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Abstract Slowoscillations infiring rate of neural populations are commonly observed
during slow wave sleep. These oscillations are partitioned into up and down states,
where the population switches between high and low firing rates (Sanchez-Vives and
McCormick in Nat Neurosci 3:1027–1034, 2000). Transitions between up and down
states can be synchronized at considerably long ranges (Volgushev et al. in J Neurosci
26:5665–5672, 2006). To explore how external perturbations shape the phase of slow
oscillations, we analyze a reduced model of up and down state transitions involving
a population neural activity variable and a global adaptation variable. The adaptation
variable represents the average of all the slow hyperpolarizing currents received by
neurons in a large population. Recurrent connectivity leads to a bistable neural popula-
tion, where a low firing rate state coexists with a high firing rate state, where persistent
activity ismaintained via excitatory connections. Adaptation eventually inactivates the
high activity state, and the low activity state then persists until adaptation has signifi-
cantly decayed. We analyze the phase response of the rate model by taking advantage
of the separation of timescales between the fast activity and slow adaptation variables.
This analysis reveals that perturbations to the neural activity variable have a consid-
erably weaker effect on the oscillation phase than adaptation perturbations. When
noise is not incorporated into the rate model, the period of the slow oscillation is
determined by the timescale of the slow adaptation variable. In the presence of noise,
times at which the population transitions between the low and high activity states
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become variable. This is because the rise and decay of the adaptation variable is now
stochastically-driven, leading to a distribution of transition times. Interestingly, com-
mon noise in the adaptation variable can lead to a correlation of two distinct slow
oscillating populations. This effect is still significant in the event that each population
contains its own local sources of noise. We also show this phenomenon can occur a
spiking network. Our results demonstrate the relative contributions of excitatory input
and hyperpolarizing current fluctuations on the phase of slow oscillations.

Keywords Neural adaptation · Phase sensitivity function · Stochastic synchrony

Mathematics Subject Classification 34C15 · 92C20 · 60H10 · 34C26

1 Introduction

Cortical networks can generate a wide variety oscillatory rhythms with frequencies
spanning five orders of magnitude (Buzsáki and Draguhn 2004). Slow oscillatory
activity (0.1–1Hz) has been observed in vivo during decreased periods of alertness,
such as slow wave sleep and anesthesia (Steriade et al. 1993). Furthermore, such
activity can be produced in vitro when bathing cortical slices in a mediumwith typical
extracellular ion concentrations (Sanchez-Vives and McCormick 2000). The function
of slow oscillations during sleep still remains uncertain, but there is growing evidence
that they play a role in memory consolidation processes (Marshall et al. 2006).

Akey feature of these slowoscillations is that they tend to be an alternating sequence
of two bistable states, referred to as the up and down states. Up states in networks are
characterized by high levels of firing activity, due to depolarization in single cells.
Down states in networks typically appear quiescent, due to hyperpolarization in single
cells. There is strong evidence that up states are generated by recurrent connections
(Cossart et al. 2003). This suggests up statesmay be spontaneous remnants of stimulus-
induced persistent states utilized for working memory (Wang 2001) and other network
computations (Major and Tank 2004). Furthermore, recent two-photon imaging in
vivo has revealed that subthreshold NMDA-receptor-dependent calcium signals are
widespread during up states (Chen et al. 2013). Such signals may serve to reenforce
cellular transformations underlyingmemory consolidationduring sleep (Marshall et al.
2006). In addition, while neurons tend to be closer to spike threshold during up states,
sensory stimuli may actually produce weaker responses during these periods (Petersen
et al. 2003). Correspondences between spontaneous neural activity and underlying
network stimulus tuning have been observed in a variety of brain areas (Fox and
Raichle 2007). For instance, the dynamic evolution of spontaneous visual cortical
activity has been linked to the architecture producing orientation maps (Kenet et al.
2003).

Several different cellular and synaptic mechanisms have been suggested to underlie
the transitions between up and down states. One possibility is that the network is recur-
rently coupled with excitation, stabilizing both a quiescent and active state (Amit and
Brunel 1997; Renart et al. 2007). Fluctuations due to probabilistic synapses, channel
noise, and randomness in network connectivity can then lead to spontaneous transi-
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tions between the quiescent and active state (Parga and Abbott 2007; Bressloff 2010;
Litwin-Kumar and Doiron 2012). Alternatively, switches between low and high activ-
ity states may arise by some underlying systematic slow process. For instance, it has
been shown that competition between recurrent excitation and the negative feedback
produced by activity-dependent synaptic depression can lead to slow oscillations in fir-
ing rate whose timescale is set by the depression timescale (Bart et al. 2005; Holcman
and Tsodyks 2006; Kilpatrick and Bressloff 2010). Excitatory-inhibitory networks
with facilitation can produce slow oscillations, due to the slow facilitation of feedback
inhibition that terminates the up state, the down state is then rekindled due to positive
feedback from recurrent excitation (Melamed et al. 2008). These neural mechanisms
utilize dynamic changes in the strength of neural architecture. However, Compte et al.
(2003) proposed that single cell mechanisms can also shift network states between up
and down states. The up state is maintained by strong recurrent excitation balanced
by inhibition, and transitions to the down state occur due to a slow hyperpolarizing
current. Once in the down state, the slow hyperpolarizing current is inactivated, and
excitation reinitiates the up state. Slow hyperpolarizing currents are prime examples of
mechanisms underlying spike rate adaptation (Benda andHerz 2003). One particularly
well studied example is the class of currents generated by calcium-gated potassium
channels, often referred to as medium afterhyperpolarization currents (Madison and
Nicoll 1984; Pedarzani and Storm 1993; Higgs et al. 2006). A similar mechanism has
been utilized in models of perceptual rivalry, where dominance switches between two
mutually inhibiting populations occur due to the build up of network-wide spike rate
adaptation (Laing and Chow 2002; Moreno-Bote et al. 2007).

In this paper, we utilize a rate-based model of an excitatory network with spike rate
adaptation to explore the impact that noise perturbations have upon the relative phase
and duration of slow oscillations. The adaptation variable quantifies the average effects
of slow hyperpolarizing currents across the network, as derived by Vreeswijk and
Hansel (2001). We find that, as in the spiking model studied by Compte et al. (2003),
the interplay between recurrent excitation and the adaptation variable produces a slow
oscillation in the firing rate of the network. In fact, for slow timescale adaptation,
the oscillations evolve as fast switches between a low and high activity state, stable
fixed points of the adaptation-free system. Since the timescale and slow dynamics of
the oscillation are set by the adaptation variable, we mainly focus on the impact of
perturbation to the adaptation variable in our model. As we will show, perturbations
of the activity variable have much lower impact on the oscillation phase than noise to
the slow adaptation variable.

Another remarkable feature of slow oscillations, observed during slow-wave sleep
and anesthesia, is that the up and down states tend to be synchronized across dif-
ferent regions of cortex and thalamus (Steriade et al. 1993; Massimini et al. 2004).
Specifically, both the up and down states start near synchronously in cells located up
to 12mm apart (Volgushev et al. 2006). Such remarkable coherence between distant
network activity cannot be accomplished by single cell mechanisms, but require either
long range network connectivity or some external signal forcing entrainment (Traub
et al. 1996; Smeal et al. 2010). Activity tends to originate from several different foci in
the network, quickly spreading across the rest of the network on a timescale orders of
magnitude faster than the oscillation itself (Compte et al. 2003;Massimini et al. 2004).
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While the synchronous initiation of up states may be explained by recurrent architec-
ture, synchronization of the down states are more difficult to explain and remain an
unexplained phenomenon (Volgushev et al. 2006). The fact that the onset of quies-
cence is fast and well synchronized means there must be either a rapid relay signal
between all foci or there is some global signal cueing the down state. Rather than
suggest a disynaptic relay, using long range excitation acting on local inhibition, we
suggest that background noise can serve as a synchronizing global signal (Ermentrout
et al. 2008). For example, up/down state correlations in visual cortex have also been
observed across 500µm, and it has been suggested this may arise due to common
input from LGN (Lampl et al. 1999). Noisy but correlated inputs have been shown
to be capable of synchronizing uncoupled populations of phase oscillators (Teramae
and Tanaka 2004) as well as experimentally recorded cells in vitro (Galán et al. 2006).
Here we will show correlated noise is a viable mechanisms for coordinating slow
oscillations in distinct uncoupled neural populations.

The paper is organized as follows: We introduce the neural population model in
Sect. 2, indicating the way external noise is incorporated into the model. In Sect. 3, we
demonstrate the periodic solutions that emerge in the noise-free model, demonstrating
it is possible to derive analytical expressions for the oscillation period in the case of
steep firing rate functions. Then, in Sect. 4 we show how to derive phase sensitivity
functions that describe how external perturbations to the periodic solution impact the
asymptotic phase of the oscillation. As demonstrated, the impact of perturbations to
the adaptation variable ismuch stronger than activity variable perturbations, especially
for longer adaptation timescales. Thus, our studies of the impact of noise mainly focus
on the effects of fluctuations in the adaptation variable. We find, in Sect. 5, that adding
noise to the adaptation variable leads to up and down state durations that are shorter and
more balanced, so that the up and down state last for similar lengths of time. In Sect. 6,
we demonstrate that slow oscillations in distinct populations can become entrained to
one another when both populations are forced by the same common noise signal. This
phenomenon is robust to the introduction of independent noise in each population,
as we show in Sect. 7. Lastly, we demonstrate that the rate and spike patterns of two
uncoupled spiking networks can be synchronized by common noise in Sect. 8.

2 Adaptive neural populations: deterministic and stochastic models

We begin by describing the models we will use to explore the impact of external
perturbations on slow oscillations.Motivated byCompte et al. (2003), wewill focus on
a neural population model with spike rate adaptation, akin to mutual inhibitory models
used to study perceptual rivalry (Laing and Chow 2002; Moreno-Bote et al. 2007).

Single populationmodel In a single population, neural activity u(t) receives negative
feedback due to a subtractive spike rate adaptation variable (Benda and Herz 2003)

u̇(t) = −u(t) + f (αu(t) − a(t) + I ), (1a)

τ ȧ(t) = −a(t) + φu(t). (1b)
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Here, u represents themean firing rate of the neural populationwith excitatory connec-
tion strength α. The negative feedback variable a is spike frequency adaptation with
strength φ and time constant τ . For some of our analysis we will utilize the assumption
τ � 1, based on the fact that many forms of spike rate adaptation tend to be much
slower than neural membrane time constants (Benda and Herz 2003). The constant
tonic drive I initiates the high firing rate (up) state, and slow adaptation eventually
attenuates activity to a low firing rate (down) state. Weak but positive drive I > 0 is
meant to model the presence of low spiking threshold cells that spontaneously fire,
utilized as a mechanism for initiating the up state in Compte et al. (2003). The firing
rate function f is monotone and saturating function such as the sigmoid

f (x) = 1

1 + e−γ x
. (2)

Commonly, in studies of neural field models, the high gain limit (γ → ∞) of Eq. (2) is
taken to yield the Heaviside firing rate function (Amari 1977; Laing and Chow 2002)

H(x) =
{
1 : x ≥ 0,
0 : x < 0,

(3)

which often allows for a more straightforward analytical study of model dynamics.
We exploit this fact extensively in our study. Nonetheless, we have also carried out
many numerical simulations of the model for a smooth firing rate function Eq. (2),
and they correspond to the results we present for sufficiently high gain. Note, this
form of adaptation is often referred to as subtractive negative feedback, as current is
subtracted from the population input. Alternative models of slow neural population
oscillations have employed short term synaptic depression (Tabak et al. 2000; Bart
et al. 2005; Holcman and Tsodyks 2006; Kilpatrick and Bressloff 2010), a form of
divisive negative feedback.

A primary concern of this work is the response of Eq. (1) to external perturbations,
acting on the activity u and adaptation a variables. To do so, we will use both an
exact method and a linearization to identify the phase response curve of the limit
cycle solutions to Eq. (1). Understanding the susceptibility of limit cycles of Eq. (1)
to inputs will help us understand ways in which noise will influence the frequency and
regularity of oscillations.

Stochastic single population model Following our analysis of the noise-free system,
we will consider how fluctuations influence oscillatory solutions to Eq. (1). To do
so, we will employ the following stochastic differential equations (SDEs) for Eq. (1)
forced by white noise

du(t) = [−u(t) + f (αu(t) − a(t) + I )] dt + dξu(t) (4a)

da(t) = [−a(t) + φu(t)] dt/τ + dξa(t), (4b)

where we have introduced the independent Gaussian white noise processes ξu(t) and
ξa(t) with zero mean 〈ξu(t)〉 = 〈ξa(t)〉 = 0 and variances 〈ξu(t)2〉 = σ 2

u t and
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〈ξa(t)2〉 = σ 2
a t . Extending our results concerning the phase response curve, we will

explore how noise forcing impacts the statistics of the resulting stochastic oscillations
in Eq. (4). In particular, since we find noise tends to impact the phase of the oscillation
more strongly when applied to the adaptation variable, we will tend to focus on the
case ξu ≡ 0.

Stochastic dual population model Finally, we will focus on how correlations in
noise-forcing impact the coherence of two distinct uncoupled populations

du1 = [−u1(t) + f (αu1(t) − a1(t) + I )] dt + dξu (5a)

da1 = [−a1(t) + φu1(t)] dt/τ + dξa (5b)

du2 = [−u2(t) + f (αu2(t) − a2(t) + I )] dt + dξu (5c)

da2 = [−a2(t) + φu2(t)] dt/τ + dξa . (5d)

Thus, the system Eq. (5) describes the dynamics of two distinct neural populations
u1 and u2, with inputs I . Our main interest lies in the impact the noise terms have upon
the phase relationship between the two systems’ states. In this version of the model,
noise to the activity variables ξu is totally correlated, as is noise to the adaptation
variables ξa . Thus, all means are zero and 〈ξ2u (t)〉 = σ 2

u t = D11t . Furthermore,
〈ξ2a (t)〉 = σ 2

a t = D22t . For this study, we assume there are no correlations between
activity and adaptation noise, so 〈ξu(t)ξa(t)〉 = 0. A more general version of the
model Eq. (5) would consider the possibility of independent noise in each population

du1 = [−u1(t) + f (αu1(t) − a1(t) + I )] dt + χudξuc +
√
1 − χ2

u dξu1 (6a)

da1 = [−a1(t) + φu1(t)] dt/τ + χadξac +
√
1 − χ2

a dξa1 (6b)

du2 = [−u2(t) + f (αu2(t) − a2(t) + I )] dt + χudξuc +
√
1 − χ2

u dξu2 (6c)

da2 = [−a2(t) + φu2(t)] dt/τ + χadξac +
√
1 − χ2

a dξa2. (6d)

Noise terms all have zero mean and variances defined 〈ξ2u j (t)〉 = σ 2
u j t = Du j t and

〈ξ2aj (t)〉 = σ 2
aj t = Daj t ( j = 1, 2, c). To ease calculations, we take Du1 = Du2 ≡

Dul = σ 2
u and Da1 = Da2 ≡ Dal = σ 2

a . The degree of noise correlation between
populations is controlled by the parameters χu and χa , so in the limit χu,a → 1, the
model Eq. (6) becomes Eq. (5).

3 Periodic solutions of a single population

We begin by studying periodic solutions of the single population system Eq. (1), as
demonstrated in Fig. 1a. First, we note that for firing rate functions f with finite
gain, we can identify the emergence of oscillations by analyzing the stability of the
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Fig. 1 Single adapting neural population Eq. (1) generates slow oscillations. a Numerical simulation of
Eq. (1) for adaptation timescale τ = 100 (1 s) and input I = 0.2. b Partitioning of (τ, I ) parameter space
shows the range of inputs I leading to oscillations expands as the adaptation timescale τ is increased,
according to Eq. (9). c,d Bifurcation diagram showing lower (I−H ) and upper (I+H ) boundaries of insta-
bility that arise as the input is increased for (c) τ = 10 and (d) τ = 100. Firing rate function is sigmoidal
Eq. (2). Other parameters are φ = 1, α = 0.5, and γ = 15. Numerical simulations employ Euler’s method
with a timestep dt = 10−6 s

equilibria of Eq. (1). That is, we assume (u̇, ȧ) = (0, 0), so the system becomes

ū = f (αū − ā + I ),

ā = φū,

which can be reduced to the single equation

ū = f ((α − φ)ū + I ) = g(ū). (7)

Roots of Eq. (7), defining fixed points of Eq. (1) are plotted as a function of the input
I in Fig. 1c, d. Utilizing the sigmoidal firing rate function f given by Eq. (2), we can
show that there will be a single fixed point as long as φ > α. In this case, we can
compute

dg(ū)

dū
= −(φ − α) f ′((α − φ)ū + I ) = − (φ − α)e−γ ((α−φ)ū+I )

(
1 + e−γ ((α−φ)ū+I )

)2 < 0.
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Since ū is monotone increasing, then ū−g(ū) is monotone increasing. Further, noting
limū→±∞ [ū − g(ū)] = ±∞, it is clear ū − g(ū) crosses zero once, so Eq. (7) has a
single root when φ > α. Stability of this equilibrium is given by the eigenvalues of
the associated Jacobian

J (ū, ā) =
(−1 + α f ′((α − φ)ū + I ) − f ′((α − φ)ū + I )

φ/τ −1/τ

)
.

We note that the sigmoid Eq. (2) satisfies the Ricatti equation f ′ = γ f (1− f ), so we
can use Eq. (7) to write

J (ū, ā) =
(−1 + αγ ū(1 − ū) −γ ū(1 − ū)

φ/τ −1/τ

)
.

Oscillatory instabilities arise when the complex eigenvalues associated with fixed
points (ū, ā) cross from the left to the right half plane. All numerical simulations have
shown that these instabilities lead to limit cycles (Fig. 1b). We identify the parameter
values at which this destabilization occurs by using the relations: tr(J ) = 0 and
tr(J )2 < 4det(J ). Thus, a necessary condition for the onset of oscillatory instabilities
is that the equilibrium value ū satisfies

αγ ū(1 − ū) = 1 + 1/τ.

Solving this for ū yields

ū±H = 1

2

[
1 ± √

1 − 4χ
]
, χ = 1 + 1/τ

αγ
. (8)

Thus, these instabilities will only occur when the timescale of adaptation is sufficiently
large τ >

[
αγ/4 − 1

]−1. Plugging the formula Eq. (8) back into the fixed point
equation Eq. (7) and solving for the input I , we can parameterize the boundary of
instability based upon the equation

I±H = 1

γ
ln

[
ū±H

1 − ū±H

]
− (α − φ)ū±H , (9)

along with the additional condition tr(J )2 < 4det(J ) which becomes

4

τ 2
<

4φ

ατ 2
+ 4φ

ατ
, (10)

which will always hold as long as φ > α. We partition the parameter space (τ, I )
using our formula Eq. (9) in Fig. 1b. As demonstrated, there tend to be either two or
zero stability transitions for a given timescale τ , and the coalescence of the two points
is given by the point where τ = [

αγ/4 − 1
]−1.
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In the limit of slow adaptation τ � 1, we can separate the timescales of the activity
u and adaptation a variables, finding u will equilibrate according to the equation

û(t) = f (αû(t) − a(t) + I ), (11)

and subsequently a will slowly evolve according to the equation

ȧ(t) = [
φû(t) − a

]
/τ. (12)

We always have an implicit formula for û(t) in terms of a(t), so the dynamics will tend
to slowly evolve along the direction of the a variable. This demonstrates why periodic
solutions to Eq. (1) are comprised of a slow rise and decay phase of a, punctuated
by fast excursions in the activity variable u. In general, it is not straightforward to
analytically treat the pair of Eqs. (11) and (12), but we will show how computing
solutions of the singular system becomes straightforward when we take the high gain
limit γ → ∞.

Having established the existence of oscillatory instabilities and numerically shown
periodic solutions to Eq. (1) in the case of sigmoid firing rates Eq. (2), we now explore
the system in the high gain limit γ → ∞ whereby the firing rate function becomes a
Heaviside Eq. (3). In this case, fixed points (ū, ā) satisfy the equations

ū = H((α − φ)ū + I ) =
{
1 : ū < I/(φ − α),

0 : ū > I/(φ − α),

and ā = φū. Thus, assuming φ > α, then ū = 0 when I < 0 and ū = 1 when
I > (φ−α). In both cases, the fixed points are linearly stable.When 0 < I < (φ−α),
there are no fixed points and we expect to find oscillatory solutions. Assuming τ � 1,
we can exploit a separation of timescales to identify the shape and period of these
limit cycles. To begin, we note that on fast timescales

u̇(t) = −u(t) + H(I + αu(t) − a0),

where a(t) is assumed to be changing slow enough that it is in a quasi-steady state a0
on short timescales. On longer timescales of order τ , then u(t) quickly equilibrates
and

u(t) = H(I + αu(t) − a(t)), (13a)

τ ȧ(t) = −a(t) + φu(t). (13b)

Periodic solutions to Eq. (1) must obey the condition (u(t), a(t)) = (u(t +nT ), a(t +
nT )) for t ∈ [0, T ] and n ∈ Z, so we focus on the domain t ∈ [0, T ]. Examining
Eq. (13), we can see oscillations in Eq. (1) involve switches between u(t) ≈ 1 and
u(t) ≈ 0. We translate time so that u(t) ≈ 1 on t ∈ [0, T1) and u(t) ≈ 0 on
t ∈ [T1, T ). Subsequently, this means for t ∈ [0, T1] the system Eq. (13) becomes
u ≡ 1 and τ ȧ = −a + φ so a(t) = φ − (φ − I )e−t/τ . We know a(0) = I because
u(0−) ≡ 0 in Eq. (13), and the argument of H(x) must have crossed zero at t = 0.

123



Z. T. McCleney, Z. P. Kilpatrick

Fig. 2 Analytical approximations to periodic solutions of Eq. (1) with a Heaviside firing rate function
Eq. (3). a Numerical simulation (solid lines) of the periodic solution is well approximated by the analytical
approximation (dashed lines) given by Eq. (15) when I = 0.2 and τ = 100. b The period of the oscillation
T computed from numerical simulations (dots) is accurately approximated by the analytical formula (solid
lines) given by Eq. (14). Other parameters are α = 0.5 and φ = 1

In a similar way, we find on t ∈ [T1, T ) that u ≡ 0 and a(t) = (I + α)e−(t−T1)/τ .
Using the conditions a(T1) = I + α and a(T ) = I , we find that the rise time of the
adaptation variable (or the duration of the up state) is

T1 = τ ln

[
φ − I

φ − α − I

]
,

and the decay time (or the duration of the down state) is

T2 = τ ln

[
I + α

I

]
,

and the total period of the oscillation is

T = τ ln

[
(I + α)(φ − I )

I (φ − α − I )

]
. (14)

Thus, approximate periodic solutions to Eq. (1) in the case of a Heaviside firing rate
Eq. (3) take the form

u(t) =
{
1 : t ∈ [0, T1),
0 : t ∈ [T1, T ], (15a)

a(t) =
{

φ − (φ − I )e−t/τ : t ∈ [0, T1),
(I + α)e−(t−T1)/τ : t ∈ [T1, T ]. (15b)

Wedemonstrate the accuracy of the approximationEq. (15) in Fig. 2a. Furthermore,we
show that relationship between the period T and model parameters is well captured
by the formula Eq. (14). Notice there is a non-monotonic relationship between the
period T and the input I . We can understand this further by noting that the rise time
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T1 of the adaptation variable a increases monotonically with input

dT1
dI

= τα

(φ − I )(φ − α − I )
> 0,

when 0 < I < (φ − α). Furthermore, the decay time T2 of the adaptation variable a
decreases monotonically with input

dT2
dI

= − τα

I (I + α)
< 0,

when 0 < I < (φ−α). Thus, as I → 0+, the slow oscillation’s period T is dominated
by very long decay times T2 � 1 and as I → (φ − α)−, it is dominated by very long
rise times T1 � 1. We can identify the minimal period as a function of the input I by
finding the critical point of T (I ). To do so, we differentiate and simplify

dT

dI
= − ταφ(2I − (φ − α))

I (I + α)(φ − I )(φ − α − I )
,

so the critical point of T (I ) is at Icri t = (φ −α)/2, which corresponds to the minimal
value of the period Tmin(I ) = 2τ ln [(φ + α)/(φ − α)] as pictured in Fig. 2b.

4 Phase response curves

We can further understand the dynamics of the slow oscillations in Eq. (1) by comput-
ing phase response curves for both the case of a sigmoidal firing rate Eq. (2) and the
Heaviside firing rate Eq. (3). As we will show, perturbations of the activity variable u
have decreasing impact as the timescale of adaptation τ and the gain γ of the firing
rate are increased. Perturbations of the adaptation variable a typically lead to larger
phase shifts than perturbations to the neural activity variable u. This is due to the fact
that the rise and decay of the slow adaptation variable a are primarily what determines
the phase of the oscillation.

To begin, we derive a general formula that linearly approximates the influence of
small perturbations on limit cycle solutions (u0(t), a0(t)) to Eq. (1). Essentially, we
utilize the fact that solutions Z(t) to the adjoint equation associated with linearization
about the limit cycle solution (u0(t), a0(t)) provide a complete description of how
infinitesimal perturbations of the limit cycle impact its phase (Ermentrout 1996;Brown
et al. 2004). To start, we note that

L
(
u1
a1

)
=

(
u̇1 + u1 − α f ′(αu0 − a0 + I )u1 + f ′(αu0 − a0 + I )a1
ȧ1 − φu1/τ + a1/τ

)
=

(
0
0

)
,

is the linearization of Eq. (1) about the limit cycle (u0(t), a0(t)). Defining the inner
product on T -periodic functions in R

2 as 〈F(t),G(t)〉 = ∫ T
0 F(t) · G(t)dt , we can

find the adjoint operator L∗ by noting it satisfies 〈F,LG〉 = 〈L∗F,G〉 for all L2
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Fig. 3 a, b, c Periodic solution (u, a) and d, e, f phase sensitivity function (Zu , Za) of Eq. (1) plotted as a
function of phase θ = t/T for a sigmoidal firing rate function Eq. (2). a, d For shorter adaptation timescale
τ = 10 and input I = 0.2, the activity variable u has a more rounded trajectory, so perturbations to activity
influence the oscillation phase more [note size of lobes on Zu in (d)]. b, e As the adaptation timescale is
increased to τ = 100, with I = 0.2, the influence of perturbations to the neural activity variable decrease
[compare lobes of Zu to those in (d)]. Perturbations of the adaptation variable influence the phase more
strongly as shown by the change in the relative amplitude of Za . c,f Increasing the input I = 0.4, with
τ = 10, increases the relative duration of the rise time of a. As a result, there is a wider region where
perturbations to a advance the phase. Other parameters are α = 0.5, φ = 1, and γ = 15

integrable vector functions F,G. We can then compute

L∗
(

v

b

)
=

(−v̇ + v − α f ′(αu0 − a0 + I )v − φb/τ
−ḃ + f ′(αu0 − a0 + I )v + b/τ

)
. (16)

It can be shown that the null space of L∗ describes the response of the phase
of the limit cycle (u0(t), a0(t)) to infinitesimal perturbations (Brown et al. 2004).
Note that if (u0(t), a0(t)) is a stable limit cycle then the nullspace of L is spanned
by scalar multiples of (u′

0(t), a
′
0(t)). Furthermore, appropriate normalization requires

that Z(t) · (u′
0(t), a

′
0(t)) = 1 along with L∗Z = 0 (Ermentrout 1996). To numerically

compute Z(t) = (Zu(t), Za(t)), we thus integrate the system

Żu(t) = Zu(t) − α f ′(αu0(t) − a0(t) + I )Zu(t) − φZa(t)/τ, (17a)

Ża(t) = f ′(αu0(t) − a0(t) + I )Zu(t) − Za(t)/τ, (17b)

backward in time, taking the long time limit to find (Zu(t), Za(t)) on t ∈ [0, T ],
and normalizing 〈(Zu(t), Za(t)), (u′

0(t), a
′
0(t))〉 = 1 by rescaling appropriately. We

demonstrate this result in Fig. 3, showing the relationship between the shape and
relative amplitude of the phase sensitivity functions (Zu, Za) and the parameters.
Notably, perturbations of the activity variable u become less influential as the timescale
of adaptation τ is increased (Zu). Furthermore, there is a sharper transition between
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phase advance and phase delay region of the adaptation phase response (Za) for larger
timescales τ .

In addition to a general formula for the phase sensitivity functions (Zu(t), Za(t)),
we can derive an amplitude-dependent formula for the response of limit cycle solu-
tions (u0(t), a0(t)) of Eq. (1) with a Heaviside firing rate Eq. (3), assuming τ � 1. In
this case, we utilize the formula for the period Eq. (14) and limit cycle Eq. (15),
derived using a separation of timescales assumption. Then, we can compute the
change to the variables (u, a) as a result of a perturbation (δu, δa), which we denote

(u0(t), a0(t))
(δu ,δa)−→ (ũ0(t), ã0(t)). We are primarily interested in how the relative

time in the limit cycle is altered by a perturbation δu - how much closer or further the
limit cycle is to the end of the period T after being perturbed.We can readily determine
this by first inverting the formula we have for (u0(t), a0(t)), given by Eq. (15), to see
how this value determines the time t0 along the limit cycle

t0(u0, a0) =
{

τ ln [(φ − I )/(φ − a0)] : u0 = 1,
τ ln [(φ − I )(I + α)/a0/(φ − α − I )] : u0 = 0.

(18)

Using this formula,we can nowmap the value (ũ0, ã0) to an associated updated relative
time t0 along the oscillation.

Here, we decompose the impact of perturbations to the u and a variables. We begin
by studying the impact of perturbations δu to the activity variable u. We can directly
compute

ũ0(t) = H(I + α [u0(t) + δu] − a0(t)).

Thus, the singular system Eq. (13) will be unaffected by such perturbations if sgn(I +
α[u + δu] − a) = sgn(I + αu − a). This is related to the flatness of the susceptibility
function Zu over much of the time domain in Fig. 3d–f. However, if sgn(I + α[u +
δu] − a) �= sgn(I + αu − a), then ũ0(t) = 1 − u0(t), as detailed in the following
piecewise smooth map:

u0(t) = 0 → ũ0(t) = 1 : δu > −(I − a0(t))/α > 0,
u0(t) = 0 → ũ0(t) = 0 : δu < −(I − a0(t))/α > 0,
u0(t) = 1 → ũ0(t) = 0 : −δu < −(I + α − a0(t))/α < 0,
u0(t) = 1 → ũ0(t) = 1 : −δu > −(I + α − a0(t))/α < 0,

where (u0(t), a0(t)) are defined by Eq. (15). The formula Eq. (18) can then be utilized
to compute the updated relative time t̃0 := t0(ũ0, ã0), finding

t̃0 =
⎧⎨
⎩

τ ln [(φ − I )(I + α)/a0/(φ − α − I )] : δu > (I + α − a0)/α > 0, u0 = 1
T + τ ln [(φ − I )/(φ − a0)] : −δu > (a0 − I )/α > 0, u0 = 0
t0(u0, a0) : otherwise,

(19)

where a0 = φ − (φ − I )e−t0/τ if u0 = 1 and a0 = (I + α)e−(t0−T1)/τ if u0 = 0.
We can refer to the function t̃0/T , where t̃0 is defined by Eq. (19), as the phase
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Fig. 4 Phase response curves of the fast–slow timescale separated system τ � 1. a, b Amplitude δu -
and δa -dependent phase response curves Gu(θ, δu) and Ga(θ, δu) characterizing phase advances/delays
resulting from perturbation of neural activity u and adaptation a. We compare analytical formulae (solid
lines) to numerically computed PRCs (dashed lines). c Phase response curve associated with perturbations
of the adaptation variable a in the small amplitude 0 < |δa | � 1 limit. We compare the large amplitude
formula (solid line) determined by Eq. (24) to the linear approximation (dotted line) given by Eq. (25) to
numerical computations (dashed line)

transition curve for u perturbations. Thus, the function Gu(θ, δu) = (t̃0 − t0)/T will
be the phase response curve, where θ = t0/T , and phase advances occur for positive
values and phase delays occur for negative values. We plot the function Gu(θ, δu)

in Fig. 4a for different values of δu , demonstrating the nontrivial dependence on the
perturbation amplitude is not simply a rescaling but an expansion of the non-zero phase
shift region. Due to the singular nature of the fast–slow limit cycle Eq. (15), the size of
the phase perturbation has a piecewise constant dependence on the amplitude of the u
perturbation. Note, this formulation allows us to quantify phase shifts that would not
be captured by a perturbative theory for phase sensitivity functions, as computed for
the general system in Eq. (17).

For perturbations δa of the adaptation variable a, there is a more graded dependence
of the phase advance/delay amplitude on the perturbation amplitude δa . We expect
this, as it was a property we observed in Za as we varied parameters in Fig. 3. We can
partition the limit cycle (u0(t), a0(t)) into four different regions: two advance/delay
regions of exponential saturation and two early threshold crossings. First, note if
u0(t) = 1 and a0(t) + δa < I + α, then

ũ0(t) = 1, ã0(t) = φ − (φ − I )e−t/τ + δa, (20)

so t̃0 = T1−tw with tw = τ ln [(φ − a0 − δa)/(φ − I − α)], but if a0(t)+δa > I+α,
then

ũ0(t) = 0, ã0(t) = φ − (φ − I )e−t/τ + δa . (21)

Determining the relative time of the perturbed variables (ũ0(t), ã0(t)) in Eq. (20) is
straightforward using the mapping Eq. (18). However, to determine the relative time
described by Eq. (21), we compute the time, after the perturbation, until ã0(t) = I +α,
whichwill be tw = τ ln [(a0 + δa)/(I + α)], so t̃0 = T1−tw. Second, note ifu0(t) = 0
and a0(t) + δa > I , then

ũ0(t) = 0, ã0(t) = (I + α)e−(t−T1)/τ + δa, (22)
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so t̃0 = T − tw with tw = τ ln [(a0 + δ0)/I ], but if a0(t) + δa < I , so that it is
necessary that δa < 0, then

ũ0(t) = 1, ã0(t) = (I + α)e−(t−T1)/τ + δa . (23)

In the case of Eq. (23), we note that tw = τ ln [(φ − a0 − δa)/(φ − I )], so t̃0 = T−tw.
Combining our results, we find we can map the relative time to the perturbed relative
time as

t̃0 =

⎧⎪⎪⎨
⎪⎪⎩

T1 − τ ln [(φ − a0 − δa)/(φ − I − α)] : δa < I + α − a0, u0 = 1,
T1 − τ ln [(a0 + δa)/(I + α)] : δa > I + α − a0, u0 = 1,
T − τ ln [(a0 + δa)/I ] : δa > I − a0, u0 = 0,
T − τ ln [(φ − a0 − δa)/(φ − I )] : δa < I − a0, u0 = 0,

(24)

where a0 = φ−(φ− I )e−t0/τ if u0 = 1 and a0 = (I +α)e−(t0−T1)/τ if u0 = 0. Again,
we have a phase transition curve given by the function t̃0/T and phase response curve
given by Ga(θ, δa) = (t̃0 − t0)/T , where θ = t0/T . As opposed to the case of u
perturbations, the phase perturbation here depends smoothly on the amplitude of the
a perturbation δa .

Furthermore, we can obtain a perturbative description of the phase response curve
for the singular system Eq. (13) in two ways: (a) Taylor expand the amplitude-
dependent phase response curve expressions defined byEqs. (19) and (24) and truncate
to linear order or (b) solving the adjoint Eq. (17) in the case of a Heaviside firing rate
Eq. (3) and long adaptation timescale τ � 1.We begin with the first derivation, which
simply requires differentiating Eq. (19) to demonstrate that the infinitesimal phase
response curve (iPRC) associated with perturbations of the u variable is zero almost
everywhere. However, differentiating Eq. (24) reveals that the iPRC associated with
perturbations of the adaptation variable a is given by the piecewise smooth function

Za(t) =

⎧⎪⎨
⎪⎩

τ

T (φ − I )s
et/τ : t ∈ (0, T1),

− τ

T (I + α)
e(t−T1)/τ : t ∈ (T1, T ).

(25)

Note, we could derive the same result by solving the adjoint equations Eq. (17) in the
case of Heaviside firing rate Eq. (3), so that

Żu(t) = −Zu(t) + αδ(αu0(t) − a0(t) + I )Zu(t) + φZa(t)/τ, (26a)

Ża(t) = −δ(αu0(t) − a0(t) + I )Zu(t) + Za(t)/τ. (26b)

We have reversed time t → −t , so we can simply solve the system forward. Further-
more, we can use the identity

δ(αu0(t) − a0(t) + I ) = δ(t)

u′(0) − a′(0)
+ δ(t − T1)

u′(T1) − a′(T1)
. (27)
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Utilizing the separation of timescales, τ � 1, we find that almost everywhere (except
where t = 0, T1, T ), we have that Eq. (26) becomes the system

Żu(t) = −Zu(t), τ Ża(t) = Za(t). (28)

As before Zu(t) will be zero almost everywhere, whereas Za(t) = A(t)et/τ , where
A(t) is a piecewise constant function taking two different values on t ∈ (0, T1) and
t ∈ (T1, T ), determined by considering the δ distribution terms. This indicates how
one would derive the formula Eq. (25) using the adjoint equations Eq. (26).

Note, in previous work (Jayasuriya and Kilpatrick 2012), we explored the entrain-
ment of slowly adapting populations to external forcing, comprised of smooth and
non-smooth inputs to the system Eq. (1). In the next section, we explore the impact of
external noise forcing on the slow oscillations of Eq. (1), subsequently demonstrating
that noise can be utilized to entrain the up and down states of two distinct networks.

5 Impact of noise on the timing of up/down states

We now study the effects of noise on the duration of up and down states of the single
population model Eq. (1). Switches between high and low firing rate states can occur
at irregular intervals (Sanchez-Vives and McCormick 2000), suggesting internal or
external sources of noise determine state changes. This section focuses on how noise
can reshape the mean duration of up and down residence times. Due to our findings
in the previous sections, we focus on noise applied to the adaptation variable in this
section. As we have shown, very weak perturbations to the neural activity variable
have a negligible effect on the phase of oscillations. We conceive of the noise arising
due to ion channel fluctuations (White et al. 2000), specifically related to the slow
adaptive potassium currents that serve to hyperpolarize individual cells in the network
(Stocker et al. 1999). Analytic calculations are presented for the piecewise smooth
system with Heaviside firing rate Eq. (3), as accurate approximations of the mean up
and down state durations can be computed.

Our approach is to derive expressions for the mean first passage times of both the
up and down state (T̄1 and T̄2) of the stochastic population model Eq. (4). Focusing on
adaptation noise allows us to utilize the separation of fast–slow timescales, and recast
the pair of equations as a stochastic-hybrid system

u(t) = H((αu(t) + I − a(t)),

da(t) = [−a(t) + φu(t)] dt/τ + dξa(t),

where ξa is white noisewithmean 〈ξa〉 = 0 and variance 〈ξ2a 〉 = σ 2
a t . To begin, assume

the system has just switched to the up state, so the initial conditions are u(0) = 1 and
a(0) = I . Determining the amount of time until a switch to the down state requires
we calculate the time T1 until the threshold crossing a(T1) = I + α where a(t) is
determined by the SDE

da(t) = [−a(t) + φ] dt/τ + dξa,
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Fig. 5 Noise alters the duration of up and down states. a Numerical simulation of the stochastically driven
population model Eq. (4) demonstrates up and down state durations (e.g., T1 and T2) are variable when
driven by adaption noise ξa with 〈ξ2a 〉 = σ 2

a t , σa = 0.01. Switches are determined by the threshold
crossings of the adaptation variable a(t) = I and a(t) = I + α. b Up/down states become more variable
when the noise amplitude σa = 0.02. c Mean durations of the up and down state, 〈T1〉 and 〈T2〉, decrease
as a function noise amplitude σa . d Impact of noise σa on the balance of up to down state durations T̄1/T̄2
as input I is varied. Firing rate is given by the Heaviside function Eq. (3). Other parameters are α = 0.5,
φ = 1, and τ = 50

which is the well-known threshold crossing problem for an Ornstein-Uhlenbeck
process (Gardiner 2004). The mean T̄1 of the passage time distribution is thus given
by defining the potential V (a) = a2

2τ − φa
τ

and computing the integral

T̄1 = 1

σ 2
a

∫ I+α

I

∫ x

−∞
e[V (x)−V (y)]/σ 2

a dydx .

Next, note that the duration of the down state T2 will be the amount of time until the
threshold crossing a(T2) = I given u(0) = 0 and a(0) = I + α, where a(t) obeys
the SDE

da(t) = [−a(t)] dt/τ + dξa(t).
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Again, defining the potential V (a) = a2
2τ , we can compute

T̄2 = 1

σ 2
a

∫ −I

−I−α

∫ x

−∞
e[V (x)−V (y)]/σ 2

a dydx .

We compare the theory we have developed utilizing passage time problems to
residence times computed numerically in Fig. 5c. Notice that increasing the noise
amplitude tends to shorten both up and down state durations on average, due to early
threshold crossings of the variable a(t).

Furthermore, we can examine how noise reshapes the relative balance of up versus
down state durations. Specifically, we will explore how the relative fraction of time
the up state persists T̄1/(T̄1 + T̄2) changes with noise intensity σa and input I . First,
notice that, in the absence of noise the ratio

T1
T1 + T2

= ln [(φ − I )/(φ − α − I )]

ln [(I + α)(φ − I )/I (φ − α − I )]
. (29)

The up and down state have equal duration when T1/(T1 + T2) = 1/2, or when
the input I = (φ − α)/2, as shown in Fig. 5d. Interestingly, this is the precise input
value at which the period obtains a minimum, as we demonstrated in Sect. 3. Along
with our plot of Eq. (29) in the noise-free case (σa = 0), we also study the impact
of noise on this measure of up–down state balance. Noise leads to up and down state
durations becoming more similar, so the ratio Eq. (29) of the means T̄1 and T̄2 flattens
as a function of the input I . This is due to the fact that long durations, wherein the
variable a(t) occupies the tail of exponentially saturating functions A0 + A1e−t/τ ,
are shortened by early threshold crossings due to the external noise forcing. This is
consistent with the experimental findings of Fröhlich and McCormick (2010), which
showed that applied electric fields decrease the period of the slow oscillation. The
speeding up of the oscillation is mostly due to there being less time on average spent
in the down state. In our model, the parameter regime where one would expect to find
this behavior is one where the background input I is low to begin with, as shown in
Fig. 2b.

We can further observe the impact of noise on the up and down state durations
by studying their distributions in Fig. 6. Noise perturbs the limit cycle present in the
deterministic system (σa = 0), so that there is a wide range of durations for the up
and down state. The broadness of the distribution increases as the level of noise σa is
increased. Furthermore, the peak of the distribution shifts to shorter dominance times
for larger noise levels. Similar observations have been made in the slowly changing
energy landscape model of perceptual rivalry by Moreno-Bote et al. (2007). When
noise dominates transition dynamics, the lifetimes of up and down states are distributed
exponentially (Gardiner 2004). However, when adaptation plays a role in reshaping
the energy landscape explored by the stochastic system, the barrier the system state
must surmount shrinks over time. This leads to a resonance in the state durations
represented by the peak of the distribution in Fig. 6 for smaller noise values σa . The
prominence of a specific range of state durations is well supported by many previous
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Fig. 6 Noise reshapes the distributions of (a) up and (b) down state durations. As the level of noise σa is
increased, the intrinsic period of the deterministic oscillation is masked by the predominance of durations
punctuated by noise-driven transitions. This results in an exponentially decaying distribution, rather than a
peaked distribution, for large noise levels σa . Firing rate is given by the Heaviside function Eq. (3). Other
parameters are I = 0.2, α = 0.5, φ = 1, and τ = 50

experimental papers exploring the statistics of up and down states (Isomura et al. 2006;
Sanchez-Vives and McCormick 2000; Steriade et al. 1993; Cunningham et al. 2006).

6 Synchronizing two uncoupled populations

Now, we demonstrate that common noise can synchronize the up and down states of
two distinct and uncoupled populations. We begin with the case of identical noise and
then, in Sect. 7, relax these assumptions to show that some level of coherence is still
possible when each population has an intrinsic and an independent source of noise.
This is motivated by the observation that the SDE derived in the large system-size
limit of a neural master equation tends to possess intrinsic noise in each population,
in addition to an extrinsic common noise term (Bressloff and Lai 2011). As we will
show, intrinsic noise tends to disrupt the phase synchronization due to extrinsic noise.

To begin, we recast the stochastic system Eq. (5), describing a pair of adapting
noise-driven neural populations, as a pair of phase equations:

dθ1(t) = ωdt + Z(θ1(t)) · dξ(t), (30a)

dθ2(t) = ωdt + Z(θ2(t)) · dξ(t), (30b)

where θ1 and θ2 are the phase of the first and second neural populations. Note that
the phase equations Eq. (30) are in Stratonovich form since the original noise term
in Eq. (5) was converted to Stratonovich form in anticipation of the standard rules
of calculus needed for the phase reduction (Ermentrout 2009). As we demonstrate
in Fig. 7a, this introduction of common noise tends to drive the oscillation phases
θ1(t) and θ2(t) toward one another. Note that since the governing equations of both
populations are the same, then the phase sensitivity function Z(θ) will be the same
for both. Furthermore, the synchronized solution θ1(t) = θ2(t) is absorbing—once
the phases synchronize, they remain so. We can analytically calculate the Lyapunov
exponent λ of the synchronized state to determine its stability. In particular, we are
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Fig. 7 Synchronizing slow oscillations in two uncoupled populations described by Eq. (5) with sigmoidal
firing rate Eq. (2). a Single realization of the system Eq. (5) driven by common noise ξa to the adaptation
variable (〈ξ2a 〉 = ε2t , ε = 0.01) with input I = 0.2 and adaptation timescale τ = 50. Notice that the phase
difference ψ(t) = Δ1(t) − Δ2(t) roughly decreases over time. b Plot of the log of the phase difference
y(t) = lnψ(t) for several realizations (thin lines) compared with the theory (thick line) of the mean
y(0)+λt computed using the Lyapunov exponent Eq. (31). c Lyapunov exponent λ decreases as a function
of the adaptation timescale τ , for I = 0.2. We compare numerical simulations (dots) to theory (solid).
d Lyapunov exponent λ varies non-monotonically with the strength of the input I . Other parameters are
α = 0.5, γ = 15, and φ = 1

interested in how this stability depends on the parameters that shape the dynamics of
adaptation.

Following the work of Teramae and Tanaka (2004), we can convert Eq. (30) to the
equivalent Ito form, linearize, and average to approximate the Lyapunov exponent

λ = −
∫ 1

0
Z′T (θ)DZ′(θ)dθ. (31)

Assuming noise to the activity variable u and adaptation variable a is not correlated,D
will be diagonal. In this case, we can further decompose the phase sensitivity function
into its Fourier expansion

Z(θ) =
∞∑
k=0

ak sin(2πkθ) + bk cos(2πkθ),
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Fig. 8 Slow oscillations in
Eq. (5) can also be synchronized
via common noise to the neural
activity variables u j

(〈ξ2u 〉 = ε2t). Lyapunov
exponent λ decreases as a
function of the adaptation
timescale τ , for I = 0.2 in both
numerical simulations (dots) and
theory (solid). Other parameters
are α = 0.5, γ = 15, and φ = 1

where ak = (ak1, ak2)T and bk = (bk1,bk2)T are vectors in R2 so that

Z′(θ) =
∞∑
k=0

2πk [ak cos(2πkθ) − bk sin(2πkθ)] ,

and we can expand the terms in Eq. (31) to yield

λ = −
∞∑
k=0

2π2k2
[(

a2k1 + b2k1
)
D11 +

(
a2k2 + b2k2

)
D22

]
.

Thus, as long as Z(θ) is continuous and non-constant, the Lyapunov exponent λ

will be negative, so the synchronous state θ1 = θ2 will be stable. Note, continuity
is not satisfied in the case of our singular approximation to Z(θ). We demonstrate
the accuracy of our theory Eq. (31) in Fig. 7c, d, showing that λ decreases as a
function of τ and is non-monotonic in I . Thus, slow oscillations with longer periods
are synchronized more quickly, relative to the number of oscillation cycles. Since the
Lyapunov exponent has highest amplitude |λ| for both low and high values of the tonic
input I , we also suspect this is related to the period of the oscillation T .

Furthermore, we demonstrate that common noise to the neural activity variables u j

can stochastically synchronize the phases of the two uncoupled populations in Eq. (5).
As shown in Fig. 8, the Lyapunov exponent λ again decreases as a function of the
adaptation timescale τ . Thus, whether noisy inputs arrive through the adaptation or
activity variables, the two population oscillations will eventually be synchronized. As
expected, the amplitude of the Lyapunov exponent is weaker, for the same level of
noise, in the case of input to the neural activity variable.

7 Impact of intrinsic noise on stochastic synchronization

We now extend our results from the previous section by studying the impact of inde-
pendent noise in each population. In order for our theory of stochastic synchronization
of slow oscillations to be generalizable, it must be robust to the effects of local noise in

123



Z. T. McCleney, Z. P. Kilpatrick

Fig. 9 Stationary density M0(ψ) of the phase difference ψ = θ1 − θ2 for two slowly oscillating neural
population driven by both common and independent noise Eq. (6). As the degree of noise correlation is
decreased from (a) χa = 0.95 to (b) χa = 0.90, the density spreads, but there is still a peak at ψ = 0,
the phase-locked state. We focus on noise in the adaptation variable, so σu = 0 and σa = 0.01. Other
parameters are α = 0.5, γ = 15, φ = 1, and τ = 20

each of the neural populations.We demonstrate here that oscillation phases of stochas-
tically driven populations still remain relatively close in this case (Fig. 9). Independent
noise is incorporated into the modifiedmodel Eq. (6). Since there is a periodic solution
to the noise-free version of this system, phase-reduction methods can be used to obtain
approximate SDEs for the phase variables (Nakao et al. 2007)

dθ1 = ωdt + Z(θ1(t)) · [
dξ c(t) + dξ1(t)

]
, (32a)

dθ2 = ωdt + Z(θ2(t)) · [
dξ c(t) + dξ2(t)

]
, (32b)

where the noise vectors ξ c = (χuξuc, χaξac)
T and ξ j = (

√
1 − χ2

u ξu j ,
√
1 − χ2

a ξaj )
T

( j = 1, 2). Reformulating the system Eq. (32) in terms of an Ito SDE, we can analyze
the resulting Fokker–Planck equation along the lines of Nakao et al. (2007) to identify
the stationary distribution M0(ψ) for the phase-difference ψ = θ1 − θ2:

M0(ψ) = m0

σ 2
u

[
(2 − χ2

u )gu(0) − χ2
u gu(ψ)

] + σ 2
a

[
(2 − χ2

a )ga(0) − χ2
a ga(ψ)

] ,

(33)

wherem0 is a normalization factor and we have simplified the expression usingDu1 =
Du2 ≡ Dul = σ 2

u and Da1 = Da2 ≡ Dal = σ 2
a and defined

g j (ψ) =
∫ 1

0
Z j (θ)Z j (θ + φ)dθ.

When noise to each layer is independent (χu, χa → 0), thenM0(ψ) = 1 is constant
in space. When noise is totally correlated (χu, χa → 1), then M0(ψ) = δ(φ). The
stationary distributionM0(ψ)will broaden as the correlations χu and χa are decreased
from unity, with a peak remaining at φ = 0. We demonstrate the accuracy of the
formula Eq. (33) for the stationary density of the phase differenceψ in Fig. 9, showing
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that it widens as the level noise correlation is decreased. Again, we focus on the impact
of adaptation noise. Thus, even when independent noise is introduced, there is some
semblance of synchronization in the phases of two noise-driven neural populations
Eq. (6).

8 Entrainment in a pair of spiking populations

Thus far, we have examined the response of a rate model of slow oscillations Eq. (1)
to external perturbations. Mean field analyses of recurrently coupled spiking neurons
tend to yield such coarse-grained descriptions of the activity of network dynamics
(Treves 1993; Brunel 2000). In particular, mean field analyses of spiking neurons with
an afterhyperpolarizing current responsible for spike rate adaptation tends to yield
firing rate models analogous to Eq. (1) (Vreeswijk and Hansel 2001; Benda and Herz
2003). However, these mean field descriptions average out the effects of heterogeneity
and noise that can arise at the level of single neurons. We demonstrate here that these
microscopic effects do not significantly modify the qualitative results of previous
sections. Namely, two uncoupled populations of spiking cells with adaptation can
still support slow oscillations that become entrained when the slow hyperpolarizing
currents receive common stochastic forcing.

Wewill demonstrate our results using the excitatory-inhibitory network of integrate-
and-fire cells studied by Vreeswijk and Hansel (2001). Each of the Ne excitatory
neurons possesses an independent afterhyperpolarizing current,while the Ni inhibitory
neurons have no such current. The pattern of connectivity between neurons is described
by the matrices GAB

i j , where i, j , index individual neurons and A, B ∈ {e, i} indexes
the population type. For the simulations presented here, we consider all to all coupling
(GAB

i j = Ḡ AB), but similar results hold for a wider variety of couplings. The network
is characterized by the following set of differential equations

dvej =
[
I ej − vej + Ee

j − q j

]
dt/τe + dξej , j = 1, . . . , Ne, (34a)

dq j = [−q j
]
dt/τq + dξq j , j = 1, . . . , Ne, (34b)

dvij =
[
I ij − vij + Ei

j

]
dt/τi + dξi j , j = 1, . . . , Ni . (34c)

Excitatory cells receive external input I ej , synaptic input Ee
j , and a slowly evolving

hyperpolarizing current q j , while inhibitory cells are only subject to external and
synaptic input. We must also incorporate reset conditions whereby if at time t , vej
reaches 1, a spike occurs and vej is instantaneously reset to 0 (vej (t

+) = 0), and the
hyperpolarizing current q j is increased by gq/τq (q j (t+) = q j (t−) + gq/τq ). The
same reset condition holds for inhibitory cells vij (t

+) = 0 when vij (t
−) = 1, but they

engage no slow hyperpolarizing current (Ahmed et al. 1998). Excitatory and inhibitory
neurons are assumed to have typical membrane time constants of τe = τi = 10ms.
Synaptic currents are assumed to increment instantaneously and decay exponentially
according to the spike-triggered sums

E A
j =

∑
B=e,i

∑
k,l

G AB
kl H(t − t Bl )e−(t−t Bl )/τsB , (35)
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Fig. 10 Slow oscillations in an excitatory-inhibitory spiking network of Ne = 80 excitatory cells and
Ni = 20 inhibitory cells. a The voltage vej of two randomly selected excitatory cells shows that periods of
quiescence and activity alternate synchronously. b Up and down state transitions are apparent in the spike
raster plot of all the excitatory cells. c Average spike rates of the excitatory populations similarly show the
slow switching between the two stable states of the system: a low and a high firing rate state. Parameters
are Ie = 1.05, Ii = 0.95, gq = 0.8/τq , τse = 40ms, τsi = 30ms, τq = 500ms, Ḡee = 0.4/Ne ,
Ḡei = 0.32/Ni , Ḡie = 0.15/Ne , Ḡii = 0.01/Ni , σe = σi = σq = 0.01. Numerical simulations of
Eq. (34) employ the Euler–Maruyama method with a timestep dt = 10−6 s

where GAB
jk is the connectivity matrix, τsB is the decay time constant of the synapses

from population B, t Bl is the lth spike time of neuron l in population B. Note that
excitatory couplings Gee

kl and Gie
kl are non-negative and inhibitory couplings Gie

kl and
Gii

kl are non-positive. Lastly, both cell voltage and hyperpolarizing currents are subject
to white noise processes ξ(t) with zero mean and variance 〈ξAj (t)2〉 = σ 2

Aj t for
A = {e, i, q}.

The recurrent excitatory connectivity of Eq. (34) generates a bistable network.
Sufficiently high spike rateswill be sustained, due to repeated reactivation of excitatory
cells, but low spike rates do not engender persistent high spike rates. Transitions
between these two states are generated by the slow build up and decay of the slow
hyperpolarizing currents of the excitatory cells. We demonstrate the ability of the
network Eq. (34) to generate synchronous up and down state transitions in Fig. 10.
Single cells tend to occupy either a depolarized or hyperpolarized state, where they
spike repeatedly or are quiescent (Fig. 10a). This is due to the network-wide states
which are either high activity (up) or low activity (down) (Fig. 10b, c), and most cells
transition between these states synchronously due to the recurrent coupling.

We also explore the impact of common noise on a pair of networks, each described
by the equations Eq. (34), and indexed by 1 and 2:

dv1ej =
[
I 1ej − v1ej + E1e

j − q1j

]
dt/τe + dξ1ej , j = 1, . . . , Ne, (36a)

dq1j =
[
−q1j

]
dt/τq + dξ1q j , j = 1, . . . , Ne, (36b)

dv1ij =
[
I 1ij − v1ij + E1i

j

]
dt/τi + dξ1i j , j = 1, . . . , Ni , (36c)

dv2ej =
[
I 2ej − v2ej + E2e

j − q2j

]
dt/τe + dξ2ej , j = 1, . . . , Ne, (36d)

dq2j =
[
−q2j

]
dt/τq + dξ1q j , j = 1, . . . , Ne, (36e)

dv2ij =
[
I 2ij − v2ij + E2i

j

]
dt/τi + dξ2i j , j = 1, . . . , Ni . (36f)
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Fig. 11 Noise-induced correlation of the spike pattern of two uncoupled excitatory-inhibitory networks
Eq. (34)with adaptation. Noise to all adaptation variables σq = 0.001 in both populations is fully correlated.
a Excitatory population-wide spike rates of the first (solid line) and second (dashed line) networks become
more correlated over time. Up and down transitions begin to occur more coherently at later times. b
Correlation coefficient (CC) associated with the spike trains of network 1 as compared to those of network
2, averaged across all possible pairings. The CC for the later time window [3, 6]s (solid line) is larger than
that for the earlier time window [0, 3]s (dashed line), demonstrating the noise-induced increase in activity
correlation between the two uncoupled networks. Other parameters and methods are the same as in Fig. 10

Each network’s state is initialized randomly, by selecting a random time point in the
simulation presented in Fig. 10, so that both networks are in a randomly chosen phase
of an evolving slow oscillation. Noise to the voltage variables vBA

j of each network is

taken to be uncorrelated, but noise to the adaptation variables qB
j is taken to be fully

correlated so that each variable receives an identical white noise sample. As a result,
the spike and rate patterns of these two uncoupled networks become more correlated
over time (Fig. 11a). We quantify the effect on spike correlation by digitizing all spike
times of each network’s excitatory population into 10ms bins and then useMATLAB’s
xcorr function to compute an unnormalized correlation function between network
1 and network 2. This is then normalized by dividing by the geometric mean

√
ν jνk

of both neuron’s total firing rate ν j and νk over the time interval. The time interval
[0, 3]s is compared to [3, 6]s in Fig. 11b, demonstrating the correlation coefficient
increases at later times. Thus, common noise in the slow hyperpolarizing currents
can help to correlate the temporal evolution of firing rate and spiking in this spiking
network model.

9 Discussion

We have studied the impact of deterministic and stochastic perturbations to a neural
population model of slow oscillations. The model was comprised of a single recur-
rently coupled excitatory population with negative feedback from a slow adaptive
current (Laing and Chow 2002; Jayasuriya and Kilpatrick 2012). By examining the
phase sensitivity function (Zu, Za), we found that perturbations of the adaptation
variable lead to much larger changes in oscillation phase than perturbations of neural
activity. Furthermore, this effect becomesmore pronounced as the timescale τ of adap-
tation is increased. Introducing noise in the model decreases the oscillation period and
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helps to balance the mean duration of the oscillation’s up and down states. When
two uncoupled populations receive common noise, their oscillation phases θ1 and θ2
eventually become synchronized, which can be shown by deriving a formula for the
Lyapunov exponent of the absorbing state θ1 ≡ θ2 (Teramae and Tanaka 2004). When
independent noise is introduced to each population, in addition to common noise, the
long-term state of the system is described by a probability density for ψ = θ1 − θ2,
which peaks at ψ ≡ 0.

Our study was motivated by the observation that recurrent cortical networks can
spontaneously generate stochastic oscillations between up and down states. Guided
by previous work in spiking models (Compte et al. 2003), we explored a rate model of
a recurrent excitatory network with slow spike frequency adaptation. We expect that
we would have obtained similar results from an excitatory-inhibitory network, since
inhibition tends to act faster than excitation, essentially reducing the effective recurrent
excitatory strength (Pinto and Ermentrout 2001). One of the open questions about up
and down state transitions concerns the degree to which they are generated by noise
or by more deterministic mechanisms, such as slow currents or short term plasticity
(Cossart et al. 2003). Here, we have provided some characteristic features that emerge
as the level of noise responsible for transitions is increased. Similar questions have
been explored in the context ofmodels of perceptual rivalry (Moreno-Bote et al. 2007).
In addition, we have provided a plausible mechanism whereby the onset of up and
down states could be synchronized in distinct networks (Volgushev et al. 2006).

Nonmonotonic residence time distributions for up states provide compelling evi-
dence for the theory that switches from up to down states are partially governed by
deterministic neural processes (Cheng-yu et al. 2009). This idea is explored in detail in
a recent study which employed a neuronal network model with short term depression
(Dao Duc et al. 2015). Recordings presented therein from both auditory and barrel
cortices revealed up state duration distributions which are peaked away from zero.
Furthermore, the tail of the duration distribution has an oscillatory decay with several
peaks, which may arise due to specific properties of the underlying network’s dynam-
ics. Indeed, the authors were able to account for these peaks in a neuronal network
model with an up state whose attracting trajectories are oscillatory. It would interesting
to extend the present study to try and understand how external inputs might entrain
such up and down state transitions that occur via more complex dynamics.

Synchronizing up and down states across multiple areas of the brain may be
particularly important for memory consolidation processes (Diekelmann and Born
2010). Long term potentiation (LTP), the process by which the strength of synapses
is strengthened for a lasting period of time (Alberini 2009), is one of the chief mech-
anisms thought to underlie memory formation (Takeuchi et al. 2014). Both cortical
and hippocampal LTP are typically restricted to the up states of slow oscillations dur-
ing slow wave sleep (Rosanova and Ulrich 2005). Furthermore, up states may then
repetitively activate memory traces in hippocampus, along with thalamus and cor-
tex, reenforcing memory persistence (Marshall and Born 2007). Thus, subnetworks
whose slow oscillations are coordinated are more likely to be further linked through
long term plasticity. Indeed, boosting slow oscillations by external potential fields has
been shown to enhance declarativememories, providing further evidence that coherent
up and down state transitions may subserve memory consolidation processes (Mar-
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shall et al. 2006). In total, synchrony may provide a functionally relevant way to link
the activities of related neuronal assemblies, allowing appropriate reactivation during
waking hours (Steriade 2006).

We have proposed two possible ways for synchrony of up and down states to occur:
(a) common noise in the activating currents of neurons in distinct populations and
(b) common noise in the slow hyperpolarizing currents of distinct neural populations.
The first mechanisms could arise through common excitatory input to each popula-
tion, as in previous studies of correlation-induced synchrony in olfactory bulb neurons
(Galán et al. 2006). The second mechanism must arise via common chemical forcing
of hyperpolarizing current. Oneway this could occur is via common astrocytic calcium
signaling (Volterra et al. 2014). Calcium propagates rapidly in waves through astro-
cytes (Newman 2001), which could generate a common signal on calcium activating
hyperpolarizing currents (Bond et al. 2004). Furthermore, slow afterhyperpolarizing
currents can bemodulated by acetylcholine (Faber and Sah 2005). Global modulations
of acetylcholine are often observed during slowwave sleep (Steriade 2004), so thismay
provide another mechanism for the common perturbation of slow afterhyperpolarizing
currents.

Other previous studies have explored phenomenological models of up/down state
transitions in neural populations. For instance, Holcman and Tsodyks (2006) intro-
duced an excitatory network with activity-dependent synaptic depression having two
attractors that represented the up and down state of the network. Synaptic noise, rather
than a systematic slow process like rate adaptation, drove the system between these
two attractors. These authors explored the stochastic dynamics of a single neural
population that did not possess a deterministic limit cycle in the absence of noise.
Parga and Abbott (2007) have addressed such dynamics in a complementary way, by
studying a network of integrate-and-fire neurons with nonlinear membrane current.
The resulting bistability in the resting membrane potential of single cells is inherited
by the dynamics of the full network. The noise-driven network ceaselessly switches
between low and high firing rate states. The durations of up and down states are given
by exponential distributions, since they arise from noise-induced escape from a local
attractor. Our work is distinct from these previous studies in several ways. First, we
note that the mechanism underlying transitions between up and down states is a com-
bination of slow rate adaptation and noise in our full stochastic model. Under small
noise assumptions, this allows us to examine the susceptibility of the network state to
external perturbations using a phase reduction method (Brown et al. 2004). Second, a
chief concern of our work is the synchronization of multiple populations undergoing
coherent slow oscillations, as in Volgushev et al. (2006). One particularly interesting
extension of previous studies of noise-induced up and down state transitions (Holcman
and Tsodyks 2006; Parga and Abbott 2007), would be to define some semblance of a
phase response curve, based on knowledge of the network’s underlying state. Recent
work on the PRCs of excitable systems and asymptotically phaseless systems may be
particularly helpful (Shaw et al. 2012; Wilson and Moehlis 2015).

There are several other potential extensions to this work. For instance, we could
examine the impact of long-range connections between networks to see how these
interact with common and independent noise to shape the phase coherence of oscilla-
tions. Similar studies have been performed in spiking models by Ly and Ermentrout
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(2009). Interestingly, shared noise can actually stabilize the anti-phase locked state in
this case, even though it is unstable in the absence of noise. Furthermore, it is known
that coupling spanning long distances can be subject to axonal delays. In spite of
this, networks of distantly coupled clusters of cells can still sustain zero-lag synchro-
nized states (Vicente et al. 2008). However, there are some cases in which such delays
can destabilize the phase-locked states (Earl and Strogatz 2003; Ermentrout and Ko
2009), in which can another mechanism would be needed to explain the synchroniza-
tion of up/down states. Thus, we could also explore the impact of delayed coupling,
determining how features of phase sensitivity function interact with delay to promote
in-phase or anti-phase synchronized states. Lastly, we note that a systematic analysis
of phase equations for relaxation oscillators has been applied to the general case of
slow variables in (Izhikevich 2000). We expect that the approach developed therein,
using the Malkin theorem, could be be applied to the system Eq. (1), even in the case
of a discontinuous firing rate function.
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