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Instructions

You have three hours to complete this exam. Submit solutions to four (and no more)
of the following six problems. Please start each problem on a new page. You MUST
prove your conclusions or show a counter-example for all problems unless otherwise
noted. Write your student ID number (not your name!) on your exam.



Problem 1: Rootfinding (25 points)

Consider a rootfinding problem for f ∈ C∞ near a simple root f(α) = 0. We apply a few iterative
methods to solve it; each produces iterates xn with errors defined by ϵn = xn − α.

1. Assume xn → α. Write down a definition for order of convergence of an iterative method.

2. We wish to consider algorithms with iterates of the form:

xn+1 = xn − γnf(xn)

where γn is some function of xn, xn−1, . . . , x0. Explain how the Newton-Raphson and Secant
methods are both examples; for each, indicate their order of convergence.

3. Let M(α) = f ′′(α)
2f ′(α) , and assume f ′′(α) ̸= 0. Using an argument similar to the one used for

Newton (involving Taylor expansions of f(x) around α), we can conclude that if the secant
method is convergent,

ϵn+1 = M(α)ϵnϵn−1

Based on this formula, give intuition as to how we know whether the order is linear or
superlinear (Hint: use an example). Derive an equation for the order of convergence p.

Problem 2: Quadrature (25 points)

In a number of applications in probability and statistics, we need to compute integrals of the form

E[h(y)] =

∫ ∞

−∞

1

σ
√
2π

h(y)e−
(y−µ)2

2σ2 dy

for h(y) ∈ C∞(R). This yields the expectation of h(y) for a normally distributed random variable
with mean µ ∈ R and standard deviation σ > 0.

1. The Gauss-Hermite quadrature is a gaussian quadrature for integrals

I[f ] =

∫ ∞

−∞
f(x)e−x2

dx

with weight function w(x) = e−x2
. Given nodes and weights {xi, wi}ni=1 for the n-point

quadrature, write down an approximation for E[h(y)] (Hint: use a change of variable).

2. Hermite polynomials are an orthonormal basis for the inner product
< f, g >w=

∫∞
−∞ f(x)g(x)w(x)dx. Given that H0(x) = 1, derive formulas for H1(x), H2(x)

(e.g. using Gram-Schmidt). You may use the formula∫ ∞

−∞
xne−x2

dx =
((−1)n + 1)

2
Γ

(
n+ 1

2

)
with Γ(12) =

√
π,Γ(32) =

√
π
2 , Γ(52) =

3
√
π

4 (generally, Γ(x+ 1) = xΓ(x)).

3. Find the nodes and weights for the 2 point Gauss-Hermite quadrature.
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Problem 3: Numerical Linear Algebra (25 points)

Let A ∈ Rn×n, non-singular (invertible) matrix. Let u, v ∈ Rn; we define the rank 1 perturbation
Â = A+ uvT . The Sherman-Morrison formula gives us a formula for Â−1, if it exists:

Â−1 = (A+ uvT )−1 = A−1 −
(

1

sA

)
A−1uvTA−1 with sA = 1 + vTA−1u

1. Let (A+ uvT )x = b, and define y = vTx. Based on this, write down a a n+ 1× n+ 1 linear
system of the form

M

[
x
y

]
= c, c ∈ Rn+1

satisfied by x and y.

2. Use Gaussian elimination on the last row of M (i.e. so that M(n+ 1, 1 : n) becomes zero).
Using the resulting linear system, find a necessary and sufficient condition for Â to be
invertible. You may assume that A−1 is available.

3. Assume that A is such that we can solve a system of the form Ax = b in O(n) floating point
operations, or flops (e.g. A is tridiagonal). What is then the computational cost to solve a
system Âx = b̂ using Sherman-Morrison? Indicate computational cost (flops) on each step.

Problem 4: Interpolation/Approximation (25 points)

Obtain the first degree polynomial achieving the minimax approximation for f (x) = 1/(1 + x) on
[0, 1]. Formulate the theorem describing properties of the minimax error.
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Problem 5: Numerical ODE (25 points)

Consider the two step method (Adams-Bashforth)

yn+2 = yn+1 + h

[
3

2
f(tn+1, yn+1)−

1

2
f(tn, yn)

]
.

• Show that it is convergent and find its order. State the relevant theorems.

• Find the interval on the real axis that is a part of the region of absolute stability.

Problem 6: Numerical PDE (25 points)

Consider the heat equation
∂ϕ

∂t
= ∂2

xϕ,

with initial condition
ϕ|t=0 = ϕ0,

and periodic boundary conditions on the interval [0, 1]. Fully describe the Crank-Nicolson scheme
for this problem. Show that the scheme is unconditionally stable.
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