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Abstract. It is well known that nonlinear instabilities may occur when the partial differen- 
tial equations, describing, for example, hydrodynamic flows, are approximated by finite- 
difference schemes, even if the corresponding linearized equations are stable. A scalar model 
equation is studied, and it is proved that methods of leap-frog and Crank-Nicolson type 
are unstable, unless the differential equation is rewritten to make the approximations 
quasi-conservative. The local structure of the instabilities is discussed. 

1. Introduction. There are many theorems, based for example on Fourier or 
energy methods, which can be used to find precise stability conditions for difference 
approximations of linear partial differential equations with constant coefficients. 
By stability, we mean that the L,-norm of the difference approximation does not 
increase in time faster than a fixed exponential function even if the mesh is refined. 
Many of the results for equations with constant coefficients can be carried over 
to the case of variable coefficients. It is often sufficient to freeze the coefficients and 
consider only the local stability properties to get an estimate of the over-all stability. 
However, as yet very little has been proved about the stability for approximations 
of nonlinear equations. It turns out that the properties of the linearized equations 
are not at all sufficient for determining stability. 

The first example of pure nonlinear instability was given by N. A. Phillips [4] 
for a difference approximation of the barotropic vorticity equation for two-dimen- 
sional flow. Richtmyer [5] gives another example, which can also be found in 
Richtmyer-Morton [6].It  is very similar to that of Phillips, but here a model equation 
is studied: 

A solution for the leap-frog approximation of (1) is found, which increases expo- 
nentially with the number of time steps. In this paper, we shall also study approxima- 
tions of (I), which, more generally, can be rewritten as 

for any value of the (real) parameter 8. This equation is approximated by finite- 
difference equations of leap-frog or Crank-Nicolson type. We use the difference 
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approximations for d/dx, which make the corresponding approximation for the 
linear equation 

energy-conserving. In Lemma 2, we prove that this means that the difference operator 
for space derivatives is antisymmetric. The main purpose of this paper is to add to 
the understanding of nonlinear instability by showing that, under a slight restriction, 
a necessary and, for Crank-Nicolson also a sufficient, condition for stability in the 
nonlinear case is that 0 = 2/3. We shall also discuss the effect of adding smoothing 
operators to improve stability. The discussion in Section 4 indicates that instabilities 
occur only when the solution alternates around zero. 

2. Notations and Preliminaries. The mesh sizes in the x- and t-directions are 
denoted by h and k, respectively, and their ratio by X = k/h. The translation operator 
E is defined by Eg(x) = g(x + h), and by Q we denote a difference operator of the 
form Q a ; ~ 'which approximates d/dx. Since we are only concerned with = x;=-, 
real solutions to Eq. (2), we restrict ourselves in the following to operators where 
the a,'s are real numbers. The centered, forward and backward difference approxima- 
tions, Do, D+ and D- of d/dx, respectively, are defined by 2hD0 = E - E-', hD+ = 

E - I and hD- = I - E-'. 
The symbol or the Fourier transform of Q is the analytic function d(wh) = 

C;--=aieiiwh. 
The solution of the difference approximation in the point x, t is denoted by 

V(X, t). By ( ~ ( x ) ) ,we denote the doubly infinite sequence . . . s(x - h) s(x) 
s(x + h) . . . . If T is an operator (or a constant), T (s(x) J means ( Ts(x) j . 

LEMMA1. If Re 0 = 0 for all real values of wh, then Q can be written as Q = 

DoP, where 

1Proof of Lemma 1. Let z = eiwh,w real. Then d(wh) = p(z) = aNzN+ aN-'z N-

+ . . . + a- , z - ~ .  By assumption, all coefficients a, are real and Re(p(z)) = 0. Hence, 
p(1) = p( - 1) = 0, which shows that (z - l/z) can be factored out, i.e., p(z) = 

(Z - l/z).q(z). Let q(z) = bN- l~N- l+ . . . + b l -N~l -N ,by real. We want to show 
that b, = b-,, v = 1, 2, . . . , N - 1. Observing that Re(z - l/z) = 0 for lzl = 1, 
it follows that Im(q(z)) = 0. We can write q(z) in the form q(z) = r(z) + s(z), where 

is a polynomial with real coefficients and s(z) is a sum of cosines, 

Hence, Im s(z) = 0 and, thus, Im r(z) = 0 for z with lzl = 1. Im r(z) is a harmonic 
function, and since it is bounded inside the unit circle it must be identically zero. 
Therefore, the equation r(z) = i is not solvable, which contradicts the fundamental 
theorem of algebra unless r(z) is a constant. This proves the lemma. 

LEMMA2. Let Q be some dzflerence approximation of d/dx such that the Crank- 
Nicolson scheme 
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or the leap-frog approximation 

( 5 )  u(x, t + k )  - ~ ( x ,t - k )  = 2kQv(x, t ) ,  

is L2-energy-conserving for the linear equation (3). Then, Q can be written in the form 
Q = DoP, where 

Proof of Lemma 2. The Crank-Nicolson equation (4) is energy-conserving if 
and only if the absolute value of the Fourier transform of the implicit operator 
( I  + kQ/2)-'(I - kQ/2) is equal to one for all real wh, i.e., 

If we write kQ/2 as a + ib (a and b real) and square, we get (1 + + b2 = (1 - a)2
+ b2, i.e., a = 0 and 0 is pure imaginary. Lemma 1 can now be used. 

Let v(x, t) = [ t /keiw"in the leap-frog approximation (5). We get 

In order that the method be energy-conserving (or even stable, since the roots cannot 
depend on k or h individually), it is necessary that no root of this equation has an 
absolute value greater than one. By the relations between roots and coefficients, 
the product of the roots is -1, and, hence, they are of the form ei'"/2"'' , where 7 
is real. Their sum is then 2i cos 7, i.e., 0 is pure imaginary. The result now follows 
from Lemma 1. 

3. Main Theorem. 
THEOREM. Let Q be of the same form as in Lemma 2. I t  is now used to approximate 

d/dx in the Crank-Nicolson scheme 

and the leap-frog approximation 

of Eq. (2). IfP satisfies P{r(x)) + { 0 ) ,  where {r(x)} is the sequence 

then 8 = 2/3 is a necessary condition for stability. For the Crank-Nicolson scheme 
(6), 8 = 2/3 is also a suficient condition for stability. 

Proof of the Theorem. Assuming that v(x, t) in Eq. (6) has the form 
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and using Q = D,P, we obtain, after some rearrangement of terms, 

This equation is satisfied, for example, if a(t) and r(x) satisfy the following recursion 
relations 

where 

and C # 0 is some constant. 
The approximation is certainly not stable if we can find a bounded sequence 

which satisfies (10). By starting the recursion (9) with plus or minus one, the sequence 
a(t) and, hence, the solution u(x, t) will eventually explode. A rough estimate of the 
rate of divergence can be obtained by observing that Eq. (9) can be regarded as a 
difference approximation of the ordinary differential equation 

at(t) = (~ /4h )a ( t )~ ,  
a(0) = zt 1, the sign to be chosen such that C.a(O) > 0. 

The solution of this equation diverges to infinity already at the finite time t = 4h/C. 
A suitable choice for the solution of (10) turns out to be the sequence in Eq. (8): 

We find that P{r(x)} = Kp {r(x)}, where Kp is a constant factor depending only 
on P. To see this, we observe that {r(x)j has period 3 and that P is symmetric. The 
values of P{r(x)} at r(x) = 0 and fc have to be calculated. The value at r(x) = 0 
is zero, while the other two values differ only by sign. Thus we find 

and 

{P(r(x + h)  - r(x - A ) ) )  	= (Pr(x + h ) }  - (Pr(x - h)} 

-
- . . .  -2cKp eKp eKp -2eKp eKp eKp -2cKp - . . .  

Hence, 

{r(x).P(r(x + h) - - = . . .  0 - E ~ K ~ E ~ K ~ Or(x h))) 	 . . .  
= e. Kp{r(x)). 

Therefore, 

~ ( r ( x ) )= 2(1 - 8).c. Kp{r(x)) - 8.e. Kp{r(x)) 

= (2 - 3 8 ) . ~ .  Kp(r(x)) 
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which satisfies (10) if we choose the constant C to be 

(12)  c = - (2  - 3 0 ) ~ ~ .K,. 

According to the assumptions, Kp Z 0 and 6 # 0. Thus, C Z 0 if 0 Z 2/3, and the 
proof of this part is complete. 

We shall now prove that 0 = 2/3 is sufficient for stability. With 0 = 2/3, Eq. (6)  
can be written as 

(13)  ~ ( x ,t + k )  + -k 
R u b ,  t  + k )  = u(x,  t )  - -

k 
Ru(x, t ) ,  6 6 

where R denotes the operator 

Ru(x, t )  = DoPu(x, t)' + u(x,  t )  DoPu(x, t ) .  

Squaring and summing both sides gives 

k k 
= - - (u ( . ,  t + k ) ,  Ru(. ,  t  + k ) )  - 3 ( u ( . ,  t ) ,  Ru ( . ,  t ) ) .  3 

Hence, (v(. , t), Rv(. , t)) = 0 is sufficient for L,-stability, i.e., 

This follows immediately from repeated partial summation. 
We now turn to the leap-frog case. Assuming again that 

U ( X ,  t )  = r (x) .a( t ) ,  

Eq. (7) gives 

r(x) .(a(t  + k )  - a(t - k ) )  + a(t)' 

. [@ P(r(x +h) ' - r(x - h)') + h( l  - B)r(x)P(r(x + h )  - r(x - h ) )I = 0
2 

which is satisfied if 

where T is to be understood as defined in Eq. (1 1). The proof now proceeds exactly 
as in the Crank-Nicolson case, since Eqs. (9) and (14) are equivalent and (10) and 
(15) are equal. 

Finally, we observe that this main theorem may be generalized to be valid for 
the corresponding approximations of du/dt + (O/n)dun/dx + (1 - O)un-'(au/ax) = 

0, where n is an even positive integer. All parts of the proof follow through exactly 
in the same way. 0 = 2/3 generalizes to 0 = n/(n + 1). 
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4. Numerical Results, Conclusions. In Fornberg [2], the behavior of the leap- 
frog scheme for the case P = I = identity operator and 0 = 1 was studied. The 
choice of 0 = 1 is natural because it corresponds to a conservation form. It gives 
rise to comparatively few arithmetic operations and conserves the sum of the solution 
over the mesh points for successive time levels. This holds even for more general 
equations than (1). The conservation of the sum is important, for example, when, 
in a practical computation, a correct shock speed is wanted. Although the pattern 
(8) seemed to be the one which gave the strongest divergence, we found in the paper [2] 
that explosions more often were characterized by locally raising and wandering 
spikes in schemes with values around zero. When a certain local combination of 
values happens to appear in the solution, this process starts, and waves of the new 
and bigger amplitude spread over the mesh. This may repeat on a larger scale when 
the critical combination of values again happens to occur. (See Diagrams 1 and 2. 
Here the Crank-Nicolson scheme is used instead of the leap-frog scheme, but the 
diagrams are almost identical to those for the leap-frog scheme in [2].) Soon even 
the linear stability limits are passed. If all values of the solution have the same sign 
and are not too close to zero, the stability seems perfect, as is indicated in Diagram 3. 
Similar test runs for 0 = 0 and P = I and for 0 = 0 or 1 and P = I - (1/6)h2D+D-
(corresponding to fourth-order accuracy in space) show the same stability. Probably, 
this property of stability of solutions bounded away from zero is quite general. Of 
course, the solution must not be so far away from zero that the linearized stability 
condition is violated. In [2], (0 = 1, P = I )  we also studied the influence of a boundary 
condition equal to zero, and proved that it was sufficient for making the scheme 
divergent. Theoretically, there exist bounded solutions even in this case, but a small 
number, in practice only one, of small perturbations made the solution divergent. 

From Eq. (2), we can form a differential-difference equation 

where only the x-direction is made discrete. For 0 = 2/3, it is quasi-conservative in 
the sense that 

which is arrived at by taking the scalar product of (16) with v(x, t) and using partial 
summation (Q = D,P, P symmetric). In spite of (17), the approximation (7) with 
0 = 2/3 diverges, as is proved by Kreiss and Oliger [3] and is also seen from Diagram 
4, in both cases for P = I. However, this instability is not as serious as the one we 
obtained for 0 $ 2/3 and is also of a somewhat different nature. In the same way as 
(17) was derived from (16), we find that the scalar product between two successive 
time levels for the scheme (7) is invariant in time. This shows that (7) cannot diverge, 
unless v(x, t) changes considerably between successive time levels. This was not 
necessary for divergence when 0 # 2/3. 

In order to increase the chance for stability and especially to avoid divergence 
for 0 f 2/3 from the pattern ( r(x) J defined in Eq. (8), it is natural to apply smoothing 
to the difference scheme. Since (r(x) J is just multiplied by a constant K, if a smoothing 
operator, which replaces the values v(x, t )  at some time level by 
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is applied, it can easily be estimated how much smoothing is necessary for keeping 
this special pattern from increasing. A smoothing of this type can be applied, for 
example, to the new values obtained when a time step is completed, or we can apply 
the smoothing operator to the earliest time level involved when the solution on a 
new time level shall be evaluated. For S to be a reasonable smoothing operator, 
Ks should be slightly less than one. It follows from Eqs. (9) and (14) that, apart 
from terms which are O(e2), the amplitude of (r(x) J (or - {r(x))) in a single time 
step is increased by the factor 

At the same time, smoothing reduces it by the factor K,. To prevent our special 
solution from diverging, we choose S such that K, satisfies 

If we apply smoothing to the earliest involved time level at each step, (18) can be 
used for two-level schemes, but the factor 1/4 has to be changed to 1/2 for three- 
level schemes, for example for the leap-frog scheme. 

The estimate in Eq. (18) on smoothing, which is necessary to keep our special 
solution bounded, has been tested for both Crank-Nicolson and leap-frog equations. 
Choosing 0 = 1, E = 0.1, X = 1/4 and the operators P = I, S = I + a.(D,D-), 
i.e., Kp= 1, K, = 1 - 3a and applying S to the earliest involved time level in every 
step, Eq. (18) suggests a = 1/480 for Crank-Nicolson and a = 1/240 for leap-frog. 
The amplitudes without smoothing are also calculated in the table below. 

Number of Time Steps 

Method 
II a j 0 50 100 140 150 159 163 170 300 

C-N 1/480 0.100 0.100 0.100 0.099 0.099 0.099 0.099 0.099 0,097 
0 0.100 0.144 0.262 0.763 1.460 9.486 - - -

I-f 1 / 2 4  0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 
0 0.100 0.143 0.260 0.743 1.381 5.684 158.2 >lo167 >lolO" 

The use of the Crank-Nicolson scheme involves, in every time step, the solving 
of a system of nonlinear equations. In the example above, this could not be done 
beyond the 159th time step. 

It is not quite clear whether the dissipation as a function of the original amplitude, 
as given by Eq. (18), is sufficient for stability in the case of more general initial values. 
In the experiment reported in Diagram 5, random initial values between -0.1 and 
0.1 on the first two time levels were used to start a leap-frog scheme with 0 = 1, 
X = 1/4 and a = 1/240. The norm of the solution remained almost unchanged 
during the last 2000 time steps. 
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It is probable that the best way to proceed in a practical case is to use a quasi- 
conservative scheme and add only a small dissipative term. For the real hydrodynamic 
equations, quasi-conservative schemes are well known (A. Arakawa [I]). To minimize 
the number of arithmetic operations, and increase the chance for a correct shock 
speed, if shocks are present, the choice of 8 = 1 might be preferable, especially if 
the solution is not close to zero. There seems to be no great danger in choosing 8 # 2/3 
provided we add a rather small dissipative term, for example, of a size suggested by 
(18), in critical regions. Kreiss and Oliger [3] have shown that in the case 8 = 0, 
P = I - (h2/6)D+D-, it is sufficient to add a small dissipative term, such as 
(h4/6)D+D- ID,vl D+D-v, to satisfy the condition (d/dt) Ilu(x, t)1I2 5 0, and test 
runs carried out by them with leap-frog type time differencing indicate stability 
around zero. 

Finally, we observe that the transformation of the independent variables 

X' = x + at, t' = t :  

where a is a constant, transforms Eq. (2) into 

a(a +-- u )  
at' + Z ax' 

This equation has the same form as (2), but the solution has been translated by the 
constant a. In this way, the solution can be bounded away from zero, if it originally 
was around zero, and stability problems can be avoided. Actually, however, this 
type of transformation is used in meteorological applications in the opposite direction, 
i.e., to eliminate a constant flow and then calculate only the remaining oscillations 
around zero. As we have seen above, this makes the introduction of a dissipative 
mechanism necessary. 
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