
Department of Applied Mathematics 
Preliminary Examination in Numerical Analysis 

January 11, 2021, 9 am – 12 noon.  
 
Submit solutions to four (and no more) of the following six problems. Show all your work, and justify all 
your answers. Start each problem on a new page, and write on one side only. No calculators allowed. 
Do not write your name on your exam. Instead, write your student number on each page. 
 

 
 

1. Root finding 

 

Consider Newton’s method for solving the equation sin 0x   in the interval ( / 2, / 2)   starting with the initial 

approximation 0x  such that 0 0tan 2x x  (nb. 0 1.1656x   ).  

a. What is the result of this iteration? 

b. What is the result of the iteration if the initial approximation  0x  satisfies  0 0| | | |x x  ? 

c. What is the result of the iteration if the initial approximation  0x  satisfies  0 0| | | |x x  ? 

 

Solution: 

 

 

   Yet another possibility is that the iterations will get stuck in a cycle of the type described in part (a).  



 

2. Quadrature 

 

a. What is the largest step size that makes the trapezoidal rule exact for trigonometric polynomials of the form 
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is exact for all polynomials f of degree 2 1.N    

 

Solution: 

 



 



 

3. Linear Algebra 

 

a. Define what is meant by a matric being Hermitian, and show that such a matrix has only real eigenvalues. 

b.  A matrix A is called circulant if its elements ,i ja  are all the same whenever ( ) modi j N  is the same. In 
other words, each row is the same as the row above shifted periodically one step to the right. Show that such 
a matrix can be diagonalized by similarity transforming it using the DFT (Discrete Fourier Transform) 
matrix, as given by 
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where   is the Nth root of unity. 

c. The matrix 

2 1 1
1 2 1

1 2 1
1 1 2

A

 
  
 
  
  

     is both Hermitian and circulant.  

Determine all its eigenvalues. 

 

Solution: 

a. A is Hermitian if  *A A , where the star denotes transpose and conjugate. 

 From Ax x  follows * **x A x  and then  * *x Ax x x  , * **x A x x x . Subtracting the last two 

relations (noting that * 0x x   ) gives   , i.e.   is real.    

b. In forming *U AU , first consider 
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(having utilized that 2 /i Ne   satisfies 1N  ), and then 
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All off-diagonal entries vanish (due to their first factor), and we read off A’s eigenvalues in the diagonal. 

 

A faster solution is obtained by noting that, if U diagonalizes A, then the columns of U are the eigenvectors 
of A. We thus look at column n of AU (as calculated above, 0,1, 2, , 1n N  ): 
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This agrees with the nth  column of U, multiplied with ( )nk
ka  , which shows  ( )nk

ka   to be the nth  
eigenvalue, and it also confirms that U indeed diagonalizes A, 

 

 



 

c. By the result just above, the eigenvalues of the given matrix A become: 
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As expected, these are all real. 

 

 

4. Interpolation / Approximation 

 

The figure below illustrates a cubic B-spline on a unit-spaced grid, uniquely defined when using its standard 
normalization.   

 

a. Tell what the defining property is of a B-spline (as opposed to any other spline). Also tell what is the 
customary normalization of any B-spline. 

b. Verify that the B-spline in the figure can be written explicitly as 

   3 3 3 3 31( ) 1 | 2 | 4 | 1| 6 | | 4 | 1| 1 | 2 |
12

B x x x x x x              .    (1) 

c. Translates of B-splines form an excellent set of basis functions for representing a general spline. Consider 
the nodes , 0,1,2, ,ix i i N    with matching function values iy , and let ( )iB x  denote the B-spline 
centered at ,x i  1,0,1, 2, , 1.i N    Write out the linear system that needs to be solved for obtaining 
the B-spline coefficients for the natural cubic spline that obeys this data. 

 Hint:  For the B-spline (as given in (1)), ''( )B x  takes the values {1,-2, 1}  at  { 1, 0,1}.x     

 

 



Solution: 

 

a. A B-spline is the spline that, in the narrowest way possible, transitions non-trivially from identically zero 
back to identically zero. The customary normalization is that its integral becomes one.  

b. The given expression is clearly a cubic within each subinterval and, at each node, it is discontinuous only in 
its third derivative. Given the uniqueness mentioned in the problem statement, there are just two further 
items we need to verify:  

i. The formula (1) for B(x) evaluates to zero when | | 2x  : 

 Say 2x   (equivalent for 2x   ). We can then change all magnitude signs to parentheses, and the 
expression becomes a single cubic: 
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since the coefficient for every power of x has vanished. 

More ‘elegantly’ we can alternatively note that the right hand side of (2) can be seen as applying the 
finite difference (FD) approximation  4[1, 4, 6, 4,1] / h   with h = 1  to the cubic function 3.x  This 
FD formula is the second order approximation to the 4th derivative (the second derivative 
approximation 2[1, 2,1] / h  applied twice). Applied to a cubic, the result has to become zero. 

Note:  If one defines  
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 ,  a related way to represent the cubic  B-spline is 
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looks similar to (1), the scaling factor differs.  

 

ii. It is correctly normalized:  

 The value of B(0) is given (in the figure) as 2/3. That matches substituting zero into (1). 

 

c. Let the spline be 
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derivative zero at both end points. Enforcing this (using the hint) together with it producing the correct value 
at each node point gives the system 
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5. Numerical ODEs 

 

a. Define what is meant by the stability domain of an ODE solver. 

b. Determine the stability domains for the Forward Euler (FE) and Backward Euler (BE) methods (first order 
Adams-Bashforth and Adams-Moulton methods, respectively).  

c. Suppose one uses FE as a predictor and BE as a corrector. What is the order of accuracy of the resulting 
method? Either derive it, or quote a specific, more general theorem. 

d. Give an equation for the stability domain of the FE – BE predictor corrector method. Determine what (if 
any) intervals along the real and imaginary axes fall within this domain. 

 

Solution: 

 

a. When applying the solver to the ODE '( ) ( )y t y t , using a time step k, the stability domain is the domain 
in the complex k   plane in which the solution is not growing. 

b. FE applied to 'y y  gives ( ) ( ) ( ) (1 ) ( )y t k y t k y t y t      , which is a linear recursion relation 
with characteristic equation  1r   , i.e., the stability domain is the circle |1 | 1.  BE applied to 

'y y  similarly gives ( ) ( ) ( )y t k y t k y t k     and 
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|1 | 1.    

c. If the predictor has accuracy p and the corrector accuracy q, the resulting order of accuracy is min(p+1,q). 
Since here, 1,p q   the combination is only first order accurate.  

d. The combined scheme, applied to '( ) ( )y t y t  can be written as ( ) ( ) ( ( ) ( )),y t k y t y t y t      with 

characteristic equation 21 .r      The stability domain is given by 2|1 | 1.      

For   real, we can write the characteristic equation as  21 3
2 4r    , which satisfies | | 1r   for 
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For   purely imaginary, we write   as i   with   real. and obtain 21r i    ,  
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6. Numerical PDEs 

 

Consider the Crank-Nicolson method 
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a. Show that the scheme is unconditionally stable. 

b. Show that it is second order accurate in both space and time. 

 

Solution:  

a. There are two primary approaches for determining stability: 

 (i) Consider the scheme as a Method-of-Lines solution, and refer to ODE stability domains: 

 Discretizing first in space only, we get the ODE system 
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1 ( 2 ), 0,1, , 1, ,j

j j j N N

du
u u u j N u u u u

dt h            , 

or 

 
du Au
dt

  . 

The matrix A of this system is symmetric and negative semi-definite which can be observed by using 
the Gershgorin theorem which provides a spectral bound 24 / 0.h     The time stepping 
scheme is the trapezoidal rule (Adams-Moulton of second order) which is A-stable (the entire left 
half-plane falls within the stability domain). Whatever the values are for the (positive) time and 
space steps, all the eigenvalues   fall within the stability domain, i.e., the scheme is 
unconditionally stable.  

 (ii) Apply von Neumann analysis. 

Substitute /( , ) t k i xu x t e   into the discrete approximation. This gives, after a brief simplification 
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 , and therefore | | 1   for all   and (positive) k and h. 

 

b. We give again two solutions. Note that it is insufficient to just argue that the centered approximations used 
in the Crank-Nicholson scheme each by itself is second order accurate, since it also matters how the terms 
are combined. 

 (i) Refer to ODE theory 

Given that the scheme is of Method-of-Lines (MOL) type, then the overall order of accuracy will 
indeed be that of the space scheme and of the time stepping method. These are in this case well 
known to both be second order accurate.  

  

(ii) Direct series expansion 

Given the symmetries of the scheme, it is natural to expand around ,
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Averaging the last equation with its counterpart for k k  cancels its second term, and the Crank-
Nicolson combination shows a total error of 2 2( ) ( ).O h O k   

 


