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Abstract

In the paper matrix integral is introduced as the inverse operation of the matrix derivative.
The definition of the integral is based on the star product of matrices introduced by MacRae
[Ann. Stat. 7 (1974) 381]. Basic properties of the integral are presented and several examples
given to demonstrate practical usage of the notion.
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1. Introduction

Let X: p × q and Y : r × s be matrices. We denote the element in the ith row and
j th column as (X)ij .

Firstly we introduce notations from so called newer matrix algebra. The Kronecker
product of matrices X: p × q and Y : r × s is defined as the pr × qs partitioned
matrix X ⊗ Y consisting of r × s blocks, where every block

(X)ij (Y ) =



(X)ij (Y )11 · · · (X)ij (Y )1s

...
. . .

...

(X)ij (Y )r1 · · · (X)ij (Y )rs


 ,

i = 1, 2, . . . , p, j = 1, 2, . . . , q.
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The rk × sk-matrix Y⊗k is expressed as follows:

Y⊗k = Y ⊗ Y ⊗ · · · ⊗ Y︸ ︷︷ ︸
k times

.

The vec-operator denoted by vec is defined as follows:

vecX = ((X)11, . . . , (X)p1, (X)12, . . . , (X)p2, . . . , (X)1q, . . . , (X)pq)′.

Let us call the operator

d

dX
=




�
�(X)11

· · · �
�(X)1q

...
. . .

...
�

�(X)p1
· · · �

�(X)pq




the matrix differential operator and the operator

d

sdX
=

p∑
i=1

q∑
j=1

�
�(X)ij

the scalar differential operator.
For notions and results from matrix algebra an interested reader is referred to

Magnus and Neudecker [5], Schott [7] or Harville [1].
Matrix derivative has been a useful tool for statisticians in last 30 years. The

notion “matrix derivative” has been used for different representations of the Frechet’
derivative. Neudecker [6] defined matrix derivative using vec-operator:

�Y

�X
= d

dvec′X
⊗ vecY, (1.1)

where

d

dvec′X
=

(
�

�(X)11
· · · ,

�
�(X)p1

· · · ,
�

�(X)1q

· · · ,
�

�(X)pq

)
.

Definition of MacRae in [4] was based on Kronecker product directly:

dY

dX
= d

dX
⊗ Y. (1.2)

In the sense of metrics the definition of MacRae and Neudecker matrix derivative
are equivalent. MacRae’s matrix derivative fits better presentation. In applications,
however, the Neudecker’s matrix derivative is often used.

The higher order derivatives have been defined recursively. In the case of defini-
tion (1.1) [2, p. 69]
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�kY

�Xk
= �

�X

(
�k−1

�Xk−1

)
= d

dvec′X
⊗ d

dvecX
⊗ · · · ⊗ d

dvecX︸ ︷︷ ︸
k times

⊗vecY (1.3)

and

dkY

dXk
= d

dX
=

(
dk−1Y

dXk−1

)
, k > 1, k ∈ N

in the case of the derivative (1.2) [2, p. 70].
A stimulating result for our study has been a general relation between two den-

sity functions, derived in Kollo and von Rosen [3]. In their paper a general formal
density expansion is presented where complicated density of interest is presented
through the approximating density and cumulants of both distributions under con-
sideration. The dimension of the approximating distribution can be higher than the
dimension of the distribution of interest. This makes it possible to approximate the
distribution of the sample correlation matrix through the Wishart distribution, for
instance.

In applications approximation of the distribution function is at least as impor-
tant as of the density function. In univariate case an expansion of the distribution
function can be obtained from a density expansion by integration. In multivariate
case the situation is more complicated. Kollo and von Rosen have approximated
the density function fY (x) by the density function fX(x) using matrix derivative
(1.1). The notion “matrix integral” has been introduced in this paper to make it pos-
sible to integrate this relation between the two density function. In Section 2 we
define indefinite and definite matrix integrals and give some simple examples. In
Section 3 basic properties of this integral are examined. In Section 4 an applica-
tion of the matrix integral is given and some comments for further development are
made.

2. Definition and examples

Firstly we define the indefinite matrix integral. In definition we use the MacRae’s
matrix derivative. The Neudecker’s matrix derivative we could be used in the same
way.

Definition 2.1. The matrix Y : r × s is called the matrix integral of Z = Z(X): pr ×
sq, where X: p × q, if

dY

dX
= Z.
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The fact, that matrix Y is the matrix integral of the matrix Z is denoted as∫
Rpq

Z ◦ dX = Y.

If Y is the matrix integral of matrix Z, then also Y + C is a matrix integral of Z.
Here C is a constant matrix of the same order as matrix Y . In Definition 2.1 we
have introduced the undefinite matrix integral. It is used to define the definite matrix
integral.

Definition 2.2. The difference Y (B) − Y (A) is called the definite matrix integral
of matrix Z from A to B, where Y (A) = Y (X)|X=A and Y (B) = Y (X)|X=B are
determined by Definition 2.1.

While a matrix derivative has larger dimensions than the differentiated matrix,
then integrated matrix has smaller dimensions than the matrix to be integrated. Our
further constructions are based on the star product of matrices introduced by MacRae
[4]. This operation is denoted by ∗.

Definition 2.3. The star product of matrices A: p × q and B: pr × qs is the r ×
s-matrix A ∗ B, which is given by the equality

A ∗ B =
p∑

i=1

q∑
j=1

(A)ij [Bij ],

where [Bij ] is r × s-submatrix.

By means of the star product we shall now define the operator d = dX ∗ d
dX

. Let
Z be pr × qs and let us compose the matrix

D = dX ∗ Z =
p∑

i=1

q∑
j=1

(dX)ij [Zij ].

If every element of matrix D is the total derivative of some function depending on
matrix X, then there exists matrix Y : r × s so that dY = D and Z = dY

dX
. Now we

can define the matrix differential.

Definition 2.4. The matrix dY : r × s is called the matrix differential of matrix Y (X)

if

dY = dX ∗
(

d

dX
⊗ Y

)
.
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By means of operator d we can find the matrix differential dY as follows:

dY = dX ∗ dY

dX

=




d(X)11 · · · d(X)1q

...
. . .

...

d(X)p1 · · · d(X)pq




∗




�(Y )11
�(X)11

· · · �(Y )1s

�(X)11
· · · �(Y )11

�(X)1q
· · · �(Y )1s

�(X)1q

...
. . .

...
. . .

...
. . .

...

�(Y )r1
�(X)11

· · · �(Y )rs
�(X)11

· · · �(Y )r1
�(X)1q

· · · �(Y )rs
�(X)1q

...
. . .

...
. . .

...
. . .

...

�(Y )11
�(X)p1

· · · �(Y )1s

�(X)p1
· · · �(Y )11

�(X)pq
· · · �(Y )1s

�(X)pq

...
. . .

...
. . .

...
. . .

...

�(Y )r1
�(X)p1

· · · �(Y )rs
�(X)p1

· · · �(Y )r1
�(X)pq

· · · �(Y )rs
�(X)pq




=




∑p,q

i,j=1
�(Y )11
�(X)ij

d(X)i,j · · · ∑p,q

i,j=1
�(Y )1s

�(X)ij
d(X)i,j

...
. . .

...∑p,q

i,j=1
�(Y )r1
�(X)ij

d(X)i,j · · · ∑p,q

i,j=1
�(Y )rs
�(X)ij

d(X)i,j




=




d(Y11) · · · d(Y )1s

...
. . .

...

d(Yr1) · · · d(Y )rs


 .

The matrix integral of Z can be presented of the form:

Y =
∫

Rpq
dY =

∫
Rpq

dX ∗ Z,

where z = dY
dX

.

Example 2.1. Let us demonstrate how to find an matrix integral. Let X = (x1 x2)

and let

Z =
(

x1 x2

3x1 x2
2

)
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be the matrix derivative of matrix Y by matrix X. We can find matrix Y as follows:

Y =
∫

�2
dX ∗ Z =

∫
�2

(dx1 dx2) ∗
(

x1 x2

3x1 x2
2

)

=
∫

�2

(
x1dx1 + x2dx2

3x1dx1 + x2
2dx1

)
=

(
1
2 (x2

1 + x2
2) + c1

3
2x2

1 + 1
3x3

2 + c2

)

=
(

1
2 (x2

1 + x2
2)

3
2x2

1 + 1
3x3

2

)
+ C,

where

C =
(

c1
c2

)
.

Next an example of the definite matrix integral is given.

Example 2.2. Let A = (1 1) and B = (2 2). We shall find the definite matrix
integral Y (B) − Y (A) of matrix Z given in Example 2.1. We obtain

Y (B) − Y (A) =
(

4
6 + 8

3

)
−

(
1

3
2 + 1

3

)
=

(
3
41
6

)
.

3. Properties

Now we present some basic properties of the matrix integral. We assume without
loss of generality that matrix C = 0. Let the dimensions of matrices X, Y and Z be
the same as in Definition 2.1. In these assumptions the following properties of the
matrix integral are valid.

Proposition 3.1. Let X be a p × q-matrix. Then∫
�pq

vecIpvec′Iq ◦ dX = X.

Proof. According to equality (1.2), matrix vecIpvec′Ip is the matrix dX
dX

. According
to Definition 2.1 matrix X is the matrix integral of the matrix vecIpvec′Iq . �

Proposition 3.2. Let Y = U + V, where U and V are r × s-matrices. Then∫
�pq

Y ◦ dX =
∫

�pq

U ◦ dX +
∫

�pq

V ◦ dX.
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Proof. From distributivity of the Kronecker product:

(A + B) ⊗ (C + D) = (A ⊗ C) + (A ⊗ D) + (B ⊗ C) + (B ⊗ D)

we obtain

d

dX
⊗ Y = d

dX
⊗ (U + V ) = d

dX
⊗ U + d

dX
⊗ V.

This proves the proposition. �

Proposition 3.3. Let A : pq ⊗ pq be a constant diagonal matrix and let X : p ⊗ q.

Then

∫
�pq

A ◦ dX =




(A)1(X)11
(A)2(X)21

...

(A)pq(X)pq


 ,

where (A)l = (A)ll, l = 1, . . . , pq.

Proof. The statement follows from the definition of the Kronecker product and from
Definition 2.1. �

Let g(x) be a continuous function of p-vector x and let the derivative (1.3) of kth
order of the function g(x) exist and be denoted by g(k)(x). Denote the inner product
of p-vectors a ja b as (a, b) : (a, b) = a′b. Let us denote the ith element of vector x

as (x)i , i = 1, 2, . . . , p. For notational conveniences we introduce the vector

ep = (1, . . . , 1)′︸ ︷︷ ︸
p times

and the operator

sdx :=
p∑

i=1

d(x)i .

In the next properties we assume, that the matrix derivative is expressed as in Eq.
(1.1).

Proposition 3.4. The next relation holds in the notations, given above∫
�p

g(k)(x) ◦ dx = g(k−1)′(x).

Proof. If k = 1, then the equality is obvious according to Definition 2.1. By means
of Eq. (1.3) and Definition 2.1 the proposition is valid by every natural k. �
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Proposition 3.5. Let A : n × pk−1 be a constant matrix and Al, l = 1, . . . , n the
row vector of this matrix. Then

∫
�p

A(k)
g (x) ◦ dx′ =




(A1, vecg(k−1))(x)
...

(An, vecg(k−1))(x)


 .

Proof. Apply the operator d
dx′ to the right-hand side of the statement. It is easy to

ensure that the matrices

d

dx′ ⊗



(A1, vecg(k−1))(x)
...

(An, vecg(k−1))(x)




and Ag(k) have the same dimensions. Now we must ensure that the corresponding
elements are equal. We obtain that

 d

dx′ ⊗



(A1, vecg(k−1))(x)
...

(An, vecg(k−1))(x)







lm

=
pk−1∑
j=1

(A)lj (g
(k))jm(x) = (Ag(k)(x))lm,

where l = 1, . . . , n and m = 1, . . . , p. Thus the corresponding elements of matrices
are equal. �

Proposition 3.6. Let a be a constant not depending on vector x. Then∫
�p

(
d

dx′ , ep

)
ag(x)◦sdx = ag(x).

Proof. It is easy to check that the scalar differential operator can be presented as the
inner product:

d

sdx
=

(
d

dx′ , ep

)
.

Thus ∫
�p

(
d

dx′ , ep

)
ag(x)∗s dx

= ag(x) =
∫

�p

d

sdx
ag(x)∗sdx

=
∫

�p

dag(x) = ag(x). �
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Proposition 3.7. Let functions g and G be such that

g(x) = �G(x)

�(x)1 . . . �(x)p
.

Then the next relation is valid∫
· · ·

∫
︸ ︷︷ ︸

p

g(x)d(x)1 . . . d(x)p =
∫

�p

d

sdx
G(x)◦sdx.

Proof. By integrating the left-hand side of the statement we obtain∫
· · ·

∫
︸ ︷︷ ︸

p

�G(x)

�(x)1 . . . �(x)p
d(x)1 . . . d(x)p = G(x).

Applying the matrix integral to the right-hand side of the statement we obtain∫
�p

d

sdx
G(x) ∗s dx = G(x).

Proposition 7 concludes the next property. �

Proposition 3.8. Let a be a constant p-vector. Then∫
· · ·

∫
︸ ︷︷ ︸

p

(
a,

d

dx

⊗k
)

g(x)d(x)1 . . . d(x)p =
(

a,
d

dx

⊗k
) ∫

�p

d

sdx
G(x) ◦s dx.

Now we shall use the considered properties in an example.

Example 3.1. Let x = ((x)1 (x)2)
′, g(x) = (x)2

1 + (x)2
2 and A = (1 2 3)′.

Using the star product we obtain∫
�p

g(2)(x)◦ dx =
∫

�p

dx ∗ g(2)(x) =
(

2(x)1
2(x)2

)
=

(
g(1)

)′
.

So we have demonstrated the usage of Proposition 3.4.

Example 3.2. Let us apply the Proposition 3.5 to the matrices from the previous
example. We obtain

∫
�p

Ag(1)(x) ◦ dx′ =
∫

�p

dx′ ∗ Ag(1)(x) =



(x)2
1 + (x)2

2

2(x)2
1 + 2(x)2

2

3(x)2
1 + 3(x)2

2


 .
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4. Application

We shall show how one can use matrix integral when integrating the relation
between two density functions. Let X and Y be random p-vectors. The formula of
approximation of the density function of fY (x) by fX(x) in Kollo and von Rosen [3]
has the form:

fY (x) ≈ fX(x) + A′vecf (1)
X (x) + vec′Bvecf (2)

X (x) + vec′Cvecf (3)
X (x),

(4.1)

where A is a p-vector, B is a p × p-matrix and C is a p2 × p-matrix. Now we apply
matrix integral to the relation 4.1. Let FY (x) and FX(x) be distribution functions
corresponding to the density functions fY (x) and fX(x) respectively. By definition

FX(x0) =
∫ (x0)1

−∞

∫ (x0)2

−∞
· · ·

∫ (x0)p

−∞
fX(x)d(x)1d(x)2 . . . d(x)p.

After using Propositions 7 and 8 we obtain the next relation between distribution
functions FY (x0) and FX(x0):

FY (x0) ≈ FX(x0) + A′ep ⊗ f (x)(x0) +
p∑

l=1

B ′
l ep ⊗ f 1

Xl(x0)

+
p∑

l=1

p∑
j=1

C′
(l−1)p+j ep ⊗ f 2

Xlj (x0),

where Bl denotes the lth column vector of matrix B, C(l−1)p+j denotes the
((l − 1)p + j)th column vector of matrix C and f 1

Xl is the derivative of function
fX(x) by the �th component.

So we have demonstrated an application of the matrix integral for integrating a
relation between two multivariate density functions.
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