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Modulated periodic interfacial waves along a conduit
of viscous liquid are explored using nonlinear wave
modulation theory and numerical methods. Large-
amplitude periodic-wave modulation (Whitham)
theory does not require integrability of the underlying
model equation, yet often either integrable equations
are studied or the full extent of Whitham theory is not
developed. Periodic wave solutions of the nonlinear,
dispersive, non-integrable conduit equation are
characterized by their wavenumber and amplitude.
In the weakly nonlinear regime, both the defocusing
and focusing variants of the nonlinear Schrödinger
(NLS) equation are derived, depending on the carrier
wavenumber. Dark and bright envelope solitons are
found to persist in long-time numerical solutions
of the conduit equation, providing numerical
evidence for the existence of strongly nonlinear, large-
amplitude envelope solitons. Due to non-convex
dispersion, modulational instability for periodic
waves above a critical wavenumber is predicted and
observed. In the large-amplitude regime, structural
properties of the Whitham modulation equations are
computed, including strict hyperbolicity, genuine
nonlinearity and linear degeneracy. Bifurcating from
the NLS critical wavenumber at zero amplitude is an
amplitude-dependent elliptic region for the Whitham
equations within which a maximally unstable periodic
wave is identified. The viscous fluid conduit system
is a mathematically tractable, experimentally viable
model system for wide-ranging nonlinear, dispersive
wave dynamics.

1. Introduction
Nonlinear wave modulation is a major mathematical
component of the description of dispersive hydrodyna-
mic phenomena. Dispersive hydrodynamics encompass

2016 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. A computed periodic wave solution to the conduit equation with wavenumber k = 2, amplitude a= 1.5 and unit
mean. (Online version in colour.)

the study of fluid-like media where dissipative effects are weak compared to dispersion
[1]. Solitary waves and dispersive shock waves (DSWs) are typical coherent structures.
Model equations include the integrable Korteweg–de Vries (KdV) and nonlinear Schrödinger
(NLS) equations as well as non-integrable counterparts that are important for applications to
superfluids, geophysical fluids and laser light. Modulation theory assumes the existence of
a multi-parameter family of nonlinear, periodic travelling wave solutions whose parameters
change slowly relative to the wavelength and period of the periodic solution under perturbation.
Such variation is described by modulation equations. In the weakly nonlinear regime, the NLS
equation is a universal model for the slowly varying envelope and phase, incorporating both
cubic nonlinearity and dispersion. In the large-amplitude regime, the Whitham equations [2]
describe slow modulations of the wave’s mean, amplitude and wavenumber. At leading order,
they are a dispersionless system of quasi-linear equations.

In this paper, we investigate nonlinear wave modulations in both the weakly nonlinear and
large-amplitude regimes for the dimensionless conduit equation

At + (A2)z − (A2(A−1At)z)z = 0. (1.1)

This equation approximately models the evolution of the circular interface, with cross-sectional
area A at time t and vertical spatial coordinate z, separating a light, viscous fluid rising buoyantly
through a heavier, more viscous, miscible fluid at small Reynolds numbers [3,4]. Our motivation
for studying equation (1.1) is twofold. First, the conduit equation is not integrable [5], so there are
mathematical challenges in analysing its rich variety of nonlinear wave features. Second, equation
(1.1) is an accurate model of viscous fluid conduit interfacial waves where hallmark experiments
have been performed on solitary waves [6–8], their interactions [3,9,10] and DSWs [11]. We believe
the conduit system is an ideal model for the study of a broad range of dispersive hydrodynamic
phenomena.

Indeed, in this work, we elucidate additional nonlinear wave phenomena predicted by
equation (1.1) by analysing its weakly nonlinear, NLS reduction, the structural properties of
the large-amplitude Whitham equations, and numerical simulations. An example of a non-
modulated periodic wave is shown in figure 1 that defines the wave’s mean φ̄, amplitude a,
wavenumber k, minimum φ0, and phase velocity cp =ω/k (ω is the wave’s frequency). We identify
persistent bright and dark envelope soliton solutions in both the weakly nonlinear, NLS regime
and the large-amplitude, strongly nonlinear regime. The quasi-linear Whitham equations are
analysed asymptotically and with numerical computation. Regions in parameter space of strict
hyperbolicity, ellipticity and linear degeneracy are identified. The elliptic regime corresponds to
modulationally unstable periodic waves and a maximally unstable wave is identified.

(a) Background on viscous fluid conduits
Conduits generated by the low Reynolds number, buoyant dynamics of two miscible fluids with
differing densities and viscosities were first studied in the context of geological and geophysical
processes [12]. A system of equations describing the dynamics of melted rock within a solid rock
matrix was derived by treating molten rock and its solid, porous surroundings as two fluids with a
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large density and viscosity difference [13]. Under appropriate assumptions, the family of magma
equations

ϕt + (ϕn)x − (ϕn(ϕ−mϕt)x)x = 0, (1.2)

describing the evolution of the volume fraction ϕ of molten rock, can be derived [14,15]. There
are two constitutive model parameters (n, m) that relate the porosity of the rock matrix to its
permeability and viscosity, respectively. Physical values of the parameters are 2 ≤ n ≤ 5, 0 ≤ m ≤ 1.
The conduit equation (1.1) happens to coincide with the magma equation (1.2) when (n, m) =
(2, 1) [3]. For this reason, viscous fluid conduits were utilized as a laboratory model of magma
dynamics. The conduit equation can be derived directly from the Stokes equations for two viscous
fluids under a long-wave, high-viscosity contrast assumption [4]. Viscous fluid conduits, contrary
to magma, are easily accessible in a laboratory setting, typically with a sugar solution or glycerine
for the exterior fluid, and a dyed, diluted version of the same for the interior fluid [3,6,9,11].

Early experiments primarily explored the development of the conduit itself, which results in
a diapir followed by a periodic wavetrain [6,12]. Solitary waves in an established conduit have
also been extensively studied, including their amplitude–speed relation, interactions and fluid
transport properties [3,6–8,10]. Experiments have also shown that interactions between solitons
are nearly elastic, with a phase shift the primary quantifiable change [8,10]. Furthermore, soliton
interaction geometries predicted by Lax for the KdV equation [16] were observed and agreed well
with numerical simulations [10]. This is particularly notable because the Lax categories persisted
into the large-amplitude regime, although unlike KdV, the short-wavelength behaviour of conduit
dispersion is bounded, akin to the Benjamin–Bona–Mahoney (BBM) equation [10]. Recently,
dispersive shock waves were observed, yielding good agreement with predictions from Whitham
averaging theory [11]. The accompanying observations of soliton–DSW interaction suggest a high
degree of coherence, i.e. the sustenance of dissipationless/dispersive hydrodynamics over long
spatial and temporal time scales. It is for this reason that we further investigate modulations of
periodic conduit waves.

(b) Properties of the conduit equation
To fully describe the two-fluid interface of the conduit system, one can consider the full Navier–
Stokes equations with boundary conditions along a moving, free interface. However, in the
low Reynolds number, small interfacial slope, long-wave regime, a balance between the viscous
stress force of the exterior fluid and the buoyancy force acting on the interior fluid leads to the
asymptotically resolved conduit equation (1.1) with no amplitude assumption [4,6]. The force
balance is achieved with small interfacial slopes on the order of the square root of the ratio of the
interior to exterior fluid viscosities.

The conduit equation (1.1) has been studied since the 1980s and is known to have exactly two
conservation laws [17,18]:

At + (A2 − A2(A−1At)z)z = 0

and

(
1
A

+ A2
z

A2

)
t

+
(

Atz

A
− AzAt

A2 − 2 ln A
)

z
= 0.

⎫⎪⎪⎬
⎪⎪⎭ (1.3)

The conduit equation itself corresponds to conservation of mass and obeys the scaling invariance

Ã = A
A0

, z̃ = A−1/2
0 z and t̃ = A1/2

0 t. (1.4)

The linearization of the conduit equation upon a unit area background admits trigonometric
travelling wave solutions subject to the frequency dispersion relation

ω0(k) = 2k
1 + k2 , (1.5)
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with wavenumber k, similar to the bounded dispersion of the BBM equation. This leads to the
linear phase cp and group cg velocities

cp(k) = ω0(k)
k

= 2
1 + k2 and cg(k) =ω′

0(k) = 2(1 − k2)
1 + k2 . (1.6)

Note that cg < cp for k> 0. While the phase velocity is always positive, the group velocity is
negative for k> 1. Failure of the Painlevé test suggests that the conduit equation is not completely
integrable [5]. The conduit equation is globally well-posed for initial data A(·, 0) − 1 ∈ H1(R), with
A(z, 0) physically relevant data bounded away from zero in order to avoid the singularity [19].

Solitary waves have been studied numerically for the more general magma equation (1.2),
where it has been found that they exhibit near-elastic interactions resulting in a phase shift and
a physically negligible dispersive tail [10,20,21]. The asymptotic stability of solitary waves has
also been proved [22]. General (unmodulated) periodic wave solutions have been found, and
an implicit dispersion relation has been computed for these waves [6]. In the long-wavelength,
small-amplitude regime, the conduit equation reduces to KdV [23]. However, the fact that solitary
waves exhibit KdV-like interaction behaviour including almost elastic interactions, the three Lax
interaction categories [10] and coherent interactions with DSWs [11], all for strongly nonlinear,
large-amplitude solitary waves is notable.

There have been several works that apply Whitham modulation theory to the magma
equations (1.2). Marchant & Smyth [24] considered equation (1.2) with (n, m) = (3, 0), describing
DSWs and some structural properties of the Whitham equations. Modulations of periodic
travelling waves in the magma equation (1.2) and a generalization of it were investigated in
the weakly nonlinear, KdV regime [25]. Modulated periodic waves in the form of DSWs were
investigated for the entire family of magma equations (1.2) in [26]. This work differs from previous
studies by concentrating on the case (n, m) = (2, 1) for the conduit equation, identifying new
coherent structures (envelope solitons) and determining structural properties of the associated
Whitham equations (hyperbolicity, ellipticity, linear degeneracy).

(c) Outline of this work
The paper is organized as follows. Periodic travelling wave solutions to the conduit equation
are studied in §2 both numerically and asymptotically in the weakly nonlinear regime. In §3,
we consider weakly nonlinear periodic wave modulations and include long-wave dispersion
to derive the NLS equation. By an appropriate choice of the periodic travelling wave’s
wavenumber, both the focusing and defocusing variants of the NLS equation are possible. We
numerically demonstrate the persistence of large-amplitude dark and bright envelope solitary
wave solutions in the full conduit equation. In §4, we analyse modulated periodic waves of
arbitrary amplitude via the conduit Whitham modulation equations. A weakly nonlinear analysis
and direct numerical computation are used to determine structural properties of the Whitham
equations including hyperbolicity or ellipticity and genuine nonlinearity or linear degeneracy.
Consequences for the stability of periodic waves are examined. The manuscript is concluded with
a discussion of the implications of this work in §5.

2. Periodic travelling wave solutions
We seek periodic travelling wave solutions to equation (1.1) in the form A(z, t) = φ(θ ), θ = kz − ωt,
φ(θ + 2π ) = φ(θ ) for θ ∈ R. Inserting this ansatz into equation (1.1) yields

− ωφ′ + k(φ2)′ + ωk2(φ2(φ−1φ′)′)′ = 0. (2.1)

Integrating twice results in

(φ′)2 = g(φ) ≡ − 2
k2 φ − 2

ωk
φ2 lnφ + A + Bφ2, (2.2)

where A and B are real integration constants.
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The above equation exhibits at most three real roots [26]. When there are three distinct roots,
a periodic solution oscillates between the largest two. The solution can therefore be parametrized
by three independent variables. Defining the wave minimum φ0 according to φ0 = minθ φ(θ ), we
use the following physical parametrization:

wavenumber: k,

wave amplitude: a = max
θ∈[0,π]

φ(θ ) − φ0

and wave mean: φ̄ ≡ 1
π

∫π
0
φ(θ ) dθ = 1

π

∫φ0+a

φ0

φ dφ√
g(φ)

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

The requirement that φ is 2π -periodic is enforced through

π =
∫π

0
dθ =

∫φ0+a

φ0

dφ√
g(φ)

, (2.4)

where, in (2.3) and (2.4), we have used the even symmetry of solutions to equation (2.2). Given
(k, a, φ̄), the relations (2.3) and (2.4) determine the wave frequency ω=ω(k, a, φ̄) and the wave
minimum φ0 = φ0(k, a, φ̄). The extrema requirements g(φ0) = g(φ0 + a) = 0 determine A and B from
equation (2.2).

Owing to the scaling invariance equation (1.4), the wave mean can be scaled to unity. This
implies that only ω(k, a, 1) and φ0(k, a, 1) need be determined. Then the general cases follow
according to

ω(k, a, φ̄) = φ̄1/2ω(φ̄1/2k, φ̄−1a, 1) and φ0(k, a, φ̄) = φ̄φ0(φ̄1/2k, φ̄−1a, 1). (2.5)

We therefore define the unit-mean dispersion and wave solution according to

ω̃(k̃, ã) =ω(k̃, ã, 1) and φ̃(θ ; k̃, ã) = φ(θ ; k̃, ã, 1). (2.6)

We will use the variables (φ̃, ω̃, k̃, ã) whenever we are assuming a unit mean solution.

(a) Stokes expansion
We can obtain approximate periodic travelling wave solutions in the weakly nonlinear regime via
the Stokes wave expansion [27]:

φ̃ = 1 + εφ̃1 + ε2φ̃2 + ε3φ̃3 + · · · (2.7)

and
ω̃= ω̃0 + ε2ω̃2 + · · · , (2.8)

where 0< ε� 1 is an amplitude scale. Inserting this ansatz into equation (2.1), equating like
coefficients in ε and enforcing solvability conditions yield the approximate solution

φ̃1(θ ) = cos θ , ω̃0(k) = 2k̃

1 + k̃2
, φ̃2(θ ) = 1

6k̃ω̃0
cos 2θ and ω̃2(k̃) = 1 − 8k̃2

48k̃(1 + k̃2)
, (2.9)

where ω̃0 is the unit mean linear dispersion relation (1.5). Setting the amplitude ã = 2ε, the
approximate periodic wave solution is

φ̃(θ , k̃, ã) = 1 + ã
2

cos θ + ã2(1 + k̃2)

48k̃2
cos 2θ + O(ã3) (2.10)

and

ω̃(k̃, ã) = 2k̃

1 + k̃2
+ ã2 1 − 8k̃2

48k̃(1 + k̃2)
+ O(ã3). (2.11)

In figure 2, this solution is compared to numerically computed periodic waves (numerical
methods are described in appendix A(a)). The frequency and wave profile of the Stokes expansion
accurately describe some periodic conduit waves, even for O(1) amplitudes, provided the
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Figure 2. Comparison of the Stokes wave expansion solution (dashed lines) to the numerically computed solution (solid lines)
for three different waves with unit mean. Here (k̃, ã) are ( 14 , 1) (black), (2, 2) (blue) and (1, 0.5) (red). Note that the approximate
and numerical solutions for (k̃, ã)= (1, 0.5) are essentially indistinguishable. (Online version in colour.)
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Figure 3. (a) Contour plot of numerically computed dispersion relation. (b) Numerically computed phase velocity. (c)
Relative error between numerically computed dispersion ω̃(k̃, ã) and approximate dispersion ω̃0(k̃) + ã2ω̃2(k̃). Markers (×××)
correspond to waves plotted in figure 2.

wavenumber is appropriately chosen. However, even at moderately small wavenumbers, the
expansion rapidly breaks down. This is quantified in figure 3. Figure 3a,b shows the dispersion
and phase velocities for numerically computed periodic waves, and figure 3c compares the full,
nonlinear dispersion ω̃(k̃, ã) to ω̃0(k̃) + ã2ω̃2(k̃). The dispersion relation agrees exceedingly well for
k̃> 1 and ã � 1, but deviates for larger amplitudes and wavenumbers less than 0.5.

Of interest is that the approximate solution (2.10) can result in an unphysical, negative conduit
cross-sectional area. The minimum of the approximate solution φ̃(θ ) occurs when θ = π . Equating
the minimum to zero, we find that physical, positive values for approximate φ̃ are restricted to
ã< a0, where a0 = 4

(
3 − √

6
)≈ 2.20, which is well beyond our assumption of small amplitude

0< ã � 1.

3. Weakly nonlinear, dispersive modulations
The aim of this section is to describe wave modulation in the weakly nonlinear, dispersive regime.
The approximate NLS equation is found using multiple scales in appendix B by seeking a solution
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in the form [2,28]

A(z, t) = 1 + ε
[√

nB eiθ + c.c.
]+ ε2

[
nB2

3k̃ω̃0
e2iθ + c.c. + M

]
+ O(ε3)

and M = (3k̃ − 1)(1 + k̃2)

k̃2(k̃2 + 3)
n|B|2, n(k̃) = 3 + 5k̃2 + 8k̃4

3k̃(k̃2 + 1)(k̃2 + 3)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

where ‘c.c.’ denotes complex conjugate and ε is an amplitude scale. By introducing the standard,
scaled coordinate system

τ = ε2t and ζ = ε√
|ω̃′′

0 |
(z − ω̃′

0t), (3.2)

we obtain the NLS equation for the complex envelope B(ζ , τ )

iBτ + σ

2
Bζ ζ + |B|2B = 0, (3.3)

where σ = sgn ω̃′′
0(k̃) denotes the dispersion curvature. As

ω̃′′
0(k̃) = 4k̃(k̃2 − 3)

(1 + k̃2)3
,

the NLS equation (3.3) is defocusing when 0< k̃<
√

3, and focusing for k̃>
√

3. This result
effectively splits periodic wave solutions of the conduit equation into two regimes. For the
defocusing case, weakly nonlinear periodic waves are modulationally stable, and dark envelope
solitons are predicted, which, when combined with the ansatz (3.1), take the form (e.g. [28])

B(ζ , τ ) = eiτ+iψ0 [i cosα + sinα tanh[sinα(ζ − cosατ − ζ0)]], (3.4)

with arbitrary, real constants ζ0, ψ0 and α, where 0<α ≤ π/2 is the phase jump across the soliton.
The grey soliton reduces to a black soliton when α = π/2.

For the focusing case, periodic waves are modulationally unstable [2,29]. Bright envelope
solitons for the NLS equation exist, which have the form

B(ζ , τ ) = eiτ/2+iΘ0 sech(ζ − ζ0), (3.5)

where ζ0 and Θ0 are arbitrary, real constants. To validate these approximate solutions, we
numerically simulate the conduit equation (1.1) with envelope soliton initial conditions (3.1) and
(3.4) or (3.1) and (3.5), depicted in figure 4a,b. In figure 4a, a black soliton is observed to coherently
propagate, maintaining essentially the same shape. The NLS approximation is asymptotically
valid up to times t =O(1/ε2). For the simulation in figure 4a, ε= ã/4 = 0.05 so that 1/ε2 = 400.
The black envelope soliton shows no sign of instability over times up to t = 1000. Figure 4b
shows the long-time evolution of an envelope bright soliton. The envelope appears to steepen and
become peaked by t = 1000 but otherwise maintain its essential structure. The observed speeds
of propagation of the black and bright solitons are 0.0002 and −0.1589 very close to the predicted
group velocities 0 and −0.16, respectively.

We also numerically studied the large-amplitude regime with dark and bright envelope soliton
initial conditions. Figure 5a shows the numerical evolution of dark envelope soliton initial data
(3.1), (3.4) for ã = 1.6, k̃ = 1,α = π/2. The initial data apparently breaks up into three coherent
structures. Two shallow amplitude modulations propagate in opposite directions and a large-
amplitude dip propagates very slowly. To verify the coherence of this large-amplitude structure,
we isolate it from the fast nonlinear waves by extracting the solution at t = 750 over the truncated
domain z ∈ [100, 175] and use this as an initial condition for the conduit equation. Additional
periods of the unmodulated wave were prepended to the profile in order to increase the spatial
domain. The evolution is shown in figure 5b, displaying a remarkable coherence and persistence
out to t = 1000.

Figure 6a depicts the evolution of bright envelope soliton initial conditions with ã = 0.6,
k̃ = 3. The initial envelope appears to split into two coherent bright envelope structures and
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Figure 4. Evolution ofweakly nonlinear envelope soliton initial conditions for the conduit equation (1.1). (a) Approximate black
soliton initial condition (3.4)with ã= 0.2, k̃ = 1,α = π/2. (b) Approximate bright soliton initial condition (3.5)with ã= 0.2,
k̃ = 3. (Online version in colour.)
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Figure 5. Evolution of large-amplitude dark envelope soliton initial conditions for the conduit equation (1.1). (a) Approximate
black soliton initial condition (3.4) with ã= 1.6, k̃ = 1,α = π/2 breaking up into multiple coherent ‘dark’ wave structures.
(b) The large amplitude dark structure from (a) is isolated and evolved, maintaining its coherence. (Online version in colour.)

small-amplitude dispersive radiation. The large-amplitude wave is extracted from the solution at
t = 1000 over the truncated domain z ∈ [350, 360] and superimposed on a unit background and
then used as a new initial condition for the conduit equation. The result is shown in figure 6b that
shows the persistence of a large-amplitude envelope structure accompanied by the emission of
small-amplitude dispersive radiation.

These results reflect the fact that the NLS approximation models the envelope of a weakly
nonlinear, dispersive carrier wave. Yet numerical evolution of large-amplitude initial data present
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bright soliton initial condition (3.4) with ã= 0.6, k̃ = 3 breaking up into two coherent ‘bright’ wave structures and small-
amplitude dispersive radiation. (b) The largest amplitude bright structure from (a) is isolated and evolved, maintaining its
coherence. (Online version in colour.)

intriguing coherent structures deserving of further study. We now turn to the Whitham equations
for an asymptotic description of nonlinear wave modulations in the moderate- to large-amplitude
regime. However, the trade-off for using these quasi-linear equations is their lack of dispersion at
the first order of approximation; consequently, they cannot describe envelope solitons.

4. Whitham equations
To describe modulated, large-amplitude periodic waves, we appeal to the Whitham modulation
equations. Whitham’s original formulation invoked averaged conservation laws [30], later shown
to be equivalent to a perturbative, multiple-scales reduction [31]. For completeness, we have
implemented both approaches in appendix C. For this, we seek modulations of an arbitrary
amplitude, 2π -periodic, travelling wave solution φ to equation (1.1) (see §2). As we will
incorporate only the leading-order Whitham equations, the large parameter 1/ε here corresponds
to the time scale of their validity. Note that the lack of an amplitude restriction in leading order
Whitham modulation theory is at the expense of a shorter time scale of validity relative to the
O(1/ε2) time scale for the small-amplitude NLS modulation (3.3).

It is convenient to express the Whitham equations in the conservative form

P t + Qz = 0, P =

⎡
⎢⎣φ̄I1

k

⎤
⎥⎦ and Q =

⎡
⎢⎣I2

I3
ω

⎤
⎥⎦ , (4.1)

introducing the averaging integrals

I1 = φ̄−1 + k2g(φ)/φ2, I2 = φ̄2 − 2kωg(φ) and I3 = −2lnφ. (4.2)

We recall the defining ordinary differential equation (ODE) φ′2 = g(φ) (2.2) and use the notation

f̄ = 1
2π

∫ 2π

0
f (θ ) dθ .
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The density P and flux Q can be expanded in terms of the modulation variables q = (k, a, φ̄)T to
obtain the quasi-linear form of the Whitham equations

qt + Aqz = 0, (4.3)

where

A =
(
∂P
∂q

)−1
∂Q
∂q

=

⎡
⎢⎣

ωk ωa ωφ̄
I3,k−I1,kωk−I2,kI1,φ̄

I1,a

I3,a−I1,kωa−I2,aI1,φ̄
I1,a

I3,φ̄−I1,kωφ̄−I2,φ̄ I1,φ̄
I1,a

I2,k I2,a I2,φ̄

⎤
⎥⎦ . (4.4)

This non-conservative form of the Whitham equations is only valid where the matrix ∂P/∂q is
invertible.

The scaling invariance (1.4) can be used so that the dependence on φ̄ in the Whitham equations
is explicit and the averaging integrals need be computed only over the scaled variables k̃ and ã.
Then the integrals (4.2) can be written

I1 = Ĩ1

φ̄
, I2 = φ̄2 Ĩ2 and I3 = Ĩ3 − 2 ln φ̄, (4.5)

where Ĩi = Ĩi(k̃, ã), i = 1, 2, 3. Therefore, computation of the averaging integrals is only required for
(k̃, ã). The Whitham equations in the scaled variables q̃ = (k̃, ã, φ̄) are

q̃t + Ãq̃z = 0 and Ã =
(
∂q
∂q̃

)−1
A ∂q
∂q̃

,
∂q
∂q̃

=

⎡
⎢⎢⎣
φ̄−1/2 0 −1

2
φ̄−3/2k̃

0 φ̄ ã
0 0 1

⎤
⎥⎥⎦ . (4.6)

We will be interested in structural properties of the Whitham equations such as hyperbolicity
(strict or non-strict), ellipticity and genuine nonlinearity. All of these criteria rely on the
eigenvalues c and eigenvectors r of the Whitham equations that satisfy

(A − cI)r = 0. (4.7)

In general, we expect three eigenpairs {(cj, rj)}3
j=1 with either all real eigenvalues c1 ≤ c2 ≤ c3 when

the Whitham equations are hyperbolic or, in the case of one real and two complex conjugate
eigenvalues, the Whitham equations are elliptic. If the eigenvalues are all real and they are strictly
ordered c1 < c2 < c3, then the Whitham equations are strictly hyperbolic.

The coefficient matrix Ã is a similarity transformation of A, so its eigenvalues are the same.
We see that Ã exhibits the following property:

Ã(k̃, ã, φ̄) =

⎡
⎢⎣1 0 0

0 1 0
0 0 φ̄

⎤
⎥⎦ Ã(k̃, ã, 1)

⎡
⎢⎣φ̄ 0 0

0 φ̄ 0
0 0 1

⎤
⎥⎦ , (4.8)

which can be used to show

c(k̃, ã, φ̄) = φ̄c(k̃, ã, 1), r(k̃, ã, φ̄) =

⎡
⎢⎣φ̄

−1 0 0
0 φ̄−1 0
0 0 1

⎤
⎥⎦ r(k̃, ã, 1). (4.9)

Therefore, the hyperbolicity/ellipticity of the Whitham equations is independent of the mean φ̄.
The unit mean eigenvalues c̃ and eigenvectors r̃ are defined according to

c̃(k̃, ã) = c(k̃, ã, 1) and r̃(k̃, ã) = r(k̃, ã, 1). (4.10)

Using the identities in (4.9), we find that the quantity

μ≡ ∇q̃c(k̃, ã, φ̄) · r(k̃, ã, φ̄) =

⎡
⎢⎣c̃k̃

c̃ã
c̃

⎤
⎥⎦ · r̃ (4.11)
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is independent of φ̄, i.e. μ=μ(k̃, ã). If μ 
= 0, then the Whitham equations are genuinely nonlinear
[2]. For those values of k̃ and ã where μ= 0, the Whitham equations are linearly degenerate. The
sign definiteness of μ corresponds to a monotonicity condition that is required for the existence
of simple wave solutions to the Whitham equations, of particular importance for the study of
DSWs [1].

(a) Weakly nonlinear regime
Now consider equation (4.4) in the small a regime by inserting the Stokes expansion (2.10), (2.11),
yielding

A =

⎡
⎢⎢⎢⎢⎢⎣

ω0,k 2aω2 ω0,φ̄
a
2
ω0,kk ω0,k

a
2

4(1 + φ̄k2 + 3φ̄2k4 + φ̄3k6)
(1 + φ̄k2)3

0 2a
1 − 3φ̄k2

8(1 + φ̄k2)
2φ̄

⎤
⎥⎥⎥⎥⎥⎦+ O(a2). (4.12)

The eigenvalues of A (characteristic velocities) via (4.9) evaluated at unit mean φ̄ = 1 are

c̃1 = ω̃0,k̃ − ã
4

√
−nω̃0,k̃k̃ + O(ã2),

c̃2 = ω̃0,k̃ + ã
4

√
−nω̃0,k̃k̃ + O(ã2)

and c̃3 = 2 + O(ã2),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.13)

where n = n(k̃) is strictly positive from equation (3.1). The complex characteristic velocities occur
precisely when the NLS equation (3.3) is in the focusing regime, i.e. when k̃>

√
3. This is to be

expected [2]. The requirement −nω̃0,k̃k̃ > 0 for modulational stability is sometimes referred to as

the Benjamin–Feir–Lighthill criterion [29]. Note that we must use −n(k̃), as opposed to ω̃2(k̃) from
the Stokes expansion (2.9), in the criterion because of the generation of a mean term (cf. [2]).

Next, we determine the approximate eigenvectors r̃j associated with the approximate
eigenvalues (4.13) using standard asymptotics of eigenvalues and eigenvectors (e.g. [32]). These
approximate results are used to compute μj, j = 1, 2, 3 (4.11). The expressions are cumbersome,
so we do not report them here but there are two noteworthy findings. We find that μ1 = 0 when

ã = 6

√
2
5

33/4(√3 − k̃
)3/2 + O((√3 − k̃

)5/2), 0<
√

3 − k̃ � 1. (4.14)

Along the curve (4.14), the weakly nonlinear Whitham equations are linearly degenerate in the
first characteristic field.

We also find linear degeneracy in the second characteristic field: μ2 = 0 when ã = 18k̃2 +
O(k̃4), 0< k̃ � 1. But the weakly nonlinear Whitham equations are non-strictly hyperbolic when
ã = 12k̃2 + O(k̃4), 0< k̃ � 1, as shown by equating c̃2 = c̃3 from equation (4.13). Because non-strict
hyperbolicity implies linear degeneracy [33], there is apparently a contradiction. We argue that
this is due to the asymptotic approximations made and the poor accuracy of the approximate
periodic wave solution afforded by the Stokes expansion (2.10), (2.11) for small k̃ (cf. figures 2
and 3).

(b) Large-amplitude regime
We now investigate modulations of large-amplitude, periodic waves by direct computation of the
Whitham equations. For this, we examine the Whitham equations in the form (4.6), so that the
dependence on φ̄ is explicit. We numerically compute periodic solutions φ̃ and the corresponding
dispersion ω̃(k̃, ã) and unit-mean averaging integrals {Ĩj(k̃, ã)}3

j=1 for the equispaced, discrete

values (k̃j, ãl), k̃j = j�, ãl = l�, j, l = 1, 2, . . . , N. We chose N = 4000, �= 0.001 so that k̃N = ãN = 4.
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Figure 7. (a) Elliptic (grey) and hyperbolic (white) parameter regimes for the Whitham equations corresponding to complex
or real characteristic velocities, respectively. Stable (dots) and unstable (squares) periodic waves according to direct numerical
simulation of the conduit equation. (b) Contour plot of the imaginary part of the characteristic velocity c̃2, the approximate MI
growth rate. The maximum, 0.04795, occurs for (k̃, ã)= (2.711, 1.204). (Online version in colour.)

Derivatives of ω̃ and Ĩj with respect to k̃ and ã, required in (4.3), are estimated with sixth-
order finite differences, yielding a numerical approximation of the coefficient matrix Ã on the
discrete grid.

Using our direct computation of the coefficient matrix Ã, we determine its eigenvalues
{c̃j(k̃, ã)}3

j=1 and plot in figure 7a the region in the k̃–ã plane where the Whitham equations
are hyperbolic or elliptic. The weakly nonlinear analysis (4.13), predicts that the elliptic region
appears for k̃>

√
3, independent of ã for small ã. But our computations show that the region

depends strongly on the wave amplitude.
As noted earlier, ellipticity of the Whitham equations implies modulational instability (MI)

of the periodic travelling wave [2]. In agreement with our weakly nonlinear analysis (4.13),
we find that, in the elliptic region, c̃1 = c̃∗

2 (∗ denotes complex conjugation) and c̃3 ∈ R. We
confirm the hyperbolic/elliptic boundary by direct numerical simulation of the conduit equation
(1.1) with slightly perturbed, periodic initial data. Random, smooth noise (band-limited to
wavenumber 512) of magnitude O(10−3) was added to a periodic travelling wave initial condition
on a domain of over 100 spatial periods. This initial datum was evolved over either 100 temporal
periods or to t = 500, whichever was longer. Some waves, especially those in the small-amplitude
regime, were evolved for even longer time periods. The modulational (in)stability of several of
these runs are shown in figure 7a. We find excellent agreement with the MI predictions from
Whitham theory. The long-time evolution of two particular waves are shown in figure 8, showing
both a stable and an unstable case. The unstable case in figure 8b appears to show the formation
of large-amplitude, bright envelope coherent structures. This is additional numerical evidence for
the existence of bright envelope soliton solutions of the conduit equation.

A periodic travelling wave solution of the conduit equation (1.1) corresponds to a constant
solution q̃(z, t) = q̃0 of the Whitham equations (4.6). If we consider the stability of this solution
by linearizing the Whitham equations according to q̃(z, t) = q̃0 + beiκz+σ t, |b| � 1, we obtain the
growth rates

Re σi = κ Im ci (4.15)

for each component of the perturbation in the eigenvector basis of Ã. The physical growth rate
requires knowledge of the wavenumber κ . Because the Whitham equations are quasi-linear, first-
order equations, any wavenumber is permissible (determined by the initial data), suggesting
that the physical growth rate (4.15) is unbounded. In practice, there is a dominant wavenumber
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Figure 8. Numerical evolution of perturbed periodic wave solutions in the conduit equation. (a) Modulationally stable case:
(k̃, ã)= (2, 2). (b) Modulationally unstable case: (k̃, ã)= (3, 0.5). Top: the respective cases at the final time t = 750. (Online
version in colour.)

associated with the instability that is determined by higher order effects, which in this case
would be higher order dispersion in the Whitham equations. The NLS equation (3.3) resolves this
feature in the weakly nonlinear regime, but we are interested in large-amplitude modulations. We
therefore identify the imaginary part of the characteristic velocity c̃2 as a proxy for the growth rate
of the instability and observe in figure 7b that there is a maximum of Im(c̃2) for unit-mean periodic
waves that occurs for the wave parameters (k̃, ã) = (2.711, 1.204). We confirm that these parameters
do indeed approximately correspond to a maximally unstable periodic wave by performing
numerical simulations of the conduit equation (1.1) with initially perturbed periodic travelling
waves, using the same process as that used in the determination of modulational (in)stability. The
envelopes of these waves were extracted for each time step and then compared to the envelope of
the initial condition, giving a deviation from the expected periodic wave evolution. The growth
rate was calculated by fitting an exponential to the maximum of this deviation. From these
numerics, the maximally unstable parameters are closer to (k̃, ã) = (2.7, 1.35) than the expected
(k̃, ã) = (2.7, 1.2). The maximal growth rate for these parameters was found to be 0.0457, which
is within 5% of the maximal growth rate found via the Whitham equations if we assume a unit
perturbation wavenumber κ in (4.15).

Next, we compute the quantities {μj(k̃, ã)}3
j=1 from equation (4.11) on the discrete grid

{(k̃j, ãl)}N
j,l=1 using sixth-order finite differencing. The results are depicted in figure 9a where the

curves correspond to the largest value of k̃, given ã, such that μ changes sign. The curve where μ1
changes sign bifurcates from the edge of the elliptic region at the point (k̃, ã) = (√

3, 0
)
, agreeing

with the weakly nonlinear result (4.14) for sufficiently small ã. The curve where both μ2,3 change
sign apparently bifurcates from (0, 0) and occurs for small k̃. These results demonstrate that the
Whitham equations lack genuine nonlinearity when considered in the whole of the hyperbolic
region.

To understand the small k̃ results better, we show in figure 9b a zoom-in of this region.
The accurate determination of the loss of genuine nonlinearity in this region is numerically
challenging because the characteristic velocities c̃2,3 get very close to one another. A more
numerically stable calculation is shown by the black dashed curve in figure 9b where, for each ã, it
corresponds to the largest k̃ at which |c̃3 − c̃2|< 10−5. For parameters to the left of this curve, the
characteristic velocities remain very close to one another. It is well-known that, for example, in the
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Figure 9. (a) Loss of genuine nonlinearity in theWhitham equations. The curves correspond to regions in the k̃–ã plane where
the computed quantitiesμ2,3 (solid) orμ1 (dashed) change sign. To the right of the solid (dashed) curve,μ3 > 0,μ2 < 0
(μ1 > 0). The dashed-dotted curve corresponds to the predictionμ1 = 0 from aweakly nonlinear analysis. The elliptic region
from figure 7 is also depicted (grey). (b) Zoom-in of the small k̃ region of (a) where μ2,3 ≈ 0 (solid, noisy) approximately
corresponds to the largest k̃, to the left of which |c̃3 − c̃2|< 10−5 (dashed, smooth), i.e. approaching non-strict hyperbolicity.
(Online version in colour.)

KdV Whitham equations, the characteristic velocities get exponentially close to one another, yet
remain distinct in the small wavenumber regime [34,35]. Because non-strict hyperbolicity implies
loss of genuine nonlinearity [33], the proximity of c̃2 and c̃3 may be affecting the numerical results.
It remains to definitively determine if the Whitham equations lose strict hyperbolicity and/or
genuine nonlinearity in the small k̃ regime. Note that the curve for which μ1 = 0 in figure 9a
occurs in a strictly hyperbolic region.

5. Discussion/conclusion
Our study of the structural properties of the conduit Whitham equations sheds some light on
recent theoretical and experimental studies of dispersive shock waves. The DSW fitting method
allows one to determine a dispersive shock’s harmonic and soliton edge speeds, even for non-
integrable systems [36]. However, the method is known to break down when the Whitham
equations lose genuine nonlinearity in the second characteristic field [1,26]. It was observed in
[26] that the fitting method failed to accurately predict conduit DSW soliton edge speeds for
sufficiently large jump heights. Our results here suggest that this could be due to the loss of strict
hyperbolicity and/or genuine nonlinearity in the small wavenumber (soliton train) regime.

In addition to the hyperbolic modulation regime where DSWs and dark envelope solitons are
prominent coherent structures, we have found an elliptic regime where the periodic wave breaks
up into coherent wave-packets or bright envelope solitons. The accessibility of both hyperbolic
and elliptic modulation regimes in one system motivates further study of each and the transition
between the two. One potential future, novel direction is to explore the possibility of creating a
soliton gas [37].

It remains to generate a periodic wave from an initially uniform conduit and explore its
properties experimentally. Accurate control of wave-breaking via a dispersionless simple wave
(a rarefaction wave) has been achieved by slow modulation of the conduit area from a boundary
[11]. One generalization of this is to use simple wave solutions of the Whitham equations to
efficiently and smoothly transition between a constant conduit ã = 0 to a periodic conduit ã> 0.
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This also suggests the theoretical and experimental exploration of Riemann problems, step initial
data, for the Whitham equations themselves. Our determination of linearly degenerate curves
will inform the ability to construct simple waves connecting two generic wave states.

We have presented strong numerical evidence for the existence of large-amplitude dark and
bright envelope solitary waves in viscous fluid conduits, bifurcating from weakly nonlinear
NLS solutions. Dark envelope solitons can have either positive or negative velocities. All bright
envelope solitons for NLS have negative velocities. It remains to be determined if this is the case in
the large-amplitude case. Existing laboratory studies of viscous fluid conduits implement control
of the conduit interface by varying the injected flow rate through a nozzle at the bottom of a
fluid column. This allows for the creation of waves with positive (upward) propagation velocities
such as dark envelope solitons. If bright envelope solitons only have negative velocities, then an
alternative experimental approach will be required to create them.

We have shown that the non-convexity of the conduit linear dispersion relation leads to the
existence of elliptic Whitham equations and modulational instability. This is just one possible
implication of non-convex dispersion in dispersive hydrodynamics. We note that non-convex
dispersion in other, higher order equations has also been found to give rise to a resonance between
the DSW soliton edge and linear waves, leading to the generation of radiating DSWs [38–40].

This study has identified and categorized modulations of both small- and large-amplitude
periodic travelling waves for the conduit equation (1.1). These findings, along with previous
theoretical and experimental studies of solitons and DSWs in the strongly nonlinear regime imply
that the viscous fluid conduit system is an accessible environment in which to investigate rich and
diverse nonlinear wave phenomena.
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Appendix A. Numerical methods

(a) Periodic solutions
We compute unit-mean conduit periodic travelling wave solutions φ̃(θ ) for specified (k̃, ã) with a
Newton-GMRES iterative method [41] on the first integral of equation (2.1)

A + ω̃φ̃ − k̃φ̃2 − ω̃k̃2φ̃φ̃′′ + ω̃k̃2(φ̃′)2 = 0, (A 1)

where A ∈ R is an integration constant. We use a spectral method to compute the unit-mean cosine
series representation φ̃(θ ) = 1 +∑N

n=1 2an cos nθ . Equation (A 1) is discretized in spectral space
{an}N

n=1 with the fast and accurate computation of derivatives achieved via fast cosine transforms
(DCT II in [42]). The projection of (A 1) onto constants determines A, which we do not require
because of our imposition of unit mean. Projection of equation (A 1) onto cos(nθ ) for n = 1, . . . , N
yields N equations for the N + 1 unknowns ((an)N

n=1, ω̃). The amplitude constraint φ̃(π ) − φ̃(0) =
−4

∑
n odd an = ã closes the system of equations. We precondition the spectral equations by

dividing each by the sum of linear coefficients, shifted by 2k + 1, i.e. by ω̃ + n2ω̃k̃2 + 1. The
accurate resolution of each solution is maintained by achieving an absolute tolerance of 10−13 in
the 2-norm of the residual and choosing N so that |an| is below 5 · 10−12 for n> 3N/4. The number
of coefficients required strongly depends on the wavenumber k̃. For example, when 0.5 ≤ k̃ ≤ 4,
we find N = 26 provides sufficient accuracy, whereas for 0.002 ≤ k̃ ≤ 0.01, approaching the soliton
limit k̃ = 0 we use N = 212.

With the cosine series coefficients of φ̃(θ ) in hand, we compute the unit-mean averaging
integrals Ĩj, j = 1, 2, 3 in equations (4.5), (4.2) using the spectrally accurate trapezoidal rule. We then
use sixth-order finite differencing to compute derivatives of Ĩj and ω̃ on a grid of wavenumbers
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and amplitudes as explained in §4b. This numerically determines the Whitham equations in the
form (4.6).

(b) Time-stepping
For the direct numerical simulation of the conduit equation (1.1), it is convenient to write it in the
form of two coupled equations:

At = AP
and AP + (A2)z − (A2P z)z = 0.

⎫⎬
⎭ (A 2)

The first equation is a temporal ODE in time and the second equation is a linear, elliptic problem
L(A)P = −(A2)z in space. We solve for P using an equispaced fourth-order finite difference
discretization and direct inversion of the resulting banded linear system. We implement time-
dependent boundary conditions with prescribed A(0, t) and A(L, t) so that the first equation in
(A 2) yields the boundary conditions for P . Time-stepping is achieved with a fourth-order, explicit
Runge–Kutta method with variable time-step (MATLAB’s ode45). The solver was validated
against computed periodic travelling wave solutions from the previous subsection. The maximum
error between the numerical solution and the periodic travelling wave solution is reported in
figure 10, demonstrating fourth-order spatial convergence.

Appendix B. Nonlinear Schrödinger equation derivation
Here, we derive an approximation of wave modulations in the small-amplitude, weakly nonlinear
regime. Consider the ansatz

A(z, t) = 1 + εA0 + ε2A1 + ε3A2 + · · · , ε→ 0, (B 1)

where Ai = Ai(θ , Z, T) for i = 0, 1, . . ., θ = k̃z − ω̃0(k̃)t, Z = εz and T = εt, where ω̃0(k̃) is the linear
dispersion relation (1.5) for unit mean. Then, at O(ε), we obtain a linear, homogeneous equation
for A0: LA0 := −ωA0,θ + 2kA0,θ + k2ωA0,3θ = 0, with solution A0 =ψ(Z, T) eiθ + c.c., where ‘c.c.’
denotes the complex conjugate of the previous terms. At O(ε2), LA1 = F1, where

F1 = e2iθ [−2ik̃ψ2] + eiθ [−ψT − k̃2ψT − 2ψZ + 2k̃ω̃0ψZ] + c.c.
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Solvability therefore implies −(1 + k̃2)[ψT + ω̃′
0(k)ψZ] ∼ εg1 + · · · , where we have introduced the

higher order correction g1. Solving for A1, we include second harmonic and mean terms A1 =
ψ2(Z, T) e2iθ /(3k̃ω̃) + c.c. + M(Z, T) with M to be determined at the next order. Solvability with
respect to constants at O(ε3) yields M = (3k̃ − 1)(1 + k̃2)k̃−2(k̃2 + 3)−1|ψ |2. Solvability with respect
to the first harmonic yields g1, which, upon entering the moving reference frame and scaling to
long time ξ = Z − ω̃′

0T, τ = εT, yields the NLS equation in the form

iψτ + ω̃′′(k̃)
2

ψξξ + 3 + 5k̃2 + 8k̃4

3k̃(k̃2 + 1)(k̃2 + 3)
|ψ |2ψ = 0. (B 2)

Rescaling according to (3.2) and B =ψ/
√

n yields the NLS equation (3.3).

Appendix C. Derivation of the Whitham equations
For completeness, we supply a synopsis of the multiple scales asymptotic derivation of the
Whitham modulation equations. For the formal derivation here, we introduce slow space and
time scales Z = εz, T = εt and consider the ansatz A(z, t) = A0(θ , Z, T) + εA1(θ , Z, T) + · · · , 0<
ε� 1, where θz = k and θt = −ω. Continuity of mixed partials θzt = θtz implies the conservation
of waves kT + ωZ = 0, one of the Whitham equations. We insert the asymptotic ansatz into the
conduit equation (1.1) and equate like orders in ε. The O(1) equation is

− ωA0,θ + 2kA0A0,θ − k2ωA0,θA0,θθ + k2ωA0A0,θθθ = 0. (C 1)

The above equation is solved with a family of periodic travelling waves parametrized by (k, a, φ̄)
(see §2) where the parameters are assumed to depend on the slow variables (Z, T). Note that in
order to remove secularity at this order, the period of the solution must be scaled to a constant
[2,31], which we choose to be 2π without loss of generality.

At the next order, O(ε), we obtain the linear problem LA1 = f where

LA1 = −ωA1,θ + (−k2ωA0,θA1,θ + 2kA0A1)θ + k2ω(A1,θθθA0 + A0,θθθA1)

and

f = −A0,T − k2A0,θθA0,T + k2A0A0,θθT − 2A0A0,Z + 2kωA0,θA0,θZ − 2kωA0A0,θθZ.

There are two solvability conditions in the form 〈w, f 〉 ≡ ∫2π
0 w(θ )f (θ ) dθ = 0, where w ∈

KerL∗ = span{1, A−2
0 } for the adjoint operator

L∗w =ωwθ + k2ω[−(A0,θw)θθ + (A0,θθw)θ + A0,3θw − (A0w)3θ ] + 2k[A0,θw − (A0w)θ ],

with 2π -periodic boundary conditions. Note that there is a third, linearly independent function
that is annihilated by L∗, but it is not 2π -periodic. Applying the two solvability conditions 〈1, f 〉 =
〈A−2

0 , f 〉 = 0, and adding the conservation of waves, we arrive at the Whitham equations

(A0)T + (A2
0 − 2kωA2

0,θ )Z = 0, (C 2)⎛
⎝ I

A0
+ k2

A2
0,θ

A2
0

⎞
⎠

T

− 2
(

ln A0

)
Z

= 0 (C 3)

and kT + ωZ = 0, (C 4)

where ḡ = 〈1, g〉. Setting ε= 1, i.e. considering the Whitham equations as the long time t � 1
asymptotic, we obtain equations (4.1).
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Averaging of the conservation laws (1.3) is achieved by inserting the ansatz A(z, t) = φ(θ ) and
averaging the densities and fluxes over a period:

φ̄t + (φ2 + ωkφ2(φ−1φθ )θ )z = 0

and (
1
φ

+ k2 φ
2
θ

φ2

)
t

+
(

−ωk
φθθ

φ
+ ωk

φθφθ

φ2 − 2 lnφ

)
z

= 0.

Integration by parts and the addition of conservation of waves yields the same set of Whitham
equations (4.1).

References
1. El GA, Hoefer MA. 2016 Dispersive shock waves and modulation theory. Physica D 333, 11–65.

(doi:10.1016/j.physd.2016.04.006)
2. Whitham GB. 1974 Linear and nonlinear waves. New York, NY: Wiley.
3. Scott DR, Stevenson DJ, Whitehead JA. 1986 Observations of solitary waves in a viscously

deformable pipe. Nature 319, 759–761. (doi:10.1038/319759a0)
4. Lowman NK, Hoefer MA. 2013 Dispersive hydrodynamics in viscous fluid conduits. Phys.

Rev. E 88, 23016. (doi:10.1103/PhysRevE.88.023016)
5. Harris SE, Clarkson PA. 2006 Painleve analysis and similarity reductions for the magma

equation. SIGMA 2, 068. (doi:10.3842/SIGMA.2006.068)
6. Olson P, Christensen U. 1986 Solitary wave propagation in a fluid conduit within a viscous

matrix. J. Geophys. Res. 91, 6367–6374. (doi:10.1029/JB091iB06p06367)
7. Whitehead JA, Helfrich KR. 1990 Magma waves and diapiric dynamics. In Magma transport

and storage (ed. MP Ryan), pp. 53–76. Chichester, UK: John Wiley & Sons.
8. Helfrich KR, Whitehead JA. 1990 Solitary waves on conduits of buoyant fluid in a more

viscous fluid. Geophys. Astro. Fluid 51, 35–52. (doi:10.1080/03091929008219850)
9. Whitehead JA, Helfrich KR. 1988 Wave transport of deep mantle material. Nature 336, 59–61.

(doi:10.1038/336059a0)
10. Lowman NK, Hoefer MA, El GA. 2014 Interactions of large amplitude solitary waves in

viscous fluid conduits. J. Fluid Mech. 750, 372–384. (doi:10.1017/jfm.2014.273)
11. Maiden MD, Lowman NK, Anderson DV, Schubert ME, Hoefer MA. 2016 Observation of

dispersive shock waves, solitons, and their interactions in viscous fluid conduits. Phys. Rev.
Lett. 116, 174501. (doi:10.1103/PhysRevLett.116.174501)

12. Whitehead JA, Luther DS. 1975 Dynamics of laboratory diapir and plume models. J. Geophys.
Res. 80, 705–717. (doi:10.1029/JB080i005p00705)

13. McKenzie D. 1984 Generation and compaction of partially molten rock. J. Petrology 25, 713–
765. (doi:10.1093/petrology/25.3.713)

14. Richter FM, McKenzie D. 1984 Dynamical models for melt segregation from a deformable
matrix. J. Geol. 92, 729–740. (doi:10.1086/628908)

15. Simpson G, Spiegelman M, Weinstein MI. 2010 A multiscale model of partial melts 1: effective
equations. J. Geophys. Res. 115, B04410. (doi:10.1029/2009JB006375)

16. Lax PD. 1968 Integrals of nonlinear equations of evolution and solitary waves. Comm. Pur.
Appl. Math. 21, 467–490. (doi:10.1002/cpa.3160210503)

17. Barcilon V, Richter FM. 1986 Nonlinear waves in compacting media. J. Fluid Mech. 164,
429–448. Digital Archive. (doi:10.1017/S0022112086002628)

18. Harris S. 1996 Conservation laws for a nonlinear wave equation. Nonlinearity 9, 187–208.
(doi:10.1088/0951-7715/9/1/006)

19. Simpson G, Spiegelman M, Weinstein MI. 2007 Degenerate dispersive equations arising in the
study of magma dynamics. Nonlinearity 20, 21–49. (doi:10.1088/0951-7715/20/1/003)

20. Scott DR, Stevenson DJ. 1984 Magma solitons. Geophys. Res. Lett. 11, 1161–1164.
(doi:10.1029/GL011i011p01161)

21. Nakayama M, Mason DP. 1991 Compressive solitary waves in compacting media. Int. J.
Nonlin. Mech. 26, 631–640. (doi:10.1016/0020-7462(91)90015-L)

22. Simpson G, Weinstein M. 2008 Asymptotic stability of ascending solitary magma waves.
SIAM J. Math. Anal. 40, 1337–1391. (doi:10.1137/080712271)

 on December 16, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1016/j.physd.2016.04.006
http://dx.doi.org/doi:10.1038/319759a0
http://dx.doi.org/doi:10.1103/PhysRevE.88.023016
http://dx.doi.org/doi:10.3842/SIGMA.2006.068
http://dx.doi.org/doi:10.1029/JB091iB06p06367
http://dx.doi.org/doi:10.1080/03091929008219850
http://dx.doi.org/doi:10.1038/336059a0
http://dx.doi.org/doi:10.1017/jfm.2014.273
http://dx.doi.org/doi:10.1103/PhysRevLett.116.174501
http://dx.doi.org/doi:10.1029/JB080i005p00705
http://dx.doi.org/doi:10.1093/petrology/25.3.713
http://dx.doi.org/doi:10.1086/628908
http://dx.doi.org/doi:10.1029/2009JB006375
http://dx.doi.org/doi:10.1002/cpa.3160210503
http://dx.doi.org/doi:10.1017/S0022112086002628
http://dx.doi.org/doi:10.1088/0951-7715/9/1/006
http://dx.doi.org/doi:10.1088/0951-7715/20/1/003
http://dx.doi.org/doi:10.1029/GL011i011p01161
http://dx.doi.org/doi:10.1016/0020-7462(91)90015-L
http://dx.doi.org/doi:10.1137/080712271
http://rspa.royalsocietypublishing.org/


19

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160533

...................................................

23. Whitehead JA, Helfrich KR. 1986 The Korteweg–deVries equation from laboratory
conduit and magma migration equations. Geophys. Res. Lett. 13, 545–546. (doi:10.1029/
GL013i006p00545)

24. Marchant TR, Smyth NF. 2005 Approximate solutions for magmon propagation from a
reservoir. IMA J. Appl. Math. 70, 796–813. (doi:10.1093/imamat/hxh069)

25. Elperin T, Kleeorin N, Krylov A. 1994 Nondissipative shock waves in two-phase flows. Physica
D 74, 372–385. (doi:10.1016/0167-2789(94)90201-1)

26. Lowman NK, Hoefer MA. 2013 Dispersive shock waves in viscously deformable media.
J. Fluid Mech. 718, 524–557. (doi:10.1017/jfm.2012.628)

27. Whitham GB. 1965 A general approach to linear and non-linear dispersive waves using a
Lagrangian. J. Fluid Mech. 22, 273–283. (doi:10.1017/S0022112065000745)

28. Ablowitz MJ. 2011 Nonlinear dispersive waves: asymptotic analysis and solitons, 1st edn.
Cambridge, UK: Cambridge University Press.

29. Zakharov VE, Ostrovsky LA. 2009 Modulation instability: the beginning. Physica D 238,
540–548. (doi:10.1016/j.physd.2008.12.002)

30. Whitham GB. 1965 Non-linear dispersive waves. Proc. R. Soc. A 283, 238–261.
(doi:10.1098/rspa.1965.0019)

31. Luke JC. 1966 A perturbation method for nonlinear dispersive wave problems. Proc. R. Soc.
Lond. A 292, 403–412. (doi:10.1098/rspa.1966.0142)

32. Hinch EG. 1991 Perturbation methods. Cambridge, UK: Cambridge University Press.
33. Dafermos CM. 2009 Hyperbolic conservation laws in continuum physics, 3rd edn. Berlin,

Germany: Springer.
34. Levermore D. 1988 The hyperbolic nature of the zero dispersion KdV limit. Commun. Part Diff.

Equ. 13, 495–514. (doi:10.1080/03605308808820550)
35. Gurevich AV, Krylov AL, El GA. 1990 Nonlinear modulated waves in dispersive

hydrodynamics. Sov. Phys. JETP 71, 899–910.
36. El GA. 2005 Resolution of a shock in hyperbolic systems modified by weak dispersion. Chaos

15, 37103. (doi:10.1063/1.1947120)
37. El GA, Kamchatnov AM. 2005 Kinetic equation for a dense soliton gas. Phys. Rev. Lett. 95,

204101. (doi:10.1103/PhysRevLett.95.204101)
38. Conforti M, Baronio F, Trillo S. 2014 Resonant radiation shed by dispersive shock waves. Phys.

Rev. A 89, 13807. (doi:10.1103/PhysRevA.89.013807)
39. El GA, Smyth NF. 2016 Radiating dispersive shock waves in non-local optical media. Proc. R.

Soc. A 472, 20150633. (doi:10.1098/rspa.2015.0633)
40. Sprenger P, Hoefer MA. In press. Shock waves in non-convex dispersive hydrodynamics.

SIAM J. Appl. Math. (http://arxiv.org/abs/1606.09229).
41. Kelley CT. 1995 Iterative methods for linear and nonlinear equations. Philadelphia, PA: SIAM.
42. Wang Z, Hunt BR. 1985 The discreteW transform. Appl. Math. Comput. 16, 19–48.

(doi:10.1016/0096-3003(85)90008-6)

 on December 16, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1029/GL013i006p00545
http://dx.doi.org/doi:10.1029/GL013i006p00545
http://dx.doi.org/doi:10.1093/imamat/hxh069
http://dx.doi.org/doi:10.1016/0167-2789(94)90201-1
http://dx.doi.org/doi:10.1017/jfm.2012.628
http://dx.doi.org/doi:10.1017/S0022112065000745
http://dx.doi.org/doi:10.1016/j.physd.2008.12.002
http://dx.doi.org/doi:10.1098/rspa.1965.0019
http://dx.doi.org/doi:10.1098/rspa.1966.0142
http://dx.doi.org/doi:10.1080/03605308808820550
http://dx.doi.org/doi:10.1063/1.1947120
http://dx.doi.org/doi:10.1103/PhysRevLett.95.204101
http://dx.doi.org/doi:10.1103/PhysRevA.89.013807
http://dx.doi.org/doi:10.1098/rspa.2015.0633
http://arxiv.org/abs/1606.09229
http://dx.doi.org/doi:10.1016/0096-3003(85)90008-6
http://rspa.royalsocietypublishing.org/

	Introduction
	Background on viscous fluid conduits
	Properties of the conduit equation
	Outline of this work

	Periodic travelling wave solutions
	Stokes expansion

	Weakly nonlinear, dispersive modulations
	Whitham equations
	Weakly nonlinear regime
	Large-amplitude regime

	Discussion/conclusion
	Periodic solutions
	Time-stepping

	References

