
Numerical Analysis Preliminary Exam
10 am to 1 pm, August 20, 2018

Instructions. You have three hours to complete this exam. Submit solutions to four (and no
more) of the following six problems. Please start each problem on a new page. You MUST prove
your conclusions or show a counter-example for all problems unless otherwise noted. Do not write
your name on your exam. Write your student ID number.

Problem 1: Rootfinding

Iterative sequences very reminiscent of those arising when using Newtons method for root finding
(either for a single equation or for a system of equations) can arise also in a number of other contexts.
For exanple, if one starts with

a0 =
√

2− 1, b0 = 6− 4
√

2

and then iterates for k = 0, 1, 2, . . .

ak+1 =
1− (1− a4k)1/4

1 + (1− a4k)1/4
, bk+1 = bk(1 + ak+1)

4 − 22k+3ak+1(1 + ak+1 + a2k+1)

it will turn out that ak → 0 and bk → 1/π.

(a) In the same sense as we describe typical Newton iteration convergence as quadratic, determine
the convergence rate of each of the two sequences above.

(b) Give a rough estimate of how high we need k to be if we want the approximation for π to
become correct to over 1,000 decimal places.

Problem 2: Interpolation & Approximation

(a) Let the entries of x = [x0, x1, . . . , xN−1]
T be N discrete samples of a continuous function f ,

observed at timeponts tk = 2πk/N , k = 0, 1, . . . , N − 1. What is the connection between the
trigonometric interpolation of f at (tk, xk), k = 0, 1, . . . , N − 1, and the discrete Fourier transform
X = FNx, where FN = [fpq] is the Vandermonde matrix with

fpq = ωpqN

ωN = e−2πi/N .

(b) Denote the DFT operator as F , the inverse DFT operator as F−1, and a time series of data as
x. Assuming the existence of a software that efficiently computes a DFT, mathematically explain
a way that this code can be used to efficiently compute an inverse DFT. In other words, how can
you compute F−1(x) using only the code that computes F and the data x?

Problem 3: Quadrature

(a) Explain how to find weights wi and nodes xi such that the quadrature
∑n

i=0wif(xi) gives the
exact solution to

∫∞
0 e−xf(x)dx whenever f is a polynomial of degree ≤ n.

1



(b) Find nodes x0 and x1 and weights w0 and w1 such that the quadrature
∑n

i=0wif(xi) gives the
exact solution to

∫∞
0 e−xf(x)dx whenever f is a polynomial of degree ≤ 1.

(c) Formulate a convergent quadrature for the integral
∫ 1
0 e

x/
√
xdx.

(d) Let I[f ] =
∫ b
a f(x)dx, and let In[f ] =

∑n
i=0wif(xi). Prove that if In integrates polynomials up

to degree n exactly and the weights wi are all positive then the quadrature is convergent for any
f ∈ C([a, b]), i.e. limn→∞ In[f ] = I[f ].

Problem 4: Numerical Linear Algebra

(a) Prove that the Gauss-Jacobi iteration is convergent whenever the coefficient matrix is strictly
diagonally dominant.

(b) Formulate the Modified Gram-Schmidt algorithm to produce an orthogonal basis for the range
of a matrix A. You may assume that A has full column rank.

(c) Suppose that λ̄ is a very good approximation (but not exact) to a simple eigenvalue λ of the
matrix A. Formulate an iterative method that will obtain a good approximation to the associated
eigenvector after a very small number of iterations.

Problem 5: ODEs

The following matlab code produces the following figure

-1 1 2 3 4 5 6 7 8

-3

-2

-1

1

2

3

This figure displays the boundary of the stability domain for a certain consistent linear multistep
method (LMM).

(a) Write down the formula for this LMM in the conventional form of coefficients for y(t) and
y′(t) = f(t) at a sequence of equispaced t levels. Does this scheme go under a well-known name?

(b) Determine if the stability domain is given by the inside or the outside (or neither) of the shown
curve.

(c) Determine if the scheme satisfies the root condition.

2



Problem 6: PDEs

Consider the partial differential equation defined in the (t, x)-domain

utt = 2uxx

−1 ≤ x ≤ 1

0 < t

with boundary and initial conditions

u(t,−1) = u(t, 1) = 0 ; t > 0

u(0, x) = e−x
2 − e−1 ; −1 ≤ x ≤ 1

ut(0, x) = (x+ 1)(x− 1) ; −1 ≤ x ≤ 1

and spatial discretization with stepsize h and time discretization with stepsize k.

(a) Create an explicit O(h2 + k2) finite difference approximation to the solution.

(b) How would one accurately compute the solution at the first timepoint t1 = k?

(c) How would one choose the sizes of h and k sufficient to maintain stability?

3


