
APPM 2460

Matlab Basics

1 Introduction

In this lab we’ll get acquainted with the basics of Matlab. This will be review if you’ve done any sort
of programming before; the goal here is to get everyone on the same page with regards to some basic
concepts.

2 The Matlab Environment

First we’ll open Matlab. You’ll see three windows when you open it; the Command Window, the
Current Folder window, and the Workspace window. For now, we’ll focus on the command window.

2.1 The Command Window

The command window (sometimes referred to as the command line) is where you enter commands directly.
This is best for single-line commands, and we will not use it very much. That said, let’s get a sense of
how it works. Try typing the following into the workspace window (type each one, then hit enter, then
repeat with the next):

• disp(’Hello world!’)

• disp(sqrt(2))

• x = 2*6

The disp command tells Matlab to display something. This something can be a string (sequence of
alphanumeric characters, such as a word or sentence) or a number, among other things. After entering
the final command (x=2*6), you should see a variable x appear in your workspace. This means you’ve
assigned a value to the variable, a concept we’ll describe in the next section.

2.2 Writing Scripts

You may want to multiple lines worth of commands. For this, we use a script. We can make a new script
by clicking the New Script button on the top left of the Matlab window.

A new window should have opened, named Editor. It also shows the name of the script you’re editing,
which right now is likely “untitled.” Type the following lines into the editor window:

clear all

x = 2;

disp(x)

x = x+10;

disp(x)

disp(’Go Buffs’)

1

(The clear all is mysterious for now, but I’ll explain it later.) Now, hit the button labeled Run in the
bar above the editor window. It will prompt you to save the script, so give it name and hit save. Then,
the script should run.

You’ll notice that the exact same thing happened as would have if you had entered each line of this
in order. This reiterates my previous point: a script is just a sequence of commands that are
executed in order.

Let’s make some changes to the script, and run it again. First, remove the lines that start with disp,
and run the script. You should see no output, although if you look in your workspace, you should see
that, indeed, our variable x has the value 12. Now, remove the semicolons, and run the script. You should
see output for each of the lines that begin with x = We say that semicolons “surpress output,” and
this is usually what we want. As we change the value of things (in this case, the variable x) we don’t
want to see the value each time.

TL;DR: Scripts are a sequence of commands. Put a semicolon at the end of every line
that has an equals sign in it so that Matlab doesn’t print stuff you don’t want.

3 Variables and Assignment

3.1 Pseudo-Code

Programming a computer can seem daunting, and overwhelming when it’s not working. The key to
understanding what the computer is doing is to use pseudo-code. This is a way to write, by hand, what
you want the computer to do at each step. Then, you can follow the instructions yourself, and see what
the computer should know at each step.

3.2 Assignment of Variables

Matlab does not think of variables the same way that we people do in math classes. You can think of
Matlab as storing variables inside a filing cabinet, with an note card for each variable. If I enter the
command x = 2, Matlab will create a new note card in the filing cabinet, label it x, and write the value
2 on the back.

When we want to save a value to a variable (write a number on the note card), that is called assigning
the value. In the example above, we are assigning the value 2 to the variable x. In pseud-code, we will
sometimes use a backwards arrow (←) to denote assignment. We use = (in pseud-code) for something
else, which we we will cover later in the semester. The arrow helps us to remember that Matlab starts
on the right side of the assignment, computes a value, then saves it to the variable on the left. Consider
this line of pseudo code:

x← 2 + 3

Here, the program starts on the left, adds 2 and 3 together, gets 5, then writes 5 to (the note card
associated with) x.

3.3 The Workspace

The workspace is defined as the collection of variables you have assigned. Your workspace is emptied
each time you start Matlab, and when you use the command clear all. We want to clear our workspace
at the beginning of each script so we know we are not accidentally using leftover values from old work.
The workspace window allows you to check out what variables are currently in your workspace.

3.4 Assignment is not Equality

In math classes, an equation such as x = 2 + y makes perfect sense: x depends on y, and in particular
is equal to 2 + y. However, to Matlab, this is gibberish. Try entering x = 2+y in the command window;

2

you will get an error. This is because Matlab works in terms of concrete values, and it does not know
what you mean by y. The first thing Matlab will do is go to the variable (note card) y, and retrieve the
value, which it will then add to 2. However, there is no such variable! We need to tell Matlab what y is
first. These lines of pseudo-code do make sense:

y ← 3

x← 2 + y

Now, in the second line, the program would go the variable y, retrieve the value 5, add it to 2, get 7, then
store it in the variable x.

Let’s look at another situation where Matlab treats equals signs differently than we would in class. In
a math class, x = x+ 2 is an impossibility. However, Matlab can handle this expression:

x← 3

x← x+ 2

Let’s go through this one step at a time. First, Matlab creates a variable x, and stores the value 3 in
it. Now, remember that we always start on the right side of an assignment. First, Matlab retrieves the
value of x (3), adds it to 2, gets 5. Then, it stores it in the variable on the left side of the assignment,
which happens to be x. There is no issue with the fact that we used x on both sides of the assignment.
The value stored in the variable x simply changed from 3 to 5.

4 Vectors

Since this class deals with vectors, we will certainly want to be able to work with them in Matlab. Most
anything we do this semester will use vectors. Using the note card visualization, a vector variable will
have a row of numbers on the back of the note card. We use brackets to tell Matlab that we are creating
a vector, with commas between each of the numbers, known as elements. For example, I could create a
vector of the numbers 1 through 4 using the following pseudo-code:

x← [1, 2, 3, 4]

What if I wanted to create a vector of the numbers between 1 and 1000, or 1000000? This method would
require that I spend a LOT of time typing. Instead, we can create a whole vector all at once using the
following template:

x← first number : increment : last number.

This is often stated in more succinct terms:

x← start : step : stop.

So, for the above example, the following pseudo-code generates the vector [1, 2, 3, 4]:

x← 1 : 1 : 4

The first number in the vector is 1, we want to increment by 1, and the last number is 4. If I wanted the
vector [2, 4, 6, 8] I would use

x← 2 : 2 : 8

If I wanted a vector of all of the multiples of 10 under 10000, I could type:

x← 0 : 10 : 9999

Give it a try yourself! Enter the command x = 2:2:8 into the command window and see what happens.
What if we do x = 2:3:8?

3

4.1 Indexing a vector

Now that we can create a vector, we want to be able to use, and manipulate them. Suppose I have a vector
which contains the temperatures in Boulder on Jan 14 for a period of 5 years. It might look something
like this, where the first element is last year’s temperature, and the last is from 2010:

temps← [30, 40, 24, 55, 18]

Now, what if I wanted to use the temperature from 2011? Then we would want to index the vector. We
do this using parenthesis next to the variable name of the vector, and the number corresponding to the
location of the element we want. 2011 is in the 4th element, so we can type:

2011temp← temps(4)

Now the variable 2011temp would contain the value 55.
What if we wanted to go in reverse? That is, instead of retrieving one of the elements, we wanted to

change the temperature we have recorded for 2012. We would want to assign a value to temps(3), so it
would go on the left side of the arrow, and the value we want to save on the right.

temps(3)← 51

What if we wanted to change the temperatures for both 2012 and 2011 at once? We can use the colon
once again. When indexing, the colon reads like through, so that 1:6 is one through six. Then x(1:3)

would index the first through the third entries of the vector x. Thus, to change the temperatures for 2011
and 2012, we could type

temps(2:3) = [30, 33]

Then, the vector temps would be [30, 30, 33, 55, 18]. Try this yourself, and make sure that the value of
temps is what you expect!

4

Homework

Please complete the following problems and return this sheet to the instructor by the end of class. The
following set of problems are designed to help you get acquainted with Matlab. For the following, simply
write out the Matlab command that mimics the desired operation.

1. This set of problems is to help you get familiar with Matlab. For the following, simply fill in the
Matlab command that mimics the desired operation in the right column of the table.

Desired Operation Matlab Command

x← 8 x = 8

y ← x/2

z ← 7
x+y − 2x

vect← [1, 2, 3, 4, 5]

Replace the third element of “vect” with a 9

Compute
√
π (Hint in the footnote)1

2. No more technical work from here on. The following are just so I can get to know you better.

• What year are you in at CU? What is your major?

• Do you have any experience with MATLAB or any other programming languages?

• What do you hope to learn from this class?

• What are you most excited about this coming semester?

1if you ever don’t know to enter a specific operation in Matlab, a quick search can be of great help! If you are stuck on
this problem try searching “square root in matlab” in your browser.

5

