
Department of Applied Mathematics
Preliminary Examination in Numerical Analysis

January, 2019

Instructions. You have three hours to complete this exam. Submit solutions to
four (and no more) of the following six problems. Please start each problem on
a new page. You MUST prove your conclusions or show a counter-example for
all problems unless otherwise noted. Write your student ID number (not your
name!) on your exam.

1. Root Finding. Consider the fixed point iteration scheme

xn+1 = g(xn).

(a) State the necessary conditions for the convergence of such a scheme to fixed point
x = α.

(b) Given

lim
n→∞

α− xn+1

α− xn
= g′(α).

Find an upper bound for the absolute error |α− xn|.
(c) Derive from first principles the expression that shows the rootfindng method to

be pth order convergent.

(d) Consider the following iteration for calculating γ1/3:

xn+1 = axn + b
γ

x2n
+ c

γ2

x5n

(e) Assuming that this iterative scheme converges for x0 sufficiently close to γ1/3

determine a, b, c such that the method has the highest possible convergence rate.
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(a) Assume g(x) ∈ C1([a, b]), g([a, b]) ⊂ [a, b], and

λ = max
a≤x≤b

|g′| < 1

then x = g(x) has a unique fixed point α ∈ [a, b], ∀x0 ∈ [a, b] with xn+1 = g(xn),
n ≥ 0

lim
n→∞

xn = α,

and (although not necessary)

lim
n→∞

α− xn+1

α− xn
= g′(α).

(b) By manipulating the Taylor expansion of (α− xn+1) = α− g(xn) with the above
result

|α− xn| ≤
λn

1− λ
|x1 − x0|

(c) Order of convergence: If g([a, b]) ∈ Cp([a, b]) for p ≥ 2 and

g′(α) = · · · = gp−1(α) = 0

then for x0 sufficiently close to α

lim
n→∞

α− xn+1

(α− xn)p
= (−1)p−1

g(p)(α)

p!
.

(d) First note that there are three unknowns so that we need 3 equations to uniquely
determine a, b and c. We also know a-priori that the method should converge
with order p = 3. We know that γ

1
3 is a fixed point so that g(γ 1

3
) = γ

1
3 implying

a+ b+ c = 1.

Also we will require g′(γ 1
3
) = 0 giving

a− 2b− 5c = 0,

and that g′′(γ 1
3
) = 0 resulting in

6b+ 30c = 0.

Solving this system yields a = 5
9
, b = 5

9
and c = −1

9
.
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2. Linear Alegbra. Let A ∈ Rn×n be symmetric and positive definite (spd), and consider
the following iteration.

Choose A0 = A
for k = 0, 1, 2, . . .

Compute the Cholesky factor Lk of Ak (so Ak = LkL
T
k )

Set Ak+1 = LT
kLk

end

Here Lk is lower triangular with positive diagonal elements.

(a) Show that Ak is similar to A, and that Ak is spd (the iteration is therefore well-
defined).

(b) Now consider the special case of a 2× 2 spd matrix,

A =

(
a b
b c

)
, a ≥ c,

For this matrix, perform one step of the algorithm and write down A1.

(c) Use the result from (b) to argue that Ak converges to diag(λ1, λ2), where the
eigenvalues of A are ordered as λ1 ≥ λ2 > 0.

Solution. For (a) Ak = LT
k−1Lk−1 is manifestly symmetric and 〈x, Akx〉 = ‖Lk−1x‖22.

The right-hand side ‖Lk−1x‖22 6= 0, since Lk−1 is nonsingular (Ak−1 is spd and so
nonsingular). Therefore, Ak is spd. Note also that

Ak = LT
k−1Lk−1

= L−1k−1(Lk−1L
T
k−1)Lk−1

= L−1k−1Ak−1Lk−1

= L−1k−1 . . . L
−1
0 AL0 . . . Lk−1.

For (b) the Cholesky factorization of A = A0 is(
a b
b c

)
=

( √
a 0

b/
√
a
√
ac− b2/

√
a

)( √
a b/

√
a

0
√
ac− b2/

√
a

)
.

Since A is spd, both a = eT1Ae1 and ac− b2 have to be positive; therefore, the square
roots in the Cholesky factorization are well defined. Then

A1 =

( √
a b/

√
a

0
√
ac− b2/

√
a

)( √
a 0

b/
√
a
√
ac− b2/

√
a

)
=

(
a+ b2/a (b/a)

√
ac− b2

(b/a)
√
ac− b2 c− b2/a

)
=

(
a1 b1
b1 c1

)
.
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For (c) since A1 is similar to A, we know it has the same eigenvalues. Also, in the one
iteration the off-diagonal terms b have been multiplied by a factor (assume b 6= 0 or
the problem is trivial) √

ac− b2
a

<

√
ac

a
≤
√
a2

a
= 1.

This implies that the magnitude |b1| < |b|. Note also a1 ≥ a and 0 < c1 ≤ c (the
inequality 0 < c1 holds since A1 is again spd). These results will then apply to each
iteration. Ak has eigenvalues λ1 and λ2, with ak ≥ ak−1, 0 < ck ≤ ck−1, and |bk| <
|bk−1|. The two-norm ‖Ak‖2 = λ1 is then constant, which implies the entries of Ak

remain bounded as k →∞. The sequences then converge: bk → 0 and lim ak ≥ lim ck
(since a ≥ c, and ak and ck are respectively non-decreasing and non-increasing). So
lim ak = λ1 and lim ck = λ2.
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3. Numerical quadrature.

(a) State the simple (one panel) midpoint and trapezoidal rules for approximating

the integral
∫ h

0
f(x) dx.

(b) Derive the error formulas for both methods.

(c) Let f(x) = x3 and show that it is possible to combine the results from the two
methods so that the answer is exact.

(d) Show that you also get the exact answer if you perform Richardson extrapolation
(using the error expansion from the composite rule) using the answers obtained
by the trapezoidal method with one panel (as above) and the trapezoidal method
with two panels of equal size h/2.

(a) The Trapezoidal rule is:

T =
h

2
(f(h) + f(0)).

The midpoint rule is:

M = hf(
h

2
)

(b) The error formula for the Trapezoidal method can for example be found by the
Peano Theorem. The error is

ETf =

∫ h

0

f(x)dx− h

2
(f(h) + f(0)),

and when f = p is a linear polynomial we know that ETp = 0. The Peano kernel for
this problem can thus be computed as

K(u) =

∫ h

0

(x− u)+dx−
h

2
((x− u)+ + 0) =

(h− u)2

2
− h(h− u)

2
= −u(h− u)

2
< 0,

where u ∈ [0, h]. By the Peano theorem we also get

ETx
2

2!
=

∫ h

0

x2

2
dx− h

2

h2

2
= −h

3

12
,

thus the error is

ETf = −h
3

12
f ′′(ξ), ξ ∈ (0, h).

Alternatively the error can be obtained by the exact remainder formula in Newton
interpolation. For the midpoint rule a direct application of Taylor’s theorem yields

f(x)− (f(
h

2
) + (x− h

2
)f ′(

h

2
) =

1

2
(x− h

2
)2f ′′(ξ), ξ ∈ [0, h].

Integrating the above expression give the error for the midpoint method

EMf =

∫ h

0

1

2
(x− h

2
)2f ′′(ξ)dx =

h3

24
f ′′(ξ), ξ ∈ (0, h).
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(c) For f = x3 the exact integral is h4/4. A better approximation to the integral is
obtained by (2M + T )/3, this cancels the leading order errors. Here the result is

2M + T

3
=

1

3

(
2h

(
h

2

)3

+
h

2

(
h3 + 0

))
=
h4

3

(
1

4
+

2

4

)
=
h4

4
.

(d) The composite rule has error expansion O(h2) so the Richardson extrapolated
approximation is

RE =
4T (h/2)− T (h)

3
.

Here

T (h) =
h4

2
, T (h/2) =

h

2

(
h3

2
+

(
h

2

)3

+ 0

)
= h4

5

16
.

Thus,

RE =
4T (h/2)− T (h)

3
=
h4

3

(
5

4
− 2

4

)
=
h4

4
.
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4. Interpolation/Approximation. We are given three data points as follows:

x -1 0 1
y 1 -1 -1

Determine the interpolating polynomial of lowest degree possible using

(a) Lagrange’s interpolation formula,

(b) Newton’s interpolation formula,

(c) Stirling’s interpolation formula,

Verify that the answers you get agree.

(d) Quote the formula for the error, applied to this special case.

Hint: In standard operator notation on a grid with spacing h, Stirling’s interpolation formula
can be written

f(x0 + th) = f0 + tµδf0 +
t2

2!
δ2f0 +

t(t2 − 1)

3!
µδ3f0 +

t2(t2 − 1)

4!
δ4f0 + · · ·

(a) Lagrange:

(x− 0)(x− 1)

(−1− 0)(−1− 1)
(1) +

(x+ 1)(x− 1)

(0 + 1)(0− 1)
(−1) +

(x+ 1)(x− 0)

(1 + 1)(1− 0)
(−1)

=
x2 − x

2
+
x2 − 1

1
− x2 + x

2
= x2 − x− 1

(b) Newton’s Divided differences:

x y

-1 1
-2

0 -1 1
0

1 -1

It follows

p(x) = 1− 2(x+ 1) + 1(x+ 1)x = 1− 2x− 2 + x2 + x = x2 − x− 1

(c) Stirlings: Use x0 = 0, h = 1, t = x. Regular (non-divided) differences.

x y δ δ2

-1 1
-2

0 -1 2
0

1 -1
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It follows

p(x) = −1 + x(−1) +
x2

2
2 = x2 − x− 1

(d) Error
(x+ 1)(x)(x− 1)

3!
f (3)(ζ) with ζ ∈ [−1, 1].
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5. ODEs Consider the initial value problem y′ = f(t, y), y(t0) = y0. The Milne method is a
linear multistep method defined by

yn = yn−2 +

∫ tn

tn−2

P (t)dt

where P (t) is the unique quadratic polynomial that interpolates f at the points tn−2, tn−1, tn,
and tn = hn.

(a) Derive the formula for this method.

(b) Find the leading order term in the local truncation error of this method. What is the
order of this method?

(c) Is this method 0-stable, strongly stable? Why?

For (a) note that P (t) interpolates fn−2, fn−1 and fn and can for example be found by
Lagrange interpolation

p(t) = fn−2L1(t) + fn−1L2(t) + fnL3(t),

where

L1(t) =

(
t− tn−1

tn−2 − tn−1

)(
t− tn

tn−2 − tn

)
=

(t− tn−1)(−tn)

2h2
,

L2(t) =

(
t− tn−2

tn−1 − tn−1

)(
t− tn

tn−1 − tn

)
= −(t− tn−2)(−tn)

h2
,

L3(t) =

(
t− tn−1
tn − tn−1

)(
t− tn−2
tn − tn−2

)
=

(t− tn−1)(−tn−2)
2h2

.

The method follows from∫ tn

tn−2

P (t)dt = fn−2

∫ tn

tn−2

L1(t)dt+ fn−1

∫ tn

tn−2

L2(t)dt+ fn

∫ tn

tn−2

L3(t)dt.

Here ∫ tn

tn−2

L1(t)dt =
h

3
,

∫ tn

tn−2

L2(t)dt =
4h

3
,

∫ tn

tn−2

L3(t)dt =
h

3
,

so the method is

yn = yn−2 +
h

3
(fn + 4fn−1 + fn−2).

For (b), to find the order p, we may check that (see e.g. THM 2.4 in Hairer, Norsett, Wanner,
Solving ordinary differential equations I: Nonstiff problems (1993), HNW)

k∑
i=0

αi = 0,
k∑

i=0

αii
q = q

k∑
i=0

βii
q−1, for q = 1, . . . , p.

Here (in the notation of eq. (2.1) in HNW)

α0 = −1, α1 = 0, α2 = 1, β0 =
1

3
, β1 =

4

3
, β2 =

1

3
,

So
α0 + α1 + α2 = 0,
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and
α1 + 2α2 = 2 = β0 + β1 + β2,

and

α1 + 22α2 = 4 = 2(
4

3
+ 2

1

3
) = 2(β1 + 2β2),

and

α1 + 23α2 = 8 = 3(
4

3
+ 4

1

3
)) = 3(β1 + 22β2),

and

α1 + 24α2 = 16 = 4(
4

3
+ 8

1

3
)) = 4(β1 + 23β2),

but

α1 + 25α2 = 32 6= 100

3
= 5(

4

3
+ 16

1

3
)) = 5(β1 + 24β2).

Thus, the order of the method is four. The leading order error term in the local error (with
p = 4) is (again see e.g. HNW eq. (2.5))

d5y

dt5
h5

120

(
2∑

i=0

αii
5 − 5

2∑
i=0

βii
4

)
= −d

5y

dt5
h5

90
.

To answer (c) note that ρ(z) = z2 − 1 with roots z = ±1, the method is thus zero stable but
not strongly stable as there are two roots with |z| = 1.
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6. PDEs Consider the following finite difference scheme:

u(x, t+ k)− u(x, t)

k
+

3
2u(x, t)− 2u(x− h, t) + 1

2u(x− 2h, t))

h
= 0

Graphically, we illustrate its stencil as shown below

•
|

• — • — •

(a) Determine which PDE the scheme is consistent with,

(b) Determine its order of accuracy in time and in space (when applied to the the PDE
from (a)),

(c) Use von Neumann analysis to determine the scheme’s stability.

Hint to part (c): The figure below shows the curve traced out by f(s) = 3
2−2eis+ 1

2e
−2is

for −π ≤ s ≤ π.

(a) Taylor expansion of the two terms in the difference scheme gives:

u(x, t+ k)− u(x, t)

k
= ut +

k

2
utt +O(k2)

3
2u(x, t)− 2u(x− h, t) + 1

2u(x− 2h, t))

h
= ux −

h2

3
uxxx +O(h3)

Hence, the difference scheme is consistent with ut + ux = 0.

(b) From the error terms above, we see immediately that the scheme is first order in time
and second order in space.

11



(c) Substitute u(x, t) = ζt/keiωx in

u(x, t+ k)− u(x, t)

k
+

3
2u(x, t)− 2u(x− h, t) + 1

2u(x− 2h, t))

h
= 0

and simplifying gives

ζ = 1− λ(
3

2
− 2e−iωh +

1

2
e−2iωh)

We set ωh = s and let f(s) be the function defined and displayed in the problem text.
The task becomes to decide whether ζ(z) = 1 − λf(s) will fit entirely inside the unit
circle for some choice of λ > 0. Had the image in the problem text depicted a perfect
circle centered at +2and with radius 2, ζ(s) would have fitted inside the unit circle for
λ ≤ 1/2 . However, the image shows the curve for f(s) to be a lot ’flatter’ than a circle
in the vicinity of s = 0. To see if this flatness causes a failure of ζ to fall inside the unit
circle, we Taylor expand f(s) = is +O(s3) (note that the s2 term is missing). Hence,
for small s, ζ = 1− λis+O(s3), and

|ζ|2 = 1 + (λs)2 +O(s3).

No matter how small λ is, ζ must for small s be outside the unit circle. From this, we
conclude that the proposed scheme is unconditionally unstable.
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