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Abstract – Employing the Kuramoto model as an illustrative example, we show how the use of
the mean-field approximation can be applied to large networks of phase oscillators with assorta-
tivity. We then use the ansatz of Ott and Antonsen (Chaos, 19 (2008) 037113) to reduce the
mean-field kinetic equations to a system of ordinary differential equations. The resulting formu-
lation is illustrated by application to a network Kuramoto problem with degree assortativity and
correlation between the node degrees and the natural oscillation frequencies. Good agreement is
found between the solutions of the reduced set of ordinary differential equations obtained from
our theory and full simulations of the system. These results highlight the ability of our method
to capture all the phase transitions (bifurcations) and system attractors. One interesting result is
that degree assortativity can induce transitions from a steady macroscopic state to a temporally
oscillating macroscopic state through both (presumed) Hopf and SNIPER (saddle-node, infinite
period) bifurcations. Possible use of these techniques to a broad class of phase oscillator network
problems is discussed.

Copyright c© EPLA, 2014

Introduction. – Recently there has been much inter-
est in the dynamics of large networks of coupled dynam-
ical units. Such systems are of very broad applicability
including such examples as power grids [1], networks of
interacting genes [2], neuronal networks [3], and many oth-
ers. A key question is that of how topological aspects of
the network structure affect the global macroscopic dy-
namics of the system. In this paper we will emphasize
the topological aspects of both degree distribution and
(especially) assortativity [4] (i.e., the tendency of nodes
of a certain type to preferentially link to or avoid link-
ing to nodes of similar type), and we will formulate a
mean-field approach [5,6], incorporating these topological
effects. In particular, we will consider the case in which
the dynamical units on each network node are oscillators
whose states are specified solely by their respective phases
(so-called “phase oscillators”). Thus, the amplitudes of
the nodal oscillations are fixed and are not dynamically
varying. Although there are many phase oscillator models
(e.g., neuronal models [7], models for pedestrians walking
on and interacting with a moving foot bridge [8], clapping
of hands in large audiences [9], etc.), for illustrative pur-
poses, we will focus on the particular nodal dynamics and
interaction form corresponding to the network Kuramoto

problem [5,10],

dθi

dt
= ωi + K

N∑
j=1

Aij sin(θj − θi), (1)

where the “adjacency matrix” elements Aij are either 0 or
1. Equation (1) is a generalization of the original globally
coupled (Aij = 1 for all i and j) Kuramoto model [11].

In this paper we formulate a mean-field approximation
for eq. (1). Our formulation generalizes the mean-field
formulation of ref. [5] to include directed networks, cor-
relation between node degree and frequency and, most
importantly, assortativity. The mean-field equations that
result are ostensibly very difficult to solve. However, we
will show that the ansatz of ref. [12] can be employed to
reduce the mean-field microscopic description for the prob-
ability distribution of the model states to an exact macro-
scopic description of the long-time [13] system dynamics
(a finite set of ordinary differential equations) in terms of
a set of “order parameters” [14].

As an illustration of our formulation we consider the
network Kuramoto problem with correlation between the
network degree and the node frequencies [15,16] and
with degree assortativity. An important result from this
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example is that degree assortativity can induce phase tran-
sitions from a steady macroscopic state to a temporally
oscillating macroscopic state.

Again we emphasize that the general type of formulation
used here can be employed and generalized to treat other
situations involving large phase oscillator networks.

Mean-field formulation. – We consider a random
network of N � 1 nodes. The network is constructed
as follows. There is a given degree distribution P (k),
k = (kin, kout), which specifies the number of nodes that
have kin directed links into them and kout directed links
out from them (note that P is normalized such that∑

k P (k) = N). There is a given frequency probability
distribution g(ω|k) which in general can depend on the
node degree k. Finally, there is a given assortativity func-
tion a(k′ → k) which specifies the probability that two
nodes of degrees k′ and k are connected by a link from
the node of degree k′ to the node of degree k. Denoting
the average degree 〈k〉 =

∑
k kinP (k) =

∑
k koutP (k), the

total number of network links is N〈k〉. Thus, the assorta-
tivity function is constrained to satisfy∑

k′

∑
k

P (k′)a(k′ → k)P (k) = N〈k〉. (2)

In addition, since a(k′ → k) is a probability it is also con-
strained to satisfy 0 ≤ a(k′ → k) ≤ 1 when P (k)P (k′) >
0. In the absence of assortativity, the probability of a link
from node j to node i is proportional to the out-degree
from j and the in-degree to i, which by (2) yields

a(kj → ki) =
kout

j kin
i

N〈k〉 . (3)

(However, we will be especially interested in cases
where (3) does not hold.)

The random network is formed by first assigning degrees
k to each node according to the degree distribution P (k).
Then each node is randomly assigned a natural oscillation
frequency according to the distribution g(ω|k). Finally,
a(k′ → k) is used to form the links between nodes.

In the mean-field treatment we approximate the condi-
tion 1 � N < ∞ by adopting the N → ∞ limit and as-
suming that the complete network state can be specified
by a smoothly varying distribution function f(θ, ω|k, t)
which is defined so that fdωdθ/(2π) is the probability at
time t that a node of degree k has its natural frequency
in the range [ω, ω + dω] and its phase angle in the range
[θ, θ + dθ]. Thus, since a node’s natural frequency does
not change with time,∫ 2π

0

fdθ = g(ω|k) (4)

is time independent.
Writing the interaction term in (1) as

N∑
i=1

Im[e−iθiRi(t)], (5)

Ri(t) =
N∑

j=1

Aije
iθj , (6)

we identify the nodal order parameters Ri(t) with an as-
sumed mean-field order parameter R(k, t) via Ri(t) →
R(ki, t), and we conjecture that this identification pro-
vides a good approximation for the macroscopic network
dynamics when the nodal degrees are large. From eq. (6)
we have

R(k, t)=
∑
k′

P (k′)a(k′→k)
∫ ∫

f(θ′, ω′|k′, t)eiθ′ dθ

2π

′
dω′.

(7)

In addition, by the continuity of phase space density,
eqs. (1) and (6) yield

∂
∂tf(θ, ω|k, t)

+ ∂
∂θ

{
[ω + KIm(e−iθR(k, t))]f(θ, ω|k, t)

}
= 0. (8)

Equations (7) and (8) constitute the mean-field approxi-
mation to the Kuramoto network model on a directed net-
work with degree assortativity and correlation between the
nodal degree k and the natural oscillation frequency ω. In
the special case of an undirected network, Aij = Aji, the
mean-field formulation is simply obtained by replacing the
two component vector degree k = (kin, kout) by the scalar
degree k (our numerical example will be for the undirected
case).

Model reduction. – The mean-field equations (7)
and (8) are still difficult to solve in general. Thus, to make
further progress, we restrict our attention to the long-time
asymptotic dynamics of the system. That is, we focus on
obtaining the attractors and bifurcations of the mean-field
system. For this purpose, the results of refs. [12] and [13]
imply that, in the long-time asymptotic limit, the distri-
bution f tends to the special form

f(θ, ω|k, t) =

{
1 +

[ ∞∑
n=1

(b(ω,k, t))ne−inθ + (c.c.)

]}

× g(ω|k), (9)

where (c.c.) denotes the complex conjugate of the summa-
tion. Substituting the ansatz (9) into (8), we find that (9)
indeed satisfies (8) for b(ω,k, t) satisfying

∂b

∂t
− iωb +

K

2
(R∗b2 − R) = 0. (10)

Substituting (9) into (7) we obtain

R(k, t)=
∑
k′

P (k′)a(k′→k)
∫

g(ω′|k′)b(ω′,k′, t) dω′. (11)

Equations (10) and (11) represent a substantial simplifica-
tion of the full mean-field description as the θ-dependence
has been removed from the description.
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One could now imagine attacking the system (10)
and (11) directly (as was done numerically in the globally
coupled case in ref. [17]) or by employing various conve-
nient forms of g(ω|k) where the integral over ω in eq. (11)
can be done (e.g., refs. [12], [17], and [18]) by evaluating
residue contributions at the complex poles of g(ω|k). Here
we adopt the latter approach and use the simple example
of a Lorentzian distribution of natural frequencies,

g(ω|k) = 1
π

Δ(k)
[ω−ω0(k)]2+Δ2(k)

= 1
2πi

{
1

ω−[ω0(k)+iΔ(k)] −
1

ω−[ω0(k)−iΔ(k)]

}
. (12)

Following ref. [12], we note that it can be shown that
b(ω′,k, t) is analytic in the upper half ω′-plane where
it goes exponentially to zero as |ω′| → ∞. Thus eval-
uating the ω′ integral (eq. (11)) by the Cauchy residue
theorem [12], inserting the result in eq. (10), and setting
ω = ω0(k) + iΔ(k), we obtain{

∂

∂t
+ [−iω0(k) + Δ(k)]

}
b̂(k, t)

+
K

2

∑
k′

P (k′)a(k′ → k)[b̂(k′, t)∗b̂2(k, t) − b̂(k′, t)] = 0,

(13)

where

b̂(k, t) ≡ b(ω0(k) + iΔ(k),k, t). (14)

As compared to eqs. (10) and (11), eqs. (13) represent
a further substantial reduction. In summary, the origi-
nal mean-field problem (eqs. (7) and (8)) of solving for
the macroscopic information (f(θ, ω,k, t)) has been ex-
actly reduced to a closed set of ordinary differential equa-
tions for the microscopic variables b̂(k, t). Compared with
the original, finite N , Kuramoto problem, eq. (1), the sys-
tem (13) has as many equations as there are k values, and
this can be much further reduced by employing approxi-
mation, such as that illustrated in fig. 1 for an undirected
network case. For the situation illustrated in fig. 1, we
envision that kmin ≤ k ≤ kmax (P (k) ≡ 0 for k < kmin

or k > kmax) and that we solve eqs. (13) for the k values
kmin, kmax, and three intermediate values, with the values
of b(k′, t) needed for evaluating the sums over k′ in (13)
approximated by interpolating between the five b(k, t) that
are explicitly solved for (straight lines in fig. 1).

We next give numerical and analytical examples of the
utility of eqs. (13). For our illustration of analytical utility,
we take ω0(k) = ω0 and Δ(k) = Δ (i.e., all nodes have
the same g(ω)), and we show how eqs. (13) can be used
to simply derive previous results [10,19] for the effects of
in-/out-degree correlation and assortativity on the critical
coupling K = Kc at which the incoherent state b̂(k, t) = 0
becomes unstable. Linearizing around b̂ = 0 and setting
b̂(k, t) = δ(k) exp[(iω0 + γ)t], eqs. (13) yield

(γ + Δ)δ(k) =
K

2
A[δ(k)], (15)

Fig. 1: Illustration of a trapezoidal approximation to the order
parameter degree spectrum b̂(k, t) used in calculating the sums
over k′ in eqs. (13). Appropriate to an undirected network, in
this example b̂ is a function of the scalar degree k.

where A[δ(k)] denotes the linear operator

A[δ(k)] =
∑
k′

P (k′)a(k′ → k)δ(k′). (16)

Letting λ denote the largest real eigenvalue of A, A[δ] =
λδ, eq. (15) yields the critical value Kc at which γ goes
from negative to positive as K increases through Kc,

Kc =
2Δ
λ

. (17)

Identifying λ as the mean-field approximation to the
largest eigenvalue of the adjacency matrix [Aij ], we see
that eq. (17) is in agreement with eq. (38) of ref. [10].
Moreover, the eigenvalue problem for A can be solved
by perturbation theory (see sect. 1 of the supplementary
material [20]) to yield

λ ≈ 〈koutkin〉
〈k〉 ρ, (18)

where the assortativity coefficient ρ is defined [19] by

ρ =
〈kin

j kout
i 〉e〈k〉2

〈kinkout〉2 . (19)

Here 〈. . . 〉e indicates an average over all edges j → i (see
fig. 2) which in our mean-field description is given by

〈kin
j kout

i 〉e =
∑
k

∑
k′

P (k′)a(k′ → k)P (k). (20)

The assortativity coefficient is one (ρ = 1) when there is no
assortativity (as may be verified from (3), (19), and (20))
and is greater (less) than one when the network is assor-
tative (disassortative). Thus, eqs. (17) and (18) show how
Kc is influenced by correlation between the nodal in- and
out-degrees (the term 〈kinkout〉) as well as by assortativity
(the factor ρ). We note that (17) and (18) have been pre-
viously obtained by other methods in ref. [10] and ref. [19],
respectively.
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Fig. 2: Illustration of the contribution of the edge j → i to the
edge average 〈kin

j kout
i 〉e, where for the particular edge shown

in the figure kin
j kout

i = 4 × 3 = 12.

Numerical example. – In this section we provide a
numerical example that illustrates the utility of our ap-
proach. We consider an undirected network with N nodes
and a degree distribution

P (k) =

⎧⎪⎨
⎪⎩

0, k < kmin,

Ck−γ , kmin ≤ k < kmax,

0, kmax ≤ k,

(21)

where C is chosen so that
∑kmax

k=kmin
P (k) = N . An undi-

rected link is established between a node j with degree kj

and a node i with degree ki with probability

a(kj → ki) = h(aij), (22)

where

aij = kikj

N〈k〉

[
1 + c

(
ki−〈k〉

ki

) (
kj−〈k〉

kj

)]
, (23)

h(x) = max(min(x, 1), 0) guarantees 0 ≤ a(kj → ki) ≤ 1,
and c is a parameter used to adjust the degree of assor-
tativity. In the majority of our simulations aij satisfies
0 ≤ aij ≤ 1. In this case, a(kj → ki) = aij satisfies the
constraint (2), and the expected degree of a node i over
network realizations is ki, as can be checked by taking the
expected value of

∑N
j=1 Aij , where Aij = 1 with probabil-

ity aij and 0 otherwise. Moreover, in this case c and the
assortativity coefficient ρ in eq. (19) are related by

ρ = 1 + c

(
〈k2〉 − 〈k〉2

〈k2〉

)2

. (24)

In networks with high assortativity (high c), there can
be a small fraction of pairs i, j for which aij < 0. In
this case, after the links are established the resulting de-
gree distribution may be slightly different than the origi-
nal target degree distribution P (k), and therefore we will
use the realized distribution P̃ (k) in our reduced theory
(eqs. (13)) instead of the original target distribution (21).
Note that in this case P̃ (k) and a(kj → ki) satisfy (2).

For our example, we choose N = 5000, kmin = 50,
kmax = 300, and γ = 3.0. We take the distribution of
frequencies for nodes of degree k to be a Lorentzian with
mean ω0(k) = 0.05k and width Δ = 1. We construct undi-
rected networks for different values of the assortativity ρ
(corresponding to different values of c) as described above.

Fig. 3: (Colour on-line) (a) Order parameter B(t) in eq. (26)
calculated directly from eqs. (13). (b) Order parameter R(t) in
eq. (25) calculated using the reduced equations (1). Note that
in the text we defined K̂ ≡ 50 K.

We find that for ρ = 1 or ρ < 1 (disassortative) as K in-
creases from zero there is a bifurcation from incoherence
to a macroscopic steady state which, as in the original
Kuramoto model, persists as K is further increased. In
contrast, for sufficiently large assortativity, we find the
surprising result that bifurcations between steady and os-
cillatory states become possible. In order to illustrate this,
in what follows, we focus on the case ρ = 1.15. (See also
sect. 2 of the supplementary material [20].)

We integrate (1) numerically using a Euler scheme with
Δt = 0.002 with the phases initially distributed uniformly
in [0, 2π) and K̂ ≡ 50K = 1.0, and we increase K̂ by 0.1
every 50 time units. We calculate the time average of the
order parameter

R(t) =

∣∣∣∑N
i=1 Ri(t)

∣∣∣
N〈k〉 =

∣∣∣∑i,j Aije
iθj

∣∣∣∑
i,j Aij

, (25)

where Ri(t) is defined in eq. (6), and store a time series of
R(t). Note that the order parameter R(t) is approximately
0 if the phases are uniformly distributed in [0, 2π) and 1
if they are equal.

In addition to numerically solving eqs. (1), we numer-
ically solve the reduced system (13) using an analogous
protocol, i.e., we choose small but nonzero initial condi-
tions b̂(k, 0) = 0.01, set the coupling constant K̂ initially
to 1.0, and increase it by 0.1 every t = 50 units. From the
solution of eqs. (13), we compute the order parameter

B(t) = 1
N〈k〉 |

∑
k P (k)R(k, t)|

= 1
N〈k〉 |

∑
k,k′ P̃ (k)P̃ (k′)a(k′ → k)b̂(k′, t)|. (26)

Note that when a(ki → kj) = aij the order parameter
simplifies to B(t) = |

∑
k P̃ (k)kb̂(k, t)|/(N〈k〉).

In figs. 3(a) and (b) we plot B(t) and R(t), respectively,
obtained from these simulations. We note that there is
very good agreement between the simulations of the full
model and of the reduced system. A remarkable behavior
observed both in the simulations of the full model and in
the reduced system is a transition with increasing K from
a steady synchronized state to a temporally oscillating
macroscopic state and a subsequent transition to another
steady synchronized state. In fig. 3(a) we see that around
K̂ ≈ 1.3 there is a transition from incoherence (B(t) ≈ 0)
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Fig. 4: (Colour on-line) Time-averaged effective frequency
〈dθi/dt〉t vs. the intrinsic frequency ωi for K̂ =
1.0, 1.5, 2.9, 3.1, 3.8, and 4.4. The inset shows a histogram of
the time-averaged effective frequencies.

to a steady synchronized state (B(t) = B > 0). As K
is increased, the order parameter B(t) develops small os-
cillations, and these oscillations increase in amplitude as
K increases. At some value K = K1, the amplitude of
oscillations increases discontinuously. As K is increased
further, the period of the oscillations increases until at
another value K = K2 the period diverges and the oscil-
lations disappear.

To gain insight into the sequence of bifurcations, we plot
in fig. 4 the time-averaged effective frequency 〈dθi/dt〉t vs.
the intrinsic frequency ωi for K̂ = 1.0, 1.5, 2.9, 3.1, 3.8, and
4.4. The insets show histograms of the effective frequen-
cies 〈dθi/dt〉t. At K̂ = 1.0 (fig. 4(a)), the oscillators are
incoherent and the effective frequencies correspond to the
intrinsic frequencies, which are distributed according to∫

P (k)g(ω|k)dk. At K̂ = 1.5 (fig. 4(b)), a group of oscil-
lators (labeled “main group”, and indicated by an arrow)
has locked at a common frequency, resulting in a macro-
scopic synchronized steady state. At K̂ = 2.9 (fig. 4(c)),
another group of oscillators (indicated by an arrow) with
higher degrees have locked at a higher frequency, which
results in oscillations of the order parameter at the dif-
ference between the frequencies of the two locked groups.
Since the number of oscillators in the second locked group
is relatively small (see inset to fig. 4(c)), the resulting oscil-
lations in the order parameter are small. As expected, we
observe that the frequency of oscillations of R(t) is the dif-
ference between the values of 〈dθi/dt〉t for the two locked
groups. At K̂ = 3.1 (fig. 4(d)), most of the oscillators in
the high frequency tail of the distribution have locked to a
common frequency, while the oscillators with low frequen-
cies remain locked to another frequency. This results in

Fig. 5: (Colour on-line) Order parameter B(t) as a function
of time for K̂ = 1.5 (a), 2.0 (b), 2.5 (c), 3.1 (d), 3.8 (e), and
4.4 (f). Note the different scales used in panels (b) and (c).

an increased amplitude of the oscillations. At K̂ = 3.8
(fig. 4(e)), the frequencies have become closer, which re-
sults in a smaller frequency in the oscillations of the order
parameter. As K̂ → K2, the frequencies approach each
other and the oscillation period of the order parameter di-
verges, until almost all the oscillators lock to a common
frequency as shown for K̂ = 4.4 in fig. 4(f). We note that
a similar bifurcation scenario, with multiple synchronized
clusters inducing oscillations of the order parameter, was
recently observed in the Kuramoto model with inertia in
ref. [21].

We interpret the sequence of bifurcations as follows.
The steady synchronized state appears when a group of
oscillators (which we will call the main group) synchro-
nizes with a common frequency. The bifurcation lead-
ing to the order parameter oscillations around this steady
synchronized state appears through a (presumed) Hopf
bifurcation, when a new group of oscillators locks to a fre-
quency separate from the frequency of the main group.
Since the number of oscillators in this group can be small,
the amplitude of these order parameter oscillations can
be small. We also observe that these periodic oscillations
become quasiperiodic (fig. 5(c)) as additional groups of
oscillators lock to separate frequencies. At K = K1, the
oscillations become large and periodic as a large locked
group (separate from the main group) is abruptly formed.
As K is increased the frequency difference between the
two synchronized groups decreases, leading to a (pre-
sumed) SNIPER (saddle-node, infinite-period) bifurcation
at K = K2. In fig. 5 we illustrate the steady (a), low-
amplitude periodic (b), quasiperiodic (c), large-amplitude
periodic with small period (d), large-amplitude periodic
with large period (e), and steady (f) behaviors by plotting
B(t) as a function of t for K̂ = 1.5, 2.0, 2.5, 3.1, 3.8, and
4.4. We note here that the reduced equations (13) allow
us to visualize the small and quasiperiodic oscillations in
the order parameter (figs. 5(b) and (c)) which are masked
in the time series of R(t) by noise due to finite size effects.

For other choices of degree distributions and parame-
ters, we have observed qualitatively different bifurcations
such as discontinuous transitions from one steady synchro-
nized state to another, or bifurcations like those described
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above, but in which the mean of the oscillations changes
discontinuously as K is increased. In the supplementary
material [20] we include an additional example which il-
lustrates how the novel sequence of bifurcations appears
for assortative networks. Since our goal here is only to il-
lustrate the applicability and usefulness of our mean-field
approach, we postpone a more detailed study of additional
cases for future research. As further indication of the use-
fulness of the reduced system, we note that the bifurca-
tions presented above were observed first by solving the
reduced equations, and were later confirmed by solving
the full system (1).

We note that in some cases we have observed discrep-
ancies between the simulations of the full and the reduced
system in the values of K at which the onset of oscillations
occurs or in the amplitude of these oscillations. One ex-
ample of this is shown in the supplementary material [20].
We speculate that these differences might be due to a com-
bination of i) insufficient number of nodes of a given degree
k (especially of large degree) for the mean-field assump-
tion to be valid and to provide a good sample of g(ω|k),
ii) finite size fluctuations driving the system away from
the manifold where (9) holds, and/or iii) sensitivity of
eqs. (13) to P̃ (k) (we have noted, for example, that results
can be slightly different when using the target distribution
P (k) instead of the realized distribution P̃ (k)).

Conclusion. – Our main general conclusion is that
the combined use of mean-field theory and the ansatz
of ref. [12] provides a very promising technique for ex-
ploring and discovering topological network effects on the
dynamics of large interconnected phase oscillator systems
with both directed and undirected links. Such topologi-
cal effects include degree distribution, nodal correlations
between in- and out-degrees, correlations between nodal
frequencies and degrees, and degree assortativity in the
formation of links.

With respect to our illustrative numerical example on a
Kuramoto network system, we have shown that topology
can have profound and surprising qualitative effects on
dynamics. In particular, it was found that assortativity
by degree can lead to dynamical transitions of different
types between steady state, periodic, and quasiperiodic
attractors.

Finally, while our example was for a Kuramoto network
system, we emphasize that our technique should be use-
ful in many other contexts. One promising application is
to neural networks where refs. [7] have developed effec-
tive phase oscillator models of neurons and have analyzed
systems of such model neurons by use of the ansatz of
ref. [12].

∗ ∗ ∗
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