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Nonlocal compensation of magnetic damping by spin injection has been theoretically shown to establish
dynamic, noncollinear magnetization states that carry spin currents over micrometer distances. Such states
can be generically referred to as dissipative exchange flows (DEFs) because spatially diffusing spin currents
are established by the mutual exchange torque exerted by neighboring spins. Analytical studies to date have
been limited to the weak spin injection assumption whereby the equation of motion for the magnetization
is mapped to hydrodynamic equations describing spin flow and then linearized. Here, we analytically and
numerically study easy-plane ferromagnetic channels subject to spin injection of arbitrary strength at one
extremum under a unified hydrodynamic framework. We find that DEFs generally exhibit a nonlinear profile
along the channel accompanied by a nonlinear frequency tunability. At large injection strengths, we fully
characterize a magnetization state we call a contact-soliton DEF (CS-DEF) composed of a stationary soliton
at the injection site, which smoothly transitions into a DEF and exhibits a negative frequency tunability. The
transition between a DEF and a CS-DEF occurs at the maximum precessional frequency and coincides with
the Landau criterion: a subsonic to supersonic flow transition. Leveraging the hydraulic-electrical analogy, the
current-voltage characteristics of a nonlinear DEF circuit are presented. Micromagnetic simulations of nanowires
that include magnetocrystalline anisotropy and nonlocal dipole fields are in qualitative agreement with the
analytical results. The magnetization states found here along with their characteristic profile and spectral features
provide quantitative guidelines to pursue an experimental demonstration of DEFs in ferromagnetic materials and
establish a unified description for long-distance spin transport.
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I. INTRODUCTION

Noncollinear magnetization states represent a new
paradigm for the transport of spin currents over micrometer
distances [1–10]. A key concept that has enabled the
study of these states is the hydrodynamic interpretation
of magnetization dynamics, originally proposed in the
seminal paper by Halperin and Hohenberg [11] in the
context of the spin-wave dispersion relation for ferromagnets
and antiferromagnets. Almost four decades later, a similar
fluidlike interpretation was used to identify the relationship
between an infinite-length, static noncollinear magnetization
state in easy-plane ferromagnets and dissipationless spin
transport [12]. These states were characterized by a
homogeneous normal-to-plane magnetization and a winding
in-plane magnetization. More importantly, energy dissipation
via damping was inoperative because the texture was assumed
to be static. As a consequence, the mutual exchange torque
exerted by neighboring spins could be interpreted as an
equilibrium spin current or exchange flow [13] that did not
exhibit any dissipation.

While the prospect of a dissipationless spin current is
tantalizing for novel energy-efficient applications [6,14–18],
any magnetization dynamics are subject to dissipation via
magnetic damping [19]. An example is the interface between a
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magnetic material and a spin sink that results in spin pumping
[20]. To circumvent this problem, it is necessary to introduce
energy into the system. From an analysis of the linearized
hydrodynamic equations for a ferromagnet, it was predicted
that spin injection at one extremum of a one-dimensional
channel could sustain a dynamic, noncollinear magnetization
state that was termed a spin superfluid [1,2]. Despite the
fact that this is a solution to the linearized, long-wavelength
hydrodynamic equations, the magnetization vector itself ex-
hibits fully nonlinear spatiotemporal excursions in the form
of complete planar rotations. As we will later show, this
solution results from a linearized analysis of the equations of
motion. The usage of the term superfluid was borrowed from
a similarity between the order parameters that describe spin
transport in a magnet and mass transport in, e.g., superfluid
He4 as well as the fact that the normal-to-plane magnetization
is approximately constant along the channel, although very
small. However, this so-called spin superfluid experiences en-
ergy loss via a spatially diffusing spin current, yet its uniform
precessional frequency and linearly decaying spin-current
profile present potential advantages to the exponential decay
property of magnons. Similar states have been predicted for
antiferromagnets [7,8,21,22], and their experimental evidence
in such materials has been recently presented [9,23].

To avoid potential misinterpretation of the term “spin
superfluid” and to emphasize the nonlocal compensation of
damping along the channel by the exchange torque that origi-
nates from spin injection at the device boundary, we will refer
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to spin superfluids and their generalizations as dissipative
exchange flows, or DEFs for short.

A more realistic setting for easy-plane ferromagnetic ma-
terials must consider the effect of in-plane anisotropy that
breaks axial symmetry. For this configuration, it was shown
that the hydrodynamic equations of motion map to a damped
sine-Gordon equation, with a nonlinear term proportional to
the in-plane anisotropy strength [1,5]. Because of the broken
symmetry imposed by in-plane anisotropy, the structure of a
DEF is that of a translating train of Néel domain walls or
a soliton lattice with the same chirality and whose interwall
spacing increases as each domain wall propagates from the
spin injection edge to the opposite free spin edge. In the limit
of vanishing anisotropy, the train of domain walls smooths
into a sinusoidal profile, equivalent to the previously studied,
axially symmetric case [1,2].

The most striking feature of a DEF is that its spatial
structure and coherent precessional frequency depend on the
length of the channel. It is a solution to a boundary-value
problem whereby the channel’s extrema are subject to spin
injection and spin pumping or free spin boundary conditions.
As a result, these solutions exhibit peculiar characteristics of
technological relevance, [5], i.e., the spin injection threshold
is proportional to the square root of the in-plane anisotropy
field for long channels, and the homogeneous frequency is
inversely proportional to damping and the channel’s length.
For comparison, spin waves [24] excited on a homogeneous
magnetization background exhibit a spin-injection threshold
that is proportional to damping, a frequency proportional
to both spin injection and the magnet’s internal field, and
an exponential decay rate that is proportional to damping.
The exponential decay of spin waves imposes the ultimate
limitation on their propagation length and coherent spin
transport, although detection at micrometer length scales has
been achieved in low-damping materials such as YIG [25],
amorphous YIG [26], and haematite [27].

The analytical predictions and characteristics of DEFs
are promising for long-distance spin transport. However, the
required spin injection has emerged as a practical barrier for
their experimental realization. In recent experimental studies,
spin injection was realized from quantum Hall edge states in
antiferromagnetic graphene [9] and the spin-Hall effect in Pt
[23]. A recent numerical study proposes an alternative spin-
injection mechanism based on the spin-transfer torque effect
[28,29], which excites magnetization precession [5]. This
method allows for large spin-injection magnitudes, breaking
the weak injection assumption that has been analytically
assumed to date [1,2]. Signatures of distinct nonlinear, disper-
sive dynamics exhibiting solitonic features were observed in
micromagnetic simulations that include nonlocal dipole fields
[5]. More recently, micromagnetic simulations that incorpo-
rate spin-transfer torque along a confined, central strip of a
ferromagnet have similarly shown evidence of strongly non-
linear features including a soliton nucleated at the injection
site in the large injection regime, termed a “soliton screened
spin superfluid” [10].

While the numerical studies to date by a variety of groups
unambiguously demonstrate that long-range spin transport
can in principle be achieved with noncollinear magnetization
states in magnetic materials, an analysis that incorporates

short-wavelength exchange dispersion and large-amplitude
nonlinearities due to anisotropy—such as those necessarily
present for the existence of a soliton—as well as a description
of the effect of damping on spin flows is lacking. Here, we
provide a unified analytical framework in the context of a
dispersive hydrodynamic (DH) formulation of magnetization
dynamics [3,4]. This formulation is an exact transformation
of the Landau-Lifshitz equation and, therefore, captures the
essential physics that are relevant to describe fully nonlin-
ear, noncollinear magnetization states: exchange, anisotropy,
and damping.

The DH formulation gives rise to two equations of motion
for a longitudinal spin density and its associated fluid velocity
that are analogous to the Navier-Stokes’ mass and momen-
tum equations for a compressible fluid [3,4]. From a fluid
perspective, exchange, anisotropy, and damping give rise to
dispersion, nonlinearity, and viscosity, respectively. In con-
trast to typical fluids, the equivalent magnetic fluid exhibits
a nonconserved density, i.e., the mass can be lost. Therefore,
noncollinear magnetization states—DEFs—can be interpreted
as forced fluid flows that compensate the density and viscous
losses manifesting in a profile that balances dispersion and
nonlinearity.

In this paper, we find that DEFs are generally characterized
by a nonlinear profile in both density and fluid velocity. In the
weak spin injection regime, the DH equations reduce to the
forced diffusion equation and lead to a linear DEF solution
that is equivalent to a spin superfluid [1,2]. Using boundary-
layer theory in the strong spin injection regime, we find a
dynamical state characterized by the nucleation of a stationary
soliton at the injection site that smoothly transitions into a
nonlinear DEF. We term this dynamical solution as a contact
soliton DEF, or CS-DEF, which is an analytical representation
of the numerically identified soliton screened spin superfluid
[10]. From a hydrodynamic perspective, the soliton nucleated
at the injection site occurs precisely when the injection crosses
the subsonic to supersonic flow boundary, equivalent to the
Landau criterion [3,4]. Moreover, the transition between a
DEF and a CS-DEF corresponds to the maximum precessional
frequency achieved by spin injection, setting an upper bound
to the efficiency of DEF-mediated spin transport. Thus, further
spin injection enhances the coherent, superfluid-like soliton at
the expense of larger spin transport, which is in sharp contrast
to classical fluids where strong channel flows are subject to
drag at the boundaries that, above a critical Reynolds number,
develop into an incoherent, turbulent state [30].

The presented results pertain to an ideal geometry whereby
the magnetic material is defect-free and the boundaries are
perfect spin-current sources and drains. Deviations from these
conditions may result in qualitative changes to the presented
solutions, including instabilities. Defects in the magnetic ma-
terial can result in magnetic topological defects that desta-
bilize the DEFs, e.g., vortex-antivortex pairs [4] or phase
slips [1,16,31]. Nonideal boundaries can be incorporated by
utilizing mixed (Robin) boundary conditions from a circuit
formalism that includes spin pumping [2]. In the case of
strong injection, recent numerical results suggest that such
boundaries can induce an instability in the DEF to CS-DEF
crossover region [10]. Our results aim to provide the analytical
basis to further study these effects in more detail.
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Our analytical study also indicates that, for the physi-
cally relevant case of magnetic materials with low damping,
DEFs can be interpreted as an adiabatic spatial evolution of
conservative dynamic solutions, previously termed uniform
hydrodynamic states (UHSs) [3] in order to highlight their
nondissipative, flowing character. DEF magnetization states
sustained in channels subject to subsonic spin-injection con-
ditions can be conveniently represented as curves of constant
frequency in the UHS phase space of spin density and fluid
velocity. From an applications perspective, the fluid interpre-
tation also lends itself to a circuit analogy, from which we can
define the current-voltage (I-V ) characteristics of the coherent
states studied here. Micromagnetic simulations support the
analytical results even in the presence of in-plane anisotropy
and nonlocal dipole fields in a thin film.

The remainder of the paper is organized as follows. In
Sec. II, we summarize the dispersive hydrodynamic formula-
tion and the main features of uniform hydrodynamic states.
In Sec. III, we introduce the boundary-value problem that
describes a channel subject to spin injection at one extremum,
and we derive analytical expressions for linear DEFs, DEFs,
and CS-DEFs. In the same section, we study the DEF to
CS-DEF transition in the context of a subsonic to supersonic
flow transition. In Sec. IV, we establish that the hydrodynamic
states sustained in channels realize a nonlinear resistor in the
hydraulic analogy of electrical circuits. Micromagnetic sim-
ulations of nanowires incorporating STT as a spin-injection
mechanism, in-plane magnetocrystalline anisotropy, and non-
local dipole fields are discussed in Sec. V. Finally, we provide
our concluding remarks in Sec. VI.

II. DISPERSIVE HYDRODYNAMIC FORMULATION
AND UNIFORM HYDRODYNAMIC STATES

Magnetization dynamics in a continuum approximation
can be described by the Landau-Lifshitz (LL) equation

∂t m = −m × heff − αm × m × heff , (1a)

heff = �m︸︷︷︸
exchange

− mzẑ︸︷︷︸
local dipole

, (1b)

where m = (mx, my, mz ) is the magnetization vector nor-
malized to the saturation magnetization Ms, α is the phe-
nomenological Gilbert damping parameter, and heff is an ef-
fective field, normalized by Ms, that incorporates the exchange
and local (zero-thickness) dipole field as a minimal model for
dispersion and nonlinearity, respectively. The dimensionless
form of Eq. (1a) is achieved by scaling time by |γ |μ0Ms and
space by λ−1

ex , where γ is the gyromagnetic ratio, μ0 is the
vacuum permeability, and λex is the exchange length. A dis-
persive hydrodynamic representation of Eqs. (1a) and (1b) can
be achieved by mapping the magnetization vector into hydro-
dynamic variables [3–5], namely a longitudinal spin density
n = mz and a fluid velocity u = −∇� = −∇ arctan (my/mx ).
In this work, we are interested in effectively one-dimensional
dynamics along a channel whose length is oriented in the
x̂ direction. Therefore, the fluid velocity can be written
as a scalar quantity u = u · x̂ and the spatial derivatives
taken only along x̂. The resulting dispersive hydrodynamic

equations are

∂t n = (1 + α2)∂x[(1 − n2)u] + α(1 − n2)∂t�, (2a)

∂t� = −(1 − u2)n + ∂xxn

1 − n2
+ n(∂xn)2

(1 − n2)2

− α

1 − n2
∂x[(1 − n2)u]. (2b)

The simplest solutions to Eqs. (2a) and (2b) are spin-
density waves (SDWs). These are static (∂t� = 0), textured
magnetization states parametrized by a constant density and
fluid velocity, (n0, u0). SDWs are magnetization states that
support dissipationless spin transport [12]. A dynamic SDW
can only be obtained as a transient state or in the conservative
limit, where α = 0 and ∂t� �= 0. We refer to this state as
a uniform hydrodynamic state (UHS). For both SDWs and
UHSs, the density is limited by its deviation from the magne-
tization’s unit sphere poles (n = ±1 corresponds to vacuum)
while the fluid velocity is an unbounded quantity. However, it
was shown in Ref. [3] that modulational instability [32] (the
exponential growth of perturbations) ensues when |u0| > 1,
i.e., for SDWs and UHSs with subexchange length, in-plane
magnetization rotation wavelengths. Therefore, modulation-
ally stable SDWs and UHSs are defined in the phase space
spanned by |n0| < 1 and |u0| < 1. UHSs exhibit a preces-
sional frequency given by

�0 = ∂t� = −(
1 − u2

0

)
n0, (3)

obtained directly from Eq. (2b). The negative sign of the
frequency for n0 > 0 indicates that the precession is clock-
wise about the ẑ direction. It is important to emphasize that
UHSs are dynamic, textured magnetization states. This is
markedly different from small-amplitude perturbations about
a homogeneous state that are typically associated with spin
waves. Interestingly, UHSs support small-amplitude perturba-
tions that exhibit a dispersion relation that is nonreciprocal
for n �= 0 [3,4]. This nonreciprocity leads to conditions in
which long-wavelength perturbations can propagate in either
two directions or one direction with respect to the UHS
fluid velocity u0 and can be hydrodynamically interpreted
as subsonic or supersonic flow, respectively. The transition
between subsonic and supersonic flow is known as the sonic
curve. For UHSs, the sonic curve is given by

|u0| =
√

1 − n2
0

1 + 3n2
0

, (4)

and it is shown in Fig. 1 by a solid black curve in the UHS
phase space. Equation (4) is formally equivalent to the Lan-
dau criterion for superfluidity in the limit of perpendicularly
magnetized easy-plane ferromagnets [4] and for linear DEFs
or spin superfluids [8]. Isofrequency contours determined
from Eq. (3) are shown by dashed black curves. As we will
demonstrate below, the UHS phase space provides informa-
tion regarding the form of dynamic magnetization states in
ferromagnetic channels sustained by spin injection.
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FIG. 1. UHS phase space for density |n0| � 1 and fluid velocity
|u0| � 1. The sonic curve that separates the subsonic and super-
sonic regions is shown by a solid black curve. The dashed black
curves represent isofrequency contours, labeled by the corresponding
frequency.

III. BOUNDARY-VALUE PROBLEM FOR EASY-PLANE
FERROMAGNETIC CHANNELS

The steady magnetization states sustained by spin injection
can be analytically obtained by solving Eqs. (2a) and (2b)
subject to appropriate boundary conditions (BCs). For this, we
consider a channel of length L and introduce spin injection
at x = 0 and free spin boundary conditions at x = L. For
simplicity, we disregard spin pumping [2], but our analysis
is sufficiently general that more complex BCs that incorpo-
rate metal/magnetic interfacial effects could be studied in a
similar manner.

We seek steady, precessional solutions to

0 = (1 + α2)
d

dx
[(1 − n2)u] + α(1 − n2)�, (5a)

� = −(1 − u2)n + 1

1 − n2

d2n

dx2

+ n

(1 − n2)2

(
dn

dx

)2

− α

1 − n2

d

dx
[(1 − n2)u] (5b)

with BCs,

dn

dx
(0) = 0,

dn

dx
(L) = 0, (6a)

u(0) = ū, u(L) = 0, (6b)

where ū is proportional to the injected spin current [5]. These
boundary conditions are enforced upon n = n(x), u = u(x)
by introducing the homogeneous precessional frequency � =
∂t�. Below, we find solutions of this boundary-value problem
(BVP) with nonlinearity, dispersion, and damping. A more
detailed, mathematical analysis leading to these approximate
solutions is provided in the Appendix.

A. Linear DEFs

We begin our analysis by revisiting the weak spin-injection
regime 0 < |ū| � min(1, αL), first presented in [1,2]. For
this, we assume that u is small and n is constant in Eqs. (5a)
and (5b), so that the linearized equations are

α�̃ = −du

dx
, (7a)

�̃ = −n, (7b)

where �̃ = �/(1 + α2).
Noting that u = −∂x� and � = ∂t�, we can rewrite

Eqs. (7) as the diffusion equation

α

1 + α2
∂t� = ∂xx�, (8)

subject to the boundary conditions

∂x�(0) = −ū, ∂x�(L) = 0. (9)

For weak damping, 1 + α2 ∼ 1, Eq. (8) is the linearized
hydrodynamic diffusion equation for easy-plane ferromagnets
from previous studies [1,2]. By direct integration, Eq. (8),
subject to Eq. (9), exhibits the linear DEF solution,

ulDEF = ū
(

1 − x

L

)
, �̃lDEF = −nlDEF = ū

αL
, (10)

which exhibits a linear decay profile in the fluid velocity,
which corresponds to the algebraic diffusion of spin current
across the channel. Importantly, this approximate solution
exhibits a spatially homogeneous frequency and density, with
no assumptions on the magnitudes of nonzero damping nor
the channel length L. See Appendix A 1 for additional details.

It is important to emphasize that damping plays a funda-
mental role in the stabilization of the linear DEF solution. It is
for this reason that we refer to the solution as a dissipative
exchange flow. In fact, in the conservative case in which
α = 0, the solution to Eq. (7a) (u = const) cannot satisfy both
boundary conditions (9).

B. Nonlinear DEFs

We now consider nonlinear but spatially smooth solutions,
i.e., slowly varying relative to the exchange length for a long
channel L � 1. Consequently, the dispersive terms in Eq. (2b)
can be neglected [both d2n/dx2 and (dn/dx)2]. Upon simple
algebraic manipulation, Eqs. (5a) and (5b) reduce to

α(1 − n2)�̃ = − d

dx
[(1 − n2)u], (11a)

�̃ = −(1 − u2)n. (11b)

Inserting n from Eq. (11b) into (11a) leads, after some
algebra, to the differential equation

α�̃ = du

dx

[
(α�̃u)2

(1 − u2)(u4 − 2u2 + 1 − �̃2)
− 1

]
, (12)

which relates the fluid velocity to the precessional frequency.
By integration, we obtain an implicit equation for the fluid
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FIG. 2. Magnetization states in a channel of length L = 100 and α = 0.01 subject to the injection ū at the left edge, x = 0. In (a) and (b),
the panels represent the density n, fluid velocity u, and mx magnetization vectorial component at an instant of time. (a) For the injection ū = 0.4,
the numerical solution shown by solid black curves is in excellent agreement with a DEF shown by dashed red curves. For comparison, the
corresponding linear DEF solution is shown by dashed blue curves. (b) For the injection ū = 0.8, the numerical solution shown by solid black
curves is in good agreement with a CS-DEF shown by dashed red curves. The solid green line indicates the boundary-layer length where the
soliton is established. (c) Precessional frequency as a function of injection for a linear DEF (dashed black line), numerical solution of the BVP
(solid black curve), DEF (dashed blue curve), and CS-DEF (dashed red curve). The numerical maximum �̃max = 0.44 is found at ū = 0.57.
(d) Density at the injection site, n̄ = n(0), using the same color codes as (c).

velocity (see Appendix A 2),

αL�̃DEF

(
1 − x

L

)
= uDEF + 4 tanh−1 (uDEF)

− 2N−(uDEF, �̃DEF)

− 2N+(uDEF, �̃DEF), (13)

where

N±(κ, ω) = √
1 ± ω tanh−1

(
κ√

1 ± ω

)
. (14)

The precessional frequency is obtained by evaluating
Eq. (13) at x = 0, where uDEF(0) = ū, implying the equation
for the DEF’s frequency,

αL�̃DEF = ū + 4 tanh−1 (ū)

− 2[N−(ū, �̃DEF) + N+(ū, �̃DEF)], (15)

while the density is obtained directly from Eq. (11b) as

nDEF = − �̃DEF

1 − u2
DEF

. (16)

Equations (13), (15), and (16) indicate that the DEF’s
spatial profile is, in general, nonlinear and the frequency is
a nonlinear function of the spin injection ū. A numerical
solution for a nonlinear DEF is shown by dashed red curves
in Fig. 2(a) for the injection ū = 0.4, a channel of length
L = 100, and α = 0.01. The top and center panels show the
hydrodynamic variables n(x) and u(x), respectively, while
the bottom panel shows the x̂ magnetization component,
mx(x, t ) =

√
1 − n(x)2 cos �(x), at a given instant of time

(recall that ∂t� �= 0). Excellent agreement is obtained be-
tween the analytical solution and the numerical solution of
the full BVP in Eqs. (2a), (2b), (6a), and (6b), shown by solid
black curves. The BVP is numerically solved by a collocation
method (MATLAB’s bvp5c).

An important consequence of the DEF nonlinear profile
is the concomitant precessional frequency that is a nonlinear

function of the injection, ū, shown by a dashed blue curve
in Fig. 2(c). The frequency obtained by solving the full BVP
is shown by a solid black curve. Excellent agreement with
Eq. (15) is found up to the maximum frequency �̃max = 0.44
at ūmax = 0.57, indicated by a black circle. For ū > ūmax,
the nonlinear solution no longer describes the frequency de-
pendence. The density at the injection site, equivalent to the
magnetization tilt due to spin injection, is shown in Fig. 2(d).
Similar to the precessional frequency, a good quantitative
agreement between the numerical solution (solid black curve)
and the DEF solution (dashed blue curve) is observed up to
ūmax = 0.57, where n̄max = −0.64. As we show below, these
qualitative changes indicate the initiation of supersonic flow
and of a stationary soliton.

The linear DEF solution can be obtained from the nonlinear
DEF solution in the weak injection regime. For this, we note
that tanh−1(κ ) ≈ κ and N±(κ, ω) ≈ κ for small κ . Introduc-
ing these approximations in Eqs. (13), (15), and (16) leads to
Eq. (10).

The linear DEF approximation is shown by dashed blue
curves in Fig. 2(a) for the same parameters as the DEF and
numerical solutions. It is interesting that while the difference
between the linear and nonlinear spatial profiles for the fluid
velocity (middle panel) is imperceptible, the density in a
linear approximation does not conform to the spatial profile.
A consequence is that the linear DEF frequency tunability
is likewise a linear function of injection and quantitatively
agrees with the nonlinear solution up to ū ≈ 0.3 for L = 100
and α = 0.01, shown in Fig. 2(c) by a dashed black line.

C. Contact soliton DEFs

The qualitative change in the frequency dependence ob-
served in Fig. 2(c) is an indication that the inclusion of nonlin-
earity and lowest-order dispersion is not sufficient to describe
DEF solutions sustained at an arbitrary injection strength. In
such a regime, higher-order dispersive terms must be taken
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into account in Eqs. (5a) and (5b). An analytical methodology
for this task is boundary-layer theory [33]. This method allows
one to separate the system into regimes dominated by different
physics that can be asymptotically matched. Below we outline
the most important features and results obtained from the
calculation. Details can be found in Appendix A 3.

For Eqs. (5a) and (5b) subject to the BCs (6a) and (6b),
it is possible to identify two regimes. Close to the left edge
subject to strong injection, the spatial profile of the solution
can vary rapidly. In other words, we assume that dispersion
dominates over damping. Asymptotically, this is equivalent
to an expansion with small damping while considering short
spatial variations, as discussed in the Appendix. We refer to
this region as the inner region. Far from the left edge, we
assume that the spatial profile of the solution varies slowly,
so that damping dominates over dispersion. We refer to this
region as the outer region. A matching condition is invoked to
obtain a smooth solution across both regions. Mathematically,
this is achieved by introducing BCs for the inner region,

d

dx
nin(0) = 0, lim

x→∞ nin(x) = n∞, (17a)

uin(0) = ū, lim
x→∞ uin(x) = u∞, (17b)

and the outer region,

lim
x→0

nout(x) = n∞,
d

dx
nout(L) = 0, (18a)

lim
x→0

uout(x) = u∞, uout(L) = 0, (18b)

where n∞ and u∞ are matching parameters to be determined.
The equations of motion for the inner region are dominated

by dispersion so that the dissipative terms are neglected,

0 = d

dx
[(1 − n2)u], (19a)

�̃ = −(1 − u2)n + 1

1 − n2

d2n

dx2
+ n

(1 − n2)2

(
dn

dx

)2

. (19b)

The solution of this system of differential equations in-
volves a series of steps detailed in Appendix A 3. Ultimately,
Eqs. (19a) and (19b) can be integrated to obtain the soliton
solution, e.g., see Ref. [34],

nin = aν1tanh2(θx) + ν2(n∞ − a)

atanh2(θx) + ν2
, (20a)

uin = u∞
1 − n2

∞
1 − n2

in

, (20b)

�̃in = −n∞(1 − u2
∞), (20c)

with two free parameters: n∞, u∞. The coefficients ν1, ν2, θ ,
and a are given in Appendix A 3, and all BCs in Eqs. (17a)
and (17b) were used. In other words, Eqs. (20a) and (20b)
describe, respectively, solitons of density amplitude a on
a nonzero density background n∞ and fluid velocity back-
ground u∞.

In contrast, the slowly varying outer region is dominated
by damping, leading to Eqs. (11a) and (11b) with DEF
solutions given by Eqs. (13) and (16) that we term uout and

nout, respectively. We note that this solution is obtained by
evaluating the BCs of Eqs. (18a) and (18b) at x = L, yielding
a two-parameter family of solutions,

nout = − �̃out

1 − u2
out

, (21a)

αL�̃out

(
1 − x

L

)
= uout + 4 tanh−1 (uout)

− 2[N−(uout, �̃out ) + N+(uout, �̃out )].

(21b)

To apply boundary-layer theory, the inner and outer solu-
tions must asymptotically match and exhibit a single preces-
sional frequency �̃cs = �̃in = �̃out. For the left edge of the
channel subject to spin injection, we evaluate the inner region
solution, Eqs. (20a) and (20b) at x = 0, to obtain

ū = u∞
1 − n2

∞
1 − (n∞ − a)2

. (22)

Then, we evaluate the matching conditions applied to the
outer solution, Eqs. (18a) and (18b), by evaluating Eqs. (21a)
and (21b) at x = 0 and identifying uout(0) = u∞ and
nout(0) = n∞.

We now have all the ingredients to construct a uniformly
valid solution along the length L of the channel. Such a
solution can be written as

ucs(x) = uin(x) + uDEF(x) − u∞, (23a)

ncs(x) = nin(x) + nDEF(x) − n∞, (23b)

which describes a soliton located at the injection site smoothly
connected to a nonlinear DEF. We call this solution a contact
soliton dissipative exchange flow (CS-DEF).

A CS-DEF is shown by dashed red curves in Fig. 2(b)
for the injection ū = 0.8, a channel of length L = 100, and
α = 0.01. The numerical solution of the full BVP is shown by
solid black curves and it is in excellent quantitative agreement
with the boundary-layer approach. The frequency dependence
on the injection ū is shown by a dashed red curve in Fig. 2(c).
In contrast to the DEF frequency tunability, the CS-DEF
precessional frequency is decreasing with ū. Additionally, we
observe that the numerically obtained frequency tunability
(solid black line) approaches the CS-DEF frequency above
ūmax. A similar behavior is observed for the density at the
injection site, shown in Fig. 2(d) by the dashed red curve.
These observations indicate that the full solution profile as a
function of injection ū transitions from a DEF into a CS-DEF.
In the following section, we investigate this transition and its
hydrodynamic interpretation.

Qualitatively, CS-DEFs are similar to the soliton screened
spin superfluid recently calculated in micromagnetic simu-
lations [10]. An important difference is that our free-spin
boundary conditions model a perfect spin sink so that magnon
reflections are inhibited.

D. DEF to CS-DEF transition

In the previous section, a transition from a DEF into a
CS-DEF was evidenced by a qualitative change in the fre-
quency tunability to injection. In particular, it is observed in
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Fig. 2(c) that the full numerical solution (solid black curve)
approaches the DEF and CS-DEF frequency tunabilities in
the small and large injection limits, respectively. Whereas a
first-order transition is not observed, it is insightful to find
an analytical expression for a practical observable, such as
the maximum precessional frequency, �̃max. For this, we can
utilize the implicit equation for a DEF fluid velocity profile,
Eq. (15), to take the derivative with respect to u and equate
d/dū(�̃DEF) = 0. Because Eq. (15) is implicit, the maximum
frequency will be an implicit equation as well. Utilizing
Eq. (16), we can eliminate �̃DEF and, after some algebra,
we obtain the injection at maximum frequency, ūmax, that
depends on the input density at maximum frequency, n̄max,
according to

|ūmax| =
√

1 − n̄2
max

1 + 3n̄2
max

. (24)

Interestingly, this is precisely the sonic curve, Eq. (3). This
relation is a central result of this work. There are three
physical implications of Eq. (24). First, the relation bounds
the phase space for DEFs to the UHS subsonic regime, below
the solid curve in Fig. 1. Second, it suggests that DEFs can
be interpreted as the adiabatic spatial evolution through a
family of UHSs parametrized by spatially dependent densities
and fluid velocities. An adiabatic interpretation is valid as
long as α � 1, which is physically true for magnetic ma-
terials of interest. Third, exceeding ūmax implies supersonic
flow and coincides with the development of a soliton at the
injection site.

A consequence of the adiabatic interpretation of DEF
solutions is that the solution’s profiles can be visualized
within UHS phase space. In Fig. 3(a), we show numerical
solutions of the BVP for L = 100 and α = 0.01 by solid blue
curves. The input conditions for each case are marked by
blue circles. The solid and dashed gray curves represent the
UHS sonic curve and isofrequency contours, respectively. We
observe that the density and fluid velocity of several DEFs
lie on UHS isofrequency contours. When the injection and its
corresponding density enter the supersonic regime, CS-DEFs
ensue and the adiabatic interpretation breaks down. Numerical
solutions for CS-DEFs visualized in the UHS phase space
are shown by dashed red curves in Fig. 3(a) where the input
conditions are marked by red circles. Close to the injection
site, where the soliton is established, the profile does not
follow the isofrequency contours. However, once the sonic
curve is crossed, the profile transitions into that of a DEF and
spatially evolves adiabatically along an isofrequency contour
in UHS phase space.

From a hydrodynamic perspective, the UHS phase-space
visualization emphasizes a remarkable quality of CS-DEFs.
In classical fluids, high-speed flow with boundaries is subject
to instabilities that result in turbulent flow, i.e., characteristic
spatial scales become smaller downstream. Instead, the soliton
established at the injection site is a coherent structure that
expands the spatial scales to a slowly varying DEF, preclud-
ing turbulence and ultimately establishing a slower subsonic
flow. This feature is possible at the expense of reducing the
homogeneous precessional frequency and, consequently, the
magnitude of spin currents pumped into a reservoir located,

FIG. 3. (a) DEFs (solid blue curves) and CS-DEFs (dashed red
curves) represented in the UHS phase space. The sonic curve and
isofrequency contours are shown by a solid and dashed gray curve,
respectively. The DEFs lie on the isofrequency contours, in agree-
ment with an adiabatic interpretation. CS-DEFs behave markedly
differently when the parameters are in the supersonic regime. The
density and injection at the frequency maximum for L = 100,
(n̄max, ūmax), is shown by a black circle. (b) Injection (left axis, solid
curves) and frequency (right axis, dashed curves) at which a DEF
transitions into a CS-DEF as a function of the channel length L and
setting α = 0.01 (black) and α = 0.005 (blue). Analytical estimates
obtained from an asymptotic expansion in ū of the nonlinear DEF
solution are shown by circles with the color code described above.

e.g., at the right edge of the channel. It must be noted that
supersonic conditions close to the left edge of the channel
make this region susceptible to instabilities via phase slips [1]
or vortex-antivortex pair creation [4] at defect sites. A detailed
study of CS-DEF instabilities as well as the conditions that
trigger such instabilities is a separate study.

As discussed above, the distinction between DEFs and
CS-DEFs from a hydrodynamic perspective can be linked to
the flow conditions at the injection site. However, Eq. (24)
is expressed as a function of n̄max, which is an a priori
unknown quantity that is determined by solving for a DEF.
In other words, Eq. (24) cannot predict which isofrequency
contour in Fig. 3(a) will be followed by a DEF given only
the injection ū. A practical consequence is that the actual
maximum injection and precessional frequency will depend
on L and α. By numerically solving the BVP as a function
of L, we find the maximum injection ūmax and frequency
�̃max shown, respectively, by solid and dashed curves in
Fig. 3(b) for α = 0.01 (blue) and α = 0.005 (black). The
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density and injection at the frequency maximum for L = 100,
(n̄max, ūmax), is shown by a black circle in Fig. 3(a). These
results have a clear physical interpretation. For short channels,
the problem limits to a local balance between injection and
damping. Therefore, the energy introduced into the system is
primarily invested in spin precession. In the opposite limit of
long channels, the energy is mainly invested in establishing a
DEF to compensate damping nonlocally, and ūmax is large.

Analytical expressions for both ūmax and �̃max can be
obtained from the asymptotic expansion in ū of the nonlinear
DEF solution, written in Appendix A 2. Following the same
procedure as outlined above, we obtain

ūmax ≈
(

3

20

)1/4√
αL ≈ 0.6223

√
αL, (25a)

�̃max ≈
(

3

20

)1/4 4

5

1√
αL

≈ 0.4979
1√
αL

. (25b)

These solutions are valid for small αL. A comparison to
our analytical results is shown in Fig. 3(b) with black and blue
circles for, respectively, ūmax and �̃max. For the typical small
values of α, good agreement is observed up to L ≈ 200.

We emphasize that neither in-plane anisotropy nor nonlo-
cal dipole fields have been included in the analysis. For short
channels, these fields will most likely change the easy-axis
direction, which could destroy the onset of magnetization
textures. However, for long channels, it has been shown that
such symmetry-breaking fields primarily introduce a thresh-
old for the onset of DEFs [5]. This implies that the large
injections required to trigger a transition into a CS-DEF will
be negligibly affected, as recently observed by simulations
[10]. In Sec. V, we explore this transition by micromagnetic
simulations in nanowires where the injection is parametrized
by STT.

E. Boundary-layer width

The CS-DEF solution presented in Eqs. (23a) and (23b)
was obtained by separating the problem into two distinct
regions—inner and outer—followed by asymptotic matching.
A relevant parameter to identify is the width of the solitonic
inner region as a function of the injection ū.

The boundary-layer width is linked to the soliton width,
whose profile is given in Eq. (20a). Because solitons decay
exponentially, its width can be estimated from the profile’s
half-width at half-maximum. We will use this metric to esti-
mate the boundary-layer width, l .

The soliton solution Eq. (20a) has an amplitude a over a
background n∞. Therefore, the half-width at half-maximum
can be calculated by imposing nin(x = l ) = −a/2 + n∞. Af-
ter some algebra, we obtain the implicit equation for l ,

tanh2 (θ l ) = ν2

2(ν1 − n∞) + a
, (26)

which can be solved numerically as a function of ū given
the boundary and matching conditions (21a), (21b), and (22).
Figure 4 depicts the boundary-layer width as a function of
ū larger than ūmax, where the CS-DEF solution occurs in a
channel of length L = 100. We observe that the boundary-
layer width decreases, i.e., the soliton becomes sharper, with

FIG. 4. Boundary-layer width as a function of the injection
strength ū.

injection strength. For the particular case of ū = 0.8, the
solution to Eq. (26) predicts a boundary-layer width of ≈5.
This is shown by the vertical solid green line in Fig. 2, in
good agreement with both the numerical calculation and the
analytical solution.

The boundary-layer width of Fig. 4 is presented in units
of exchange length, valid for easy-plane anisotropy materials.
For Permalloy with a typical exchange length of 5 nm,
the boundary-layer width lies between 22 and 47 nm in a
channel of 500 nm. For parameters associated with YIG [10],
A = 3.5 pJ/m and Ms = 130 kA/m, the exchange length is
≈18 nm. This leads to a boundary-layer width between 78
and 172 nm in a channel of 1.8 μm.

IV. ELECTRICAL CIRCUIT ANALOGY

An alternative interpretation that captures the behavior of
the channel subject to injection as a two-terminal device is the
hydraulic analogy to electrical circuits. This analogy allows
one to classify the DEFs and CS-DEFs in the context of
electrical elements that provide building blocks to construct
devices with a given functionality. For this, we define hy-
drodynamic quantities that are analogous to a voltage and a
current, and from which the I-V characteristics of the device
can be obtained.

In the electric to hydraulic analogy, a voltage maps to
pressure difference. Using the hydrodynamic formulation of
magnetization dynamics, the spatially dependent pressure
P(x) was derived in Ref. [3] as

2P(x) = [1 + n(x)2][1 − |u(x)|2] − 1, (27)

from which the pressure difference or voltage V = P
(x = L) − P(x = 0) in a channel of length L subject to BCs
(6b) is

V = 1
2

[(
n2

L − n̄2) + (1 + n̄2)ū2], (28)

where nL = n(x = L) and n̄ = n(x = 0) are the densities at
the channel’s extrema.

The current I is equivalent to the density flux. In the steady-
state modes studied here, the density flux is (1 − n2)u, whose
magnitude corresponds to the precessional frequency, Eq. (3).
Note that the precessional frequency is the only spatially
homogeneous quantity of both DEFs and CS-DEFs, just as a
current is an equilibrium, constant quantity in electric circuits.
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FIG. 5. I-V characteristics for a channel of length L = 100 and
α = 0.01 subject to a spin injection ū at x = 0. The gray and white
areas indicate the regions where, respectively, DEFs and CS-DEFs
are sustained.

Additionally, in the case of a neighboring spin reservoir, the
precessional frequency is linearly dependent on the pumped
spin current that can give rise to a transverse charge current
by the inverse spin-Hall effect [35].

Using Eqs. (28) and (3), we numerically calculate the
I-V characteristics shown in Fig. 5 for a channel of length
L = 100 and α = 0.01. The gray and white areas indicate the
sustenance of, respectively, a DEF or a CS-DEF. The I-V
characteristic is nonlinear for all cases, and its finite value
indicates that both DEFs and CS-DEFs are resistive. In other
words, hydrodynamic states sustained in channels subject to
spin injection can be classified as nonlinear resistors.

We note that in this representation, even the linear DEF
solution Eq. (10) results in a nonlinear I-V curve. In fact,
the linear solution establishes a spatially constant density, so
that nL = n̄. Additionally, |n̄| � 1, leading to a voltage given
simply by V = ū2/2. The precessional frequency is given
in Eq. (10) so that I = ū/(αL). Therefore, the resistance is
R = V/I = αLū/2 = αL

√
V/2.

A notable feature of the I-V curve is the change in slope
from positive when a DEF is sustained to negative when a CS-
DEF is sustained. This agrees with the frequency tunability
shown in Fig. 2(c). In terms of the differential conductivity,
dI/dV , this implies a positive or negative sign for, respec-
tively, DEFs and CS-DEFs. While the I-V characteristic is
positive everywhere, the negative differential conductivity of
CS-DEFs implies that these states can potentially amplify
oscillatory inputs.

V. MICROMAGNETIC SIMULATIONS

In this section, we explore the DEF solutions established
in a nanowire by micromagnetic simulations including both
nonlocal dipole fields and magnetocrystalline anisotropy. We
utilize the GPU-based code MUMAX3 [36]. We consider
material parameters for Py, namely Ms = 790 kA/m, ex-
change stiffness A = 10 pJ/m, in-plane anisotropy field HA =
400 A/m, and α = 0.01. The corresponding exchange length
for these parameters is λex = 5.05 nm.

We simulate a nanowire of dimensions 512 nm ×
100 nm × 1 nm. Spin injection is achieved by STT acting on

a 10 nm × 100 nm contact located at the left extremum of
the nanowire. Therefore, the nanowire length subject to spin
injection is 502 nm, which corresponds to a dimensionless
length of L = 99.4. We use a symmetric STT with polar-
ization P = 0.65 and assume that the charge current is spin-
polarized along the ẑ direction, e.g., by a magnetic material
with perpendicular magnetic anisotropy [37]. From a previous
study [5], it was found that DEFs can be excited by STT in
the presence of symmetry-breaking terms by charge-current
densities on the order or 1011 A/m2. We numerically find a
threshold of J̄ = 4 × 1011 A/m2. To explore the dynamical
regimes discussed in Sec. III, we vary the charge-current
density at the left contact, between 1 × 1011 A/m2 and 20 ×
1011 A/m2 in steps of 1 × 1011 A/m2. The simulation was
set to run for 20 ns for each current, which was found to be
sufficient to stabilize a steady-state regime.

The results can be visualized in the UHS phase space
shown in Fig. 6(a). Because of the oscillations and transverse
nonuniformity introduced by anisotropy and nonlocal dipole

FIG. 6. (a) Magnetization states shown in the UHS phase space
obtained from micromagnetic simulations of a Py nanowire of
dimensions 512 nm × 100 nm × 1 nm subject to STT at the left
extremum. The injection conditions are identified by circles and the
corresponding solutions are plotted as solid curves. Subthreshold
solutions are shown in black, DEFs in blue, and CS-DEFs in red. The
solid and dashed gray curves represent the sonic curve and isofre-
quency contours for a UHS, respectively. (b) Frequency tunability as
a function of J̄ .
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FIG. 7. Boundary-layer width as a function of the injection
strength ū.

fields [5], respectively, we plot averaged densities and fluid
velocities. The average is performed both in space across the
width of the nanowire and in time for the range 15–20 ns. To
directly compare with the analytical results, we disregard the
region subject to STT. In other words, the boundary conditions
are determined just outside the region subject to STT in the
nanowire and the nanowire’s right extremum. A current den-
sity threshold for the stabilization of hydrodynamic states is
observed. At subthreshold current densities, a partial domain
wall is formed at the injection site [5], evidenced by a solid
black vertical line at n = 0.

We observe a remarkable qualitative agreement between
the micromagnetic simulations and the analytical results
shown in Fig. 3. In particular, we observe DEFs that follow
the UHS isofrequency contours obtained in Sec. III without
nonlocal dipole and in-plane anisotropy (solid blue curves)
and CS-DEFs when the injection conditions are supersonic
(solid red curves). Only three CS-DEFs are shown for clar-
ity. The corresponding frequencies are shown in Fig. 6(b)
in physical units as a function of J̄ and color-coded as in
panel (a). We emphasize that a linear relation between J̄
and ū is not possible to obtain because of the particularities
of the energy landscape imposed by the magnetization tex-
ture, anisotropy, and nonlocal dipole fields. Nonetheless, a
maximum frequency is observed at the transition between
DEFs and CS-DEFs.

The boundary-layer width is difficult to calculate in mi-
cromagnetic simulations. This is because the frequency does
not match exactly to the analytical results when nonlocal
dipole and anisotropy fields are included, and, therefore, the
determination of the parameter n∞ is inaccurate. However, we
can estimate the boundary-layer size from the spatial profile
of n. We determine the boundary-layer width as the region in
space where the slope of n is larger than a threshold value of
0.005 in units of 1/λex. In Fig. 7(a), we show the boundary-
layer width as a function of injection current J̄ . The decreasing
trend qualitatively agrees with the analytical results presented
in Fig. 4, and the boundary-layer width is within the predicted
values for Py. Because the criterion used for spin injection
in micromagnetic simulations is different from the analytical
boundary conditions, we show the profile of n close to the
injection site for J̄ = 10 × 1011 A/m2 and 15 × 1011 A/m2

in Figs. 7(b) and 7(c), respectively. A reasonable estimation
of the boundary-layer width, cf. Fig. 2, is observed.

VI. CONCLUSIONS

In this paper, we analytically determined the form and
qualitative features of magnetization states sustained by spin
injection of arbitrary strength in ferromagnetic channels
with easy-plane anisotropy. For this, we utilize a disper-
sive hydrodynamic formulation that captures the necessary
physical terms without approximations while being analyt-
ically tractable. Our analytical study fully characterizes the
possible solutions that support long-distance spin transport
under a unified framework.

We find that DEFs are generally nonlinear in profile and
frequency tunability. Additionally, we characterize a novel so-
lution, a CS-DEF, composed of a stationary soliton nucleated
at the injection site that smoothly transitions into a nonlinear
DEF. A notable consequence of the onset of CS-DEFs is that
the frequency redshifts to injection. This feature is important
for spintronic applications because it leads to a saturation of
frequency and, therefore, of spin-current magnitudes pumped
into adjacent spin reservoirs. It is numerically found that the
maximum frequency monotonically decays with the channel’s
length, indicating the increased energy that must be invested
in the nonlocal compensation of damping to sustain DEFs. In
other words, there is a compromise between the spin-transport
capacity and the length of the channel.

The adiabatic UHS interpretation introduced in this paper
allows one to utilize the UHS phase space’s isofrequency
contours as a chart to categorize the magnetization states
sustained in a ferromagnetic channel. This chart could be
utilized to explore the profile of magnetization states induced
in channels with two or more boundary conditions, e.g.,
contacts for STT and adjacent spin-current reservoirs [10].
The methodology presented here will be valuable for further
analytical and numerical studies as well as to aid the design
of an experimental realization of extended magnetization tex-
tures for microscopic spin transport.
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APPENDIX: ASYMPTOTIC ANALYSIS

In this Appendix, we implement an asymptotic analysis
of the nonlinear ordinary differential equations (ODEs) (5a)
and (5b) subject to the boundary conditions (6a) and (6b) that
leads to the dissipative exchange flow regimes identified in
this work: linear, nonlinear, and contact DEF solutions.

For this, we introduce the spatial rescaling

y = x

L
, (A1)

and we use Eq. (5a) to simplify Eq. (5b) and obtain the
equivalent ODEs,

0 = [(1 − n2)u]′ + αL(1 − n2)�̃, (A2a)

�̃ = −(1 − u2)n + n′′(1 − n2) + n(n′)2

L2(1 − n2)2
, (A2b)

where the prime denotes a spatial derivative with respect to y,
�̃ = �/(1 + α2) as before, and the boundary conditions (6)
become

n′(0) = 0, n′(1) = 0, (A3a)

u(0) = ū, u(1) = 0. (A3b)

1. Linear DEF solution: Weak injection

The parameter regime that leads to the linear DEF so-
lution requires sufficiently weak injection, therefore we in-
troduce the small parameter 0 < |ū| � 1 and the asymptotic
expansions

u = ūu1 + ū3u3 + · · ·, n = ūn1 + ū3n3 + · · ·,
�̃ = ū�̃1 + ū3�̃3 + · · ·, 0 < |ū| � 1. (A4)

Inserting them into Eqs. (A2), and equating like powers of
u, we obtain the two equations

u′
1 = −αL�̃1, (A5a)

1

L2
n′′

1 − n1 = �̃1, (A5b)

at leading order O(ū). The boundary conditions (A3b) and
Eq. (A5a) imply u1(y) = 1 − y, �̃1 = 1/(αL). The boundary
conditions (A3a) and Eq. (A5b) imply n1(y) = −1/(αL).
Inserting this approximate leading-order solution into the
expansions (A4) yields the linear DEF solution (10).

We note that equating the next-order terms O(ū3) in
Eqs. (A2) leads to

u′
2 = αL

(
n2

1�̃1 − �̃2
) + (

n2
1u1

)′
, (A6a)

1

L2
n′′

2 − n2 = �̃2 − u2
1n1 − 1

L2
n1(n′

1)2. (A6b)

Inserting the leading-order solution for n1, u1, and �̃1 into
Eq. (A6a) results in u′

2 = −αL�̃2. Applying the boundary
conditions (A3b) [u2(0) = u2(1) = 0] implies u2(y) = 0 and

�̃2 = 0. Equation (A6b) and the boundary conditions (A3a)
[n′

2(0) = n′
2(1) = 0] are solved with a spatially varying n2(y)

(superposition of exponentials and a quadratic polynomial in
y). This means that the linear DEF solution (10) approximates
the velocity and frequency to high accuracy, O(ū5), but the
density has a spatially varying correction that scales with ū3.

It is important to note that the linear DEF solution only
requires sufficiently weak injection. Inspection of the asymp-
totic solution implies 0 < |ū| � min(1, αL) in order to main-
tain a well-ordered asymptotic series in the expansions (A4).
Notably, there is no assumption on the magnitude of the
damping coefficient α nor channel length L.

2. Nonlinear DEF solution: Long channel, subsonic injection

In this subsection, we provide the detailed derivation of
Eqs. (13), (15), and (16). The assumption of weak injection for
the linear DEF solution is relaxed, and now we require a long
channel, i.e., L � 1. To this end, we assume the asymptotic
expansions

u = u0 + 1

L2
u2 + · · ·, n = n0 + 1

L2
n2 + · · ·,

�̃ = �̃0 + 1

L2
�̃2 + · · ·, L � 1, (A7)

insert them into Eqs. (A2), and obtain the leading-order
equations

0 = u′
0 − 2u0n0n′

0

1 − n2
0

+ αL�̃0, (A8)

�̃0 = −(
1 − u2

0

)
n0. (A9)

Using Eq. (A9), we can eliminate n0 from Eq. (A8) to obtain
an ODE for u0,

αL�̃0 = u′
0

[
4�̃2

0u2
0(

1 − u2
0

)(
u4

0 − 2u2
0 + 1 − �̃2

0

) − 1

]
, (A10)

which is equivalent to Eq. (12) in the main text. To integrate
this expression, we perform partial fraction decomposition,

αL�̃0 = u′
0

[
− 1 + 4

u2
0 − 1

− 2(1 − �̃0)

u2
0 − (1 − �̃0)

− 2(1 + �̃0)

u2
0 − (1 + �̃0)

]
. (A11)

This solution must agree with the linear DEF solution when
|ū| is small so, from Eq. (10), we expect |�̃0| < 1 and we
can integrate each term in Eq. (A11) to obtain an implicit
expression for u0(y),

αL�̃0y + C = −u0 − 4 tanh−1 u0

+ 2
√

1 − �̃0 tanh−1

(
u0√

1 − �̃0

)

+ 2
√

1 + �̃0 tanh−1

(
u0√

1 + �̃0

)
, (A12)

where C is an integration constant. Evaluating the bound-
ary condition (A3b) [u0(1) = 0], we obtain the integration
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constant

C = −α�̃0L. (A13)

Replacing C in Eq. (A12), we obtain the implicit solution for
the fluid velocity that is given in the main text as Eq. (13).
The frequency �0 in Eq. (15) and density n0 in Eq. (16)
follow from the boundary condition u0(0) = ū and Eq. (A9),
respectively.

This implicit solution satisfies the boundary conditions for
the velocity (A3b) but it only satisfies n′

0(1) = 0 and not
n′

0(0) = 0. While this could be resolved by considering a
boundary layer adjacent to y = 0, the fact that we are con-
sidering a long channel implies d

dx nDEF(0) = O(L−1), which
is negligibly small within the asymptotic approximation (A7).

It is worth noting that the asymptotic expansion of the
nonlinear DEF solution for small |u| is

uDEF(x) = ū
(

1 − x

L

)
+ ū5 4 x

L

(
1 − x

L

)
3(αL)2

( x

L
− 2

)
+ O(ū7),

(A14)

nDEF(x) = − ū

αL
− ū3

(
1 − x

L

)2

αL
+ O(ū5), (A15)

�̃DEF = ū

αL
− 4ū5

3(αL)3
+ O(ū7), (A16)

which agrees with the linear DEF solution at leading order
and at O(ū3) for L � 1. A useful result is obtained by eval-
uating the nonlinear DEF solution at x = 0, which gives the
relationship nDEF(0) = −(ū + ū3)/(αL) + O(ū5) between the
spin density at the injection site and the injection velocity.

Although we have assumed L � 1, we have made no as-
sumption on magnetic damping α. As noted in Sec. III D, the
DEF frequency �̃ saturates when injection achieves the local
speed of sound [Eq. (24)]. This sets the maximum injection
ū—which can still be relatively large—for the nonlinear DEF
solution, i.e., injection must be subsonic.

3. CS-DEF solution: Weak damping, long channel,
supersonic injection

To investigate the supersonic injection regime, we need to
introduce a boundary layer near y = 0 in Eqs. (A2) (see, e.g.,
Ref. [33]). For this, we consider two separate solution regions:
an inner region close to the injection site and an outer region
that extends to the unforced edge of the channel. The solutions
from these two regions are then asymptotically matched in
order to obtain a uniformly valid asymptotic approximation
across the entire channel.

a. Inner region

In the inner region, we are interested in the solution profile
close to y = 0. Therefore, we “zoom” into this region for
Eqs. (A2) by returning to the x = yL scale (A1) where L is
assumed large,

0 = [(1 − n2)u]′ + α(1 − n2)�̃, (A17a)

�̃ = −(1 − u2)n + n′′(1 − n2) + n(n′)2

(1 − n2)2
. (A17b)

Now, the prime is a derivative with respect to x. As we will
see, only the leftmost boundary conditions in (A3a) and (A3b)
will be satisfied in the inner region. Anticipating the behavior
of the solution in the outer region that we will match to, we
use the following boundary conditions:

n′(0) = 0, lim
x→∞ n′(x) = n∞, (A18a)

u(0) = ū, lim
x→∞ u(x) = u∞, (A18b)

with n∞ and u∞ to be determined.
To approximately solve Eqs. (A17) subject to the boundary

conditions (A18), we assume weak damping 0 < α � 1 and
expand in the asymptotic series,

u = u0 + αu1 + · · ·, n = n0 + αn1 + · · ·,
�̃ = �̃0 + α�̃1 + · · ·, 0 < α � 1. (A19)

This implies that in the inner region, the dynamics are effec-
tively conservative to leading order,

0 = [(
1 − n2

0

)
u0

]′
, (A20a)

�̃ = −(
1 − u2

0

)
n0 + n′′

0

(
1 − n2

0

) + n0(n′
0)2(

1 − n2
0

)2 . (A20b)

To continue, we integrate Eq. (A20a) to obtain u0 in terms
of n0,

u0 = C

1 − n2
0

, (A21)

where C is a constant of integration. We substitute this into
Eq. (A20b) and multiply by 2n′ to obtain

2�̃0n′
0 + 2n0n′

0 − C2

(
1

1 − n2
0

)′
=

[
1

1 − n2
0

(
n′

0

)2
]′

. (A22)

Every term in Eq. (A22) is a perfect derivative. Therefore,
upon integration, we obtain the first-order ODE,

(n′
0)2 = −n4

0 − 2�̃0n3
0 + (1 − K )n2

0 + 2�̃0n0 − C2 + K,

(A23)
where K is an additional constant of integration. This ODE
can generally be integrated in terms of elliptic integrals (see,
e.g., Ref. [34]), but we are interested in the localized, sta-
tionary soliton solution that satisfies the boundary conditions
(A18), which is

nin = aν1tanh2(θx) + ν2(n∞ − a)

atanh2(θx) + ν2
, (A24a)

uin = u∞
1 − n2

∞
1 − n2

in

, (A24b)

�̃in = −n∞(1 − u2
∞), (A24c)

where ν1 = a − n∞ − 2n∞u2
∞, ν2 = a − 2n∞ − 2n∞u2

∞,
θ = √

1 − u2∞ − n2∞(1 + 3u2∞), and a = n∞(1 + u2
∞) +√

(1 − u2∞)(1 − n2∞u2∞). The soliton’s density deviation from
its far-field value n∞ is the amplitude a. Note that the soliton’s
extremum is situated at x = 0 to enforce the BC n′(0) = 0. An
additional relation is due to spin injection at the left boundary
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x = 0 where the soliton’s extremum is attained,

ū = uin(0) = u∞
1 − n2

∞
1 − (n∞ − a)2 . (A25)

This relation constrains n∞ and u∞. We require an additional
relation to fully determine the solution. This comes from the
asymptotic solution in the outer region, far from the forced
injection boundary at x = 0.

The soliton established in the inner region is therefore
given by Eqs. (A24a), (A24b), and (A25), reported in the
main text.

b. Outer region

For the outer region, we return to the scaled variable y =
x/L (A1) and Eqs. (A2). To match the inner solution (A24),
we need to modify the boundary conditions (A2b) to

lim
y→0

n(y) = n∞, n′(1) = 0, (A26a)

lim
y→0

u(y) = u∞, u(1) = 0. (A26b)

The approximate outer solution to Eqs. (A2) subject to
the boundary conditions (A26) is the nonlinear DEF solution
described in Sec. A 2 with L � 1, ū → u∞, which satisfies
the following [cf. Eqs. (13), (15), and (16)]:

αL�̃out(1 − y) = uout + 4 tanh−1 (uout) − 2[N−(uout, �̃out )

+N+(uout, �̃out )], (A27a)

nout(y) = − �̃out

1 − uout(y)2
, (A27b)

αL�̃out = u∞ + 4 tanh−1 (u∞) − 2[N−(u∞, �̃out )

+N+(u∞, �̃out)]. (A27c)

However, the boundary condition n′(0) = 0 no longer ap-
plies. Instead, we have a fixed value of the spin density

n∞ = nout(0) = − �̃out

1 − u2∞
. (A28)

This relation and Eq. (A24c) imply the equality of the inner
and outer precessional frequencies, so we define

�̃ = �̃in = �̃out. (A29)

c. Matching

The full solution for the CS-DEF is obtained by matching
the inner solution to the outer solution. Actually, the choice
of boundary conditions in Eqs. (A18) and (A26) encodes the
matching of the two solutions. We now summarize the three
equations that uniquely determine n∞, u∞, and �̃ in terms of
the spin injection u. They are

�̃ = −n∞(1 − u2
∞), (A30a)

ū = u∞(1 − n2
∞)

1 − (n∞ − a)2
, (A30b)

αL�̃ = u∞ + 4 tanh−1 (u∞)

− 2[N−(u∞, �̃) + N+(u∞, �̃)], (A30c)

coinciding with Eqs. (A24c), (A25), and (A27c), respectively.
With all parameters determined, we can now obtain a

uniformly valid asymptotic approximation to the CS-DEF
with

ucs(x) = uin(x) + uout(x/L) − u∞, (A31a)

ncs(x) = nin(x) + nout(x/L) − n∞, (A31b)

which is the approximation used, for example, in Fig. 2(b).
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