
Department of Applied Mathematics
Preliminary Examination in Numerical Analysis

August 2023

Instructions. You have three hours to complete this exam. Submit solutions to four
(and no more) of the following six problems. All problems have equal value.

Please start each problem on a new page. You MUST prove your conclusions or show
a counter-example for all problems unless otherwise noted.
Write your student ID number (not your name!) on your exam.

Problem 1: Root finding

(a) Consider the following iteration schemes of the form xn+1 = f(xn) each with a proposed fixed
point α. Which of the following will converge (provided x0 is sufficiently close to α)? If it
does converge, give the order of convergence; for linear convergence, give the rate of linear
convergence

(i) xn+1 = −16 + 6xn +
12

xn
, α = 2

(ii) xn+1 =
2

3
xn +

1

x2n
, α = 31/3

(iii) xn+1 =
12

1 + xn
, α = 3

(b) Consider an analytic function f(x) such that the fixed point iteration

xn+1 = f(xn)

for any initial value of x0 ̸= 0 eventually hops between +1 and −1. Describe the properties of
f(x) for |x| = 1, |x| < 1, and |x| > 1 that would make this limiting sequence possible. Sketch
such a function.

Problem 2: Interpolation/Approximation

(a) Define what it means for a polynomial pN (x) to be a minimax approximation of degree N .

(b) Find the first degree Taylor polynomial approximating ex in the interval [−1, 1] centered at
a = 0. Then find the maximum norm of the error in this approximation.

(c) Find the first degree polynomial least squares approximation of the function ex that minimizes
the error in the following norm:

∥f − g∥ :=

√∫ 1

−1
|f(x)− g(x)|2dx

.
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(d) Create the polynomial that interpolates ex with the nodes x0 = −1 and x1 = 1.

(e) Which of the three polynomials that you created is the closest to the optimal approximating
polynomial in the minimax sense and why?

Problem 3: Quadrature

Gaussian quadratures that approximate as follows∫ 1

−1
f(x)dx ∼

N∑
k=0

wkf(xk)

where the quadrature nodes include the endpoints (i.e. x0 = −1 and xN = 1) are called Gauss-
Legendre-Lobatto quadratures.

(a) Show that if the interior nodes x1, . . . , xN−1 in the quadrature are given by the roots of
P ′
N (x) where PN (x) is the N th degree Legendre polynomial, then the quadrature is exact for

polynomials up to degree 2N − 1.
Hint: The following recurrence relation is true:

(x2 − 1)P ′
N (x) = xPN (x)− PN−1(x)

(b) Find the 4−point Gauss-Legendre-Lobatto quadrature (nodes and weights) for approximating
the integral

∫ 1
−1 f(x)dx.

It is enough to set up a closed formula which evaluates each of the weights independently.
Hint: The three term recursion for Legendre polynomials is given by

P0(x) = 1, P1(x) = x, kPk(x)− (2k − 1)xPk−1(x) + (k − 1)Pk−2(x) = 0

Problem 4: Linear algebra

In some computational settings a block LU decomposition is useful. In this problem you will build
the block LU factorization of a matrix and determine the computational complexity of using such
a technique for solving a linear system.

(a) Consider the 2n× 2n block matrix

A =

[
A11 A12

A21 A22

]
where each block is an n× n matrix. Derive the matrices L̂21 and Â22 such that[

A11 A12

A21 A22

]
=

[
I 0

L̂21 I

] [
A11 A12

0 Â22

]
.

(b) What is the computational cost in the big O sense for constructing the factorization and
solving a linear system Ax = b with the precomputed factorization? The answer should be
in terms of the number of blocks and the size of the blocks. Provide justification for your
answer.
Note: you should assume that any inverse created while making the factorization is available
for the solve stage.
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(c) Building off your work in part (a), derive the formula for a 3n× 3n block LU factorization of
a matrix A where each of blocks is of size n× n. This means that

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


where each bock is an n× n matrix. Hint: Blocking will be helpful.

(d) What is the computational cost in the big O sense for constructing the factorization and
solving a linear system Ax = b with the precomputed factorization in part (b)? The answer
should be in terms of the number of blocks and the size of the blocks. Provide justification
for your answer.
Note: you should assume that any inverse created while making the factorization is available
for the solve stage.

Problem 5: Numerical ODEs

Consider the following implicit three-step method

yn+3 − yn = h

[
µf(tn+3, yn+3) +

9

8
f(tn+2, yn+2) +

9

8
f(tn+1, yn+1) +

3

8
f(tn, yn)

]
with undetermined coefficient µ to be designed to numerically solve

y′ = f(t, y), y(t0) = y0

i) Determine the value of µ that makes this scheme consistent.

ii) Determine the order of the consistent scheme by looking at the truncation error.

iii) Is the consistent scheme convergent?

Problem 6: Numerical PDEs

Consider the initial value problem for one-dimensional wave propagation

∂ttu = c2∂xxu, t ≥ 0, u(x, 0) = f(x), ut(x, 0) = g(x).

(a) An explicit time-stepping numerical method using central differences to discretize space and
time derivatives gives

U(x, t+ k)− 2U(x, t) + U(x, t− k) = α2 [U(x+ h, t)− 2U(x, t) + U(x− h, t)]

where α = c(h/k), k = ∆t and h = ∆x. Assuming U(x, t) = ζt/keiωh, a Von Newmann
analysis performed on this disctetization gives the amplification equations

ζ2 − 2βζ + 1 = 0 where β = 1− 2α2 sin2
(
ωh

2

)
.

Show that the scheme is conditionally stable and establish explicitly the stability condition.
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(b) Consider the following implicit time-stepping numerical method using central differences to
discretize space and time derivatives

U(x, t+ k)− 2U(x, t) + U(x, t− k) =
α2

2
[U(x+ h, t− k)− 2U(x, t− k) + U(x− h, t− k)] (1)

+
α2

2
[U(x+ h, t+ k)− 2U(x, t+ k) + U(x− h, t+ k)] (2)

(i) Find the amplification equation. (β = 1 + 2α2 sin2
(
ωh
2

)
is a useful definition).

(ii) Determine whether the scheme is conditionally or absolutely stable.
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