃗k

(a) Consider the Rayleigh quotient function RA(z⃗) =
z⃗∗Az⃗
z⃗∗z⃗ for z⃗ ∈ Cn. Find a formula for RA(z⃗)

that does not involve any vectors. Use this formula to prove that the approximation for λk+1

in the power method converges to λ1 as k → ∞.

(b) Let µ be an estimate for the simple, real eigenvalue λq. State a necessary and sufficient
condition for µ such that the power method applied to (A− µI)−1 converge linearly to u⃗q
(up to a scalar factor). What is the linear rate of convergence?

(c) Given µ0 = µ and z⃗0, consider the following algorithm:

w⃗k+1 = (A− µkI)
−1z⃗k

z⃗k+1 =
w⃗k+1

||w⃗k+1||∞

λk+1 =
z⃗∗kAz⃗k
z⃗k

∗z⃗k
µk+1 = λk+1

Explain in what sense this algorithm is an acceleration of the one proposed in (b) (Hint:
does the order or rate improve?).

Solution:

(a) Given that the {uj}nj=1 are an orthonormal basis of eigenvectors, the numerator and
denominator both greatly simplify:

z⃗∗Az⃗ =

(
n∑

i=1

αiu⃗
∗
i

) n∑
j=1

αjAu⃗j

 =

(
n∑

i=1

λi|αi|2
)

= λ1

(
n∑

i=1

(
λi

λ1

)
|αi|2

)

z⃗∗z⃗ =

(
n∑

i=1

αiu⃗
∗
i

) n∑
j=1

αj u⃗j

 =

(
n∑

i=1

|αi|2
)

Let z⃗0 =
∑n

i=1 βiu⃗i. After k power method iterations, iterate z⃗k is proportional to∑n
i=1 βiλ

k
i u⃗i (constants in front of it cancel in the Rayleigh quotient). Plugging that into our

formula gives us:
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R(zk) = λ1

(∑n
i=1

(
λi|λi|2k

λ1

)
|βi|2

)
(
∑n

i=1 |λi|2k|βi|2)
= λ1

(∑n
i=1

(
λi|λi|2k
λ1|λ1|2k

)
|βi|2

)
(∑n

i=1
|λi|2k
|λ1|2k

|βi|2
)

where we divide both numerator and denominator by |λ1|2k. It is clear from this that as k
goes to infinity, R(zk) converges to λ1, and that the error (difference between them) is

O

((
|λ2|
|λ1|

)2)
.

(b) The spectra of (A− µI)−1 is { 1
λi−µ}

n
i=1. Given that we want the power method to hone into

λq, we need our estimate µ to make 1
λq−µ the dominant eigenvalue. So, a necessary and

sufficient condition is that |λq − µ| = argminj |λj − µ|, that is, that µ is closer to λq than it is
to any other eigenvalue of A.

We know from class and from the analysis above that the power method converges linearly
(to the leading eigenvector) with linear rate |λ2|

|λ1| . So, the linear rate of convergence for the
inverse, shifted power method proposed above will be the ratio of the second to the first
largest eigenvalues of (A− µI)−1. We could denote that as:

|λq − µ|
argminj ̸=q|λj − µ|

how good this rate is will depend on the distance of µ to λq relative to its distance to other
nearby eigenvalues (the closer it is to λq, the faster the algorithm will converge).

(c) Given our analysis in (a) and (b), this algorithm is now improving upon our estimate of the
leading eigenvalue every iteration, and the linear rate of convergence (the improvement on
the error in one step) is now given by the formula

|λq − µk|
argminj ̸=q|λj − µk|

This is enough for us to conclude that this new algorithm is superlinearly convergent. (If we
do a bit more analysis using the formula in (a), we could conclude it is, in fact, cubically
convergent).

8



Problem 5: Numerical ODE (25 points)

We wish to numerically solve the IVP for a system of N first order ODEs
{y⃗′(t) = f(t, y⃗), y⃗(0) = y⃗0}. Consider the family of single-step methods

yn+1 = yn +∆t (θf(tn, yn) + (1− θ)f(tn+1, yn+1))

for a parameter θ ∈ [0, 1]. This is sometimes known as the family of θ methods.

(a) Determine for which values of θ these methods are consistent. For the values of θ where the
method is consistent, determine the order of the method.

(b) Derive an equation for the region of absolute stability Rθ that lies in the complex plane C.
For all values of θ ∈ [0, 1], describe geometrically the region of absolute stability. (It looks
different for different values of θ.) Determine for what values of θ is the method A-stable.

(c) Determine for which values of θ these methods are explicit or implicit. In the case of θ where
the method is implicit, explain what method (and what inputs or parameters) you would use
to compute the next timestep and why.

Solution:

(a) To test for consistency and order for the truncation error, we apply the conditions for
multistep methods

a1yn+1 + a0yn = ∆t (b1f(tn+1, yn+1) + b0f(tn, yn))

with a1 = 1, a0 = −1, b1 = 1− θ, b0 = θ. These conditions are:

a1 + a0 = 1− 1 = 0

1∑
m=0

(mam − bm) = (0− θ) + (1− (1− θ)) = 0

1∑
m=0

(m2am − 2mbm) = (0− 0) + (1− 2(1− θ)) = 2θ − 1

1∑
m=0

(m3am − 3m2bm) = (0− 0) + (1− 3(1− θ)) = 3θ − 2

this tells us that all θ methods are consistent and at least first order, but only for θ = 1
2

(Implicit Trapezoidal) is the method order 2. No θ method is higher order (3/2− 2 ̸= 0).

(b) Applying the θ method to the model problem y′ = λy, y(0) = 1 gives us:

yn+1 − yn = ∆tλ (θyn + (1− θ)yn+1)

yn+1 =
1 + (∆tλ)θ

1− (∆tλ)(1− θ)
yn
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So, the region of absolute stability is the region in the left complex plane for which this
factor has modulus less than or equal to 1. That is:

Rθ =

{
z ∈ C|Re(z) ≤ 0 and

∣∣∣∣ 1 + θz

1− (1− θ)z

∣∣∣∣ ≤ 1

}
Writing z = x+ iy, we can square both sides of the inequality obtained from the linear
equation to find:

∣∣∣∣ 1 + θz

1− (1− θ)z

∣∣∣∣2 = (1− θx)2 + θ2y2

(1 + (θ − 1)x)2 + (θ − 1)2y2
<= 1

1 + 2θx+ θ2(x2 + y2)

[1 + 2θx+ θ2(x2 + y2)]− 2x+ (1− 2θ)(x2 + y2)
<= 1

(2θ − 1)(x2 + y2) + 2x ≤ 0

(2θ − 1)(x2 +
2

2θ − 1
x+ y2) ≤ 0

(2θ − 1)

((
x+

1

2θ − 1

)2

− 1

(2θ − 1)2
+ y2

)
≤ 0

If 2θ − 1 > 0, meaning θ > 1
2 , then this is a circle of radius 1

(2θ−1) centered at

x = − 1
2θ−1 , y = 0, which is entirely located in the left C plane. We know, for example, that

θ = 1 (Forward Euler) gives us the inside of a disk of radius 1 centered at x = −1.

If 2θ − 1 < 0, meaning θ < 1
2 , the sign of the inequality changes when we divide by 2θ − 1,

and we get the exterior of a disk of radius 1
(1−2θ) centered at x = 1

(2θ−1) , y = 0. This disk is

entirely contained in the right complex plane, so these methods are A-stable. Finally, θ = 1
2

means the inequality is automatically satisfied, and once again, the method is A-stable. So,
θ methods are A-stable for θ ∈ [0, 12 ].

(c) All θ methods are implicit except for θ = 1 (Forward Euler), which is explicit (this is the only
value for which the coefficient for f(tn+1, yn+1) is zero). For a given θ for which the method
is implicit, say θ = 1

2 , we have to solve the potentially non-linear system of equations:

y −∆t(1− θ)f(tn+1, y) = yn +∆tθf(tn, yn)

given our previous guess yn at time tn. We propose to use the Newton method with initial
guess y0 = yn (we expect this to be close to yn+1 for small ∆t) and a target accuracy that is
at least proportional to the local truncation error for the method being used (second order
for Implicit Trapezoidal, first order otherwise).
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Problem 6: Numerical PDE (25 points)

Consider the following IVP for an advection-diffusion PDE with periodic boundary conditions:

ut(x, t) = buxx(x, t)− aux(x, t) + f(x) (x, t) ∈ (−π, π)× (0, T )

u(x, 0) = ϕ(x) x ∈ (−π, π)

u(−π, t) = u(π, t) t ∈ [0, T ]

with a ∈ R, b ≥ 0 and ϕ, f smooth and 2π periodic.

(a) For a regular grid in x with n points spaced by ∆x = 2π
n , we can write Uj(t) ≃ u(xj , t).

Using the forward difference for ux and centered second difference for uxx, write down a
system of n first-order ODEs in time for Uj(t).

(b) Note that this system can be written as U⃗(t)′ = MU⃗(t) + F⃗ . Describe the entries and
structure of matrix M.

(c) Use the implicit trapezoidal method to discretize the system above in time, and write down
an equation to compute U⃗(tk+1) in terms of U⃗(tk).

(d) If you are given a formula for the eigenvalues {λj(∆x)}nj=1 of matrix M, explain how you
could use them to perform a stability analysis on the finite difference scheme described
above.

Solution:

(a) We discretize the first and second derivatives in the advection-diffusion PDE, and obtain the
following:

U ′
j(t) =

b

∆x2
(Uj+1(t)− 2Uj(t) + Uj−1(t))−

a

∆x
(Uj+1(t)− Uj(t)) + F (xj)

Uj(0) = ϕ(xj) , Un+1(t) = U1(t)

for j = 1, . . . , n, and periodicity is set by Un+1(t) = U1(t).

(b) Note that this system can be written as U⃗(t)′ = MU⃗(t) + F⃗ . Describe the entries and
structure of matrix M.

Matrix M is sparse, circulant with only three non-zero diagonals (it would be tridiagonal
except for two entries on the top right and bottom left corners). That is,

M =



− 2b
∆x2 + a

∆x
b

∆x2 − a
∆x 0 · · · 0 b

∆x2

b
∆x2 − 2b

∆x2 + a
∆x

b
∆x2 − a

∆x · · · 0 0

0 b
∆x2 − 2b

∆x2 + a
∆x · · · 0 0

...
...

. . . · · · 0 0

b
∆x2 − a

∆x 0 0 · · · b
∆x2 − 2b

∆x2 + a
∆x


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this means that it can be applied and operated with using fast algorithms for sparse
matrices, and that it is diagonalized by the Fourier basis, which means we can use
FFT-based algorithms (recall that we are solving a PDE with periodic boundary conditions).

(c) Implicit Trapezoidal applied to the system of ODEs we are working with gives us the
following:

U⃗(tk+1) = U⃗(tk) +
∆t

2

(
MU⃗(tk+1) + F⃗ + MU⃗(tk) + F⃗

)
(
I− ∆t

2
M

)
U⃗(tk+1) =

(
I+

∆t

2
M

)
U⃗(tk) + ∆tF⃗

U⃗(tk+1) =

(
I− ∆t

2
M

)−1((
I+

∆t

2
M

)
U⃗(tk) + ∆tF⃗

)
U⃗(tk+1) =

(
I− ∆t

2
M

)−1(
I+

∆t

2
M

)
U⃗(tk) + ∆t

(
I− ∆t

2
M

)−1

F⃗

(d) Let {λj(∆x), v⃗j(∆x)} be an eigenpair of M, and denote L(∆t,∆x) =
(
I− ∆t

2 M
)−1 (

I+ ∆t
2 M
)
.

Then, we know that

L(∆t,∆x)v⃗j(∆x) =

(
1 + ∆t

2 λj(∆x)

1− ∆t
2 λj(∆x)

)
v⃗j(∆x)

That is, we have a formula for the eigenvalues of the matrix being applied repeatedly (via a
linear system solve) to take each time-step. If we have two numerical solutions V⃗n and W⃗n

that start from different initial data (that differ in norm by less than some small ε), then we
have that:

V⃗k − W⃗k = L(∆t,∆x)(V⃗k−1 − W⃗k−1)

= (L(∆t,∆x))k (V⃗0 − W⃗0)

||V⃗k − W⃗k|| ≤ ||L(∆t,∆x)||k||V⃗0 − W⃗0|| ≤ ||L(∆t,∆x)||kε

If we write (V⃗0 − W⃗0) in the basis of eigenvectors of M, what we need for stability is that
||L(∆t,∆x)||k stays bounded for k = 1, 2, . . . , T/∆t (we don’t want the error to blow up in
any direction). One way to ensure that is to ask that the spectral radius of L stays within
the complex unit disk. That is:∣∣∣∣∣1 + ∆t

2 λj(∆x)

1− ∆t
2 λj(∆x)

∣∣∣∣∣ ≤ 1 ∀j = 1, · · · , n

In general, this will impose a condition bounding ∆t by some function of ∆x and/or ∆x2

(e.g. CFL condition), unless the finite difference scheme is unconditionally stable (e.g.
Crank Nicholson for the diffusion PDE). Note that the analysis we just went through is
closely related to the Von Neumann stability analysis for the same scheme, which performs
Fourier analysis and finds an amplification factor for each Fourier basis term.
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