
Sensitivity of Linear Systems
Atkinson §8.4, NMMC1 §1.2.7, & GvL2 §2.6

1 Our first topic is methods for solving nonsingular linear systems of equations. The first question one
usually asks about a problem, before analyzing methods to solve it, is whether a solution exists, and whether
it’s unique. For nonsingular linear systems the answer is yes, so we move on to analyzing how the solution
depends on the data, i.e. sensitivity.

We will analyze sensitivity to errors in the inputs: the coefficient matrix and the RHS. These are forward
error bounds. Later on we will see that Gaussian Elimination (one particular algorithm for finding the
solution) in finite-precision floating point arithmetic finds the exact answer to a perturbed problem, with a
bound on the size of the perturbations (a backwards error bound). Those results combined with these will
together result in forward error bounds on the solution computed via Gaussian Elimination in finite-precision.

2 Sensitivity to RHS. (Atkinson §8.4)
Ax = b

where A is nonsingular. What happens if you perturb the RHS, eg due to roundoff, and then solve the
perturbed system exactly?

Axδ = b + δb

xδ = A−1b + A−1(δb) = x + A−1(δb)

‖xδ − x‖ = ‖A−1(δb)‖.

We want the relative error; if the error is 10−30 it sounds good unless the norm of the solution is also 10−30.
Divide both sides by ‖x‖:

‖xδ − x‖
‖x‖

=
‖A‖‖A−1(δb)‖
‖A‖‖x‖

≤ κ(A)
‖δb‖
‖b‖

.

The condition number is
κ(A) = ‖A‖‖A−1‖.

Condition numbers are ≥ 1; e.g. for the 2-norm the condition number is σmax/σmin where σi are singular
values of A. An ill-conditioned system is a system with a large condition number. If the system is ill-
conditioned, then a small perturbation to the RHS can lead to large changes in the solution. For example,

A =

[
1 0
0 ε

]
, b = (1, 0)T , δb = (0, δ)T

The unperturbed solution is (1, 0)T . If δ is small then the perturbation is small, but the solution to the
perturbed problem is (1, δ/ε)T so if ε� δ then the error is large.

3 Perturbing both: Formal asymptotic analysis from GvL §2.6.2. A is nonsingular. Consider

(A + εF)x(ε) = b + εf .

Now differentiate (‘implicit differentiation’)

Aẋ(ε) + Fx(ε) + εFẋ(ε) = f .

Now evaluate at ε = 0, and define the notation x(0) = x = the solution to the unperturbed problem

Aẋ + Fx = f ⇒ ẋ = A−1(f − Fx).

x(ε) has a Taylor series expansion of the form

x(ε) = x + εẋ(0) + o(ε).

1Numerical Methods in Matrix Computations by Bjork
2Matrix Computations by Golub and van Loan

1

(The ‘little-o’ notation y = o(ε) means that limε→0 y/ε = 0. The ‘big-o’ notation y = O(ε) means that
limε→0 y/ε exists and is neither infinite nor zero.)

So we have the following
‖x(ε)− x(0)‖
‖x(0)‖

= ε
‖A−1(f − Fx)‖

‖x‖
+ o(ε).

We’ll use the bound
‖A−1(f − Fx)‖

‖x‖
≤ ‖A−1‖

(
‖f‖
‖x‖

+ ‖F‖
)
.

Note that

Ax = b ⇒ ‖A‖‖x‖ ≥ ‖b‖ ⇒ 1

‖x‖
≤ ‖A‖
‖b‖

.

Using this above we obtain

‖x(ε)− x‖
‖x‖

≤ ‖A−1‖‖A‖
(
‖εf‖
‖b‖

+
‖εF‖
‖A‖

)
+ o(ε).

This says that the relative error is proportional to the condition number times the relative amplitude of
the perturbations in the RHS and in the coefficient matrix. The above derivation (though correct) is not
completely rigorous because we never justified that the derivatives exist (they do for small enough ε).

The above result is asymptotic, meaning that the error will be approximately equal to the formula on the
right hand side for small enough ε. Unfortunately we don’t know how small ε needs to be in order for the
approximation to be accurate. We want some information about the error that will be correct for a known
range of ε.

4 Theorem 8.4 in Atkinson is not very good. We will instead prove a bound similar to the above rigorously.
To prove a rigorous bound we need a Lemma (see also Atkinson Theorems 7.10 & 7.11). Note that ‖F‖ < 1
(any operator norm) implies that all eigenvalues are less than 1. If all evals of F are less than 1 then I− F
is nonsingular (no evals are 0).

Assuming ‖F‖ < 1, note the following

I− FN+1 = (I + F + · · ·+ FN)− F(I + F + · · ·+ FN) =

(
N∑
0

Fk

)
(I− F) .

Multiply from the right by (I− F)−1

(I− FN+1)(I− F)−1 =

N∑
0

Fk

Take the limit as N →∞ and recall that ‖F‖ < 1 implies that FN → 0

(I− F)−1 =

∞∑
0

Fk

Note similarity to Taylor series for 1/(1− x).
Return to fixed N :

‖(I− FN+1)(I− F)−1‖ ≤
N∑
0

‖F‖k

Now take limits, use geometric series

‖(I− F)−1‖ ≤ 1

1− ‖F‖
.

2

Finally, consider

(I− F)−1 − I =

∞∑
0

Fk − I =

∞∑
1

Fk = F

∞∑
0

Fk = F(I− F)−1.

This implies that

‖(I− F)−1 − I‖ = ‖F(I− F)−1‖ ≤ ‖F‖
1− ‖F‖

.

5 Now return to a rigorous proof. Consider A+E = (I−F)A where F = −EA−1. Assume that ‖EA−1‖ < 1
so that A + E is nonsingular.

(A + E)y = b + δb, Ax = b

(I− F)Ay = b + δb

y = A−1(I− F)−1(b + δb)

y − x = A−1
[(

(I− F)−1 − I
)
b + (I− F)−1δb

]
‖y − x‖ ≤ ‖A−1‖

[
‖F‖

1− ‖F‖
‖b‖+

1

1− ‖F‖
‖δb‖

]
Divide by ‖x‖ and multiply RHS by ‖A‖/‖A‖

‖y − x‖
‖x‖

≤ κ(A)

[
‖F‖

1− ‖F‖
‖b‖

‖A‖‖x‖
+

1

1− ‖F‖
‖δb‖
‖A‖‖x‖

]
‖y − x‖
‖x‖

≤ κ(A)

[
‖F‖

1− ‖F‖
+

1

1− ‖F‖
‖δb‖
‖b‖

]
.

Now let ε = max{‖F‖, ‖δb‖/‖b‖}(< 1)

‖y − x‖
‖x‖

≤ 2εκ(A)

1− ε
.

This relies on the fact that x/(1− x) and 1/(1− x) are increasing on x ∈ (0, 1).
The above result depends on ‖F‖ while the asymptotic result depended on ‖E‖/‖A‖. You can make the

connection using FA = −E ⇒ ‖F‖‖A‖ ≥ ‖E‖ ⇒ ‖F‖ ≥ ‖E‖/‖A‖.
The above result is not asymptotic; it’s an upper bound. The relative error might actually be a lot

smaller than this.
In summary, if the system is ill-conditioned then small perturbations in the matrix or RHS can lead to

large changes in the solution. A large perturbation in the matrix or RHS can lead to large changes in the
solution even when the system is well-conditioned.

6 Preconditioning. Suppose that A, M, Ml, and Mr are all invertible matrices. The following systems all
have the same solution

• Standard: Ax = b

• Left-preconditioned MAx = Mb

• Right-preconditioned AMy = b and My = x

• Split-preconditioned MlAMry = Mlb and Mry = x.

For the left- and right-preconditioned systems, if M ≈ A−1 then the preconditioned system has the same
solution as the original system but a better condition number. For the split-preconditioned system, if
A = LU and Ml ≈ L−1 and Mr ≈ U−1 then the preconditioned system has a better condition number.
We won’t discuss methods for constructing preconditioners; take the numerical linear algebra course APPM
5620 offered every spring.

3

Gaussian Elimination & LU Factorization
Atkinson §8.1–8.4, NMMC §1.2, & GvL Chapter 3

1 Gaussian Elimination with Partial Pivoting (GEPP) is an algorithm that is guaranteed to compute the
exact solution (in the absence of roundoff errors) to a nonsingular linear system in a finite number of steps.
Any algorithm that computes an exact solution in a finite number of steps is a ‘direct method.’

Form the augmented matrix [A|b]. Then:
For k = 1 : n− 1

• Swap row k with the row that has the largest element in the kth column on or below the diagonal.

• Add multiples of row k to rows k + 1 : n to set all elements below the kth diagonal to 0.

The augmented matrix will now have the form [U|c]. Set xn = cn/un,n. For k = n− 1 : −1 : 1

• Set xk = (ck −
∑k+1
i=n uk,ixi)/uk,k.

The first loop is the forward solve, the second loop is the back solve. In the forward solve, if there’s
a zero on the diagonal you have to pivot (pivot means swap rows), and you can pivot in any way that
produces a nonzero on the diagonal. Now in finite-precision arithmetic the probability of getting a hard
zero is small anyways, so that’s not really why we pivot. Instead, the strategy that you use for pivoting has
an impact on the magnitude of the roundoff error; we pivot to minimize roundoff errors. I have specified a
particular pivoting strategy: pivoting the largest element to the diagonal. We will later quote an error bound
that depends on this particular strategy. An even better strategy from the perspective of roundoff errors
is to pivot the rows and columns so that the largest element in the trailing submatrix gets moved to the
diagonal. This is called ‘complete’ pivoting and leads to a better roundoff error bound, but is also more costly.

‘Gauss-Jordan’ elimination is a variant where the second loop is like the first: you eliminate elements
above the diagonal (without pivoting). After the second loop the augmented matrix has the form [I|x].
Gauss-Jordan is more expensive than Gaussian Elimination.

2 Gaussian Elimination & LU Factorization. If you solve Ax = b multiple times with different right hand
sides, the ‘forward solve’ part of the loop is the same every time. You will always arrive at an augmented
matrix of the form [U|c]; the upper triangular matrix U will always be the same, only the vector c will
depend on the right hand side b. So it’s wasteful to re-do the whole forward loop each time. Instead, you
should save some record of the operations (pivoting, multiplying and adding rows) that occur during the
forward loop. If you have to solve the system again with a different b, you just re-apply the same sequence
of operations to the new RHS vector b to get the new c, then proceed to the back solve.

It turns out that storing the steps in the forward loop of Gaussian Elimination is like computing a matrix
factorization (called a permuted LU factorization) of the form

PA = LU

where P is a permutation matrix, L is lower-triangular with 1 on the diagonal (‘special lower triangular’) and
U is upper-triangular. Permuting rows is equivalent to multiplying from the left by a permutation matrix
Pi, and eliminating everything below the diagonal is equivalent to multiplying from the left by a special
lower-triangular elimination matrix Li, so the whole elimination process can be written as

LN−1 (PN−1LN−2PN−1) (PN−1PN−2LN−3PN−2PN−1) · · ·
(PN−1 · · ·P2L1P2 · · ·PN−1) PN−1 · · ·P1A = U.

The elimination matrix Li is an identity except for nonzeros below the diagonal of the ith column. The
matrices in parentheses above are symmetric permutations of Li where the permutations operate on rows

4

& columns with indices greater than i. As a result, the symmetric permutations have exactly the same
lower-triangular structure of nonzeros as Li, though the entries below the diagonal are different (they are
permuted). We can thus write

LN−1L̃N−2 · · · L̃1PN−1 · · ·P1A = U.

where all the L̃i are (special) lower-triangular. The inverse of a (special) lower-triangular matrix is also
(special) lower triangular (in fact the inverse of an elimination matrix just changes the sign of the off-
diagonals), and a product of permutation matrices is itself a permutation matrix, so we can write

PA = LU

where
P = PN−1 · · ·P1

and
L = L̃

−1
1 · · · L̃

−1
N−2L

−1
N−1.

Thus GEPP is equivalent to a matrix factorization.

The matrix U is computed during the forward loop of GEPP. The P and L matrices can be computed
during the GEPP algorithm with no extra cost (since they basically just keep a record of the operations
performed by the GEPP algorithm). Generally we don’t store the matrix P since it only has n nonzero
elements, all of which are 1. Instead we store a permutation vector. The matrix L can be computed online
easily even with pivoting; see, e.g., Algorithm 1.2.4 in NMMC. Do not use the above analysis to compute L!

3 GEPP: Computational Cost. Operation count for row reduction (not applied to RHS). We will ignore
the cost of row swaps. In step k you eliminate n − k rows. At each row you compute the ‘multiplier’ (one
division), then you perform n− k multiplications and additions. So the cost at step k is 2(n− k)2 + (n− k)
floating point operations. So the total cost is

n−1∑
k=1

2(n− k)2 + (n− k) ∼ O(n3).

The precise coefficient of the leading order term is 2n3/3; generally we only keep the term that grows fastest
with n so that we can gauge cost for large matrices.

The back solve costs n divisions plus n(n − 1)/2 multiplications and the same number of additions, so
overall it is O(n2). We say that the overall cost of GEPP/permuted LU is order n3. Once you’ve computed
the LU factorization of a matrix it only takes O(n2) operations to use it to solve a system.

4 Cholesky. If the matrix A is symmetric and positive definite, then (i) no pivoting is needed, and (ii) the
diagonal elements of U are positive. (Applying GE to A is the best way to check if a symmetric matrix is
positive definite; not by computing the eigenvalues.) Moreover, symmetry implies

A = LDLT

where D is a diagonal matrix whose diagonal entries are those of U. So we can define G = LD1/2, and we
have A = GGT where G is the Cholesky factor of A.

5 Tridiagonal matrices. If A is tridiagonal then L will be lower bidiagonal and U will have nonzeros at most
two elements above the diagonal (graphical proof). If no pivoting is required (e.g. because A is SPD), then
U will be upper-bidiagonal. In either case the cost of GEPP is only O(n).

5

Gaussian Elimination & LU Factorization: Roundoff Errors
Atkinson Theorem 8.5, NMMC §1.4.3, & GvL §3.3

Atkinson Theorem 8.5 is not as accurate as the results presented here, but is still OK.

1 Backward errors in the computed solution using GE with either complete or partial pivoting.

(cf NMMC Theorem 1.4.6) Let x̄ be the computed solution to Ax = b. Then there is a matrix
E such that

(A + E)x̄ = b

where

‖E‖∞ ≤ 1.5
n2(n+ 1)u

1− nu
ρn‖A‖∞

and ρn is the ‘growth factor.’

Technically this is not a rigorous bound because it ignores terms on the order of (nu)2, but when nu is
small it is accurate. You could insert this into our sensitivity analysis to get a forward error bound on the
computed solution; set

ε = ‖E‖∞/‖A‖∞ ≤ 1.5
n2(n+ 1)u

1− nu
ρn

and insert in
‖x̄− x‖
‖x‖

≤ 2εκ(A)

1− ε
.

2 Some results on the growth factor ρn (See NMMC)

• With partial pivoting the growth factor is sharply bounded by ρn ≤ 2n−1, but this upper bound is
usually not attained. Partial pivoting is usually deemed ‘good enough’ for most applications.

• With complete pivoting, the upper bound is ρn < 1.8n1/2+ln(n)/4 (Atkinson forgets the 1/2 in the
exponent). Complete pivoting is extremely stable to roundoff errors.

• For a ‘diagonally-dominant’ matrix (definition deferred) and for tridiagonal matrices the growth factor
is bounded by ρn ≤ 2.

3 Small residuals. The residual in the computed solution r̄ = b−Ax̄ satisfies

‖r̄‖∞
‖A‖∞‖x̄‖∞

≤ 1.5
n2(n+ 1)u

1− nu
ρn.

This is independent of the condition number of A. So Gaussian elimination can reliably produce solutions
that have relatively small residuals, even when the matrix is ill-conditioned. (Again, this is not a rigorous
bound because it ignores terms on the order of (nu)2.)

4 It’s worth noting that if you’re worried about roundoff errors, the easiest thing to do is to compute the
solution twice and examine the differences. For example, compute once with partial pivoting and once
with complete pivoting and compare. Or compute once in single precision and once in double precision
and compare (or double and quad). If roundoff is limiting your accuracy, there are methods for obtaining
improved accuracy; all hope is not lost, just do some reading.

6

Stationary Iterations: Richardson, Jacobi, Seidel, SOR
Atkinson §8.6, NMMC §4.1, GvL §11.2

1 General idea: Let A = M−N where it’s easy to solve My = c, i.e. it’s easy to invert M (though we never
compute M−1!). Then define the following iteration

xk+1 = M−1Nxk + M−1b.

This is a ‘splitting’ for obvious reasons, and it’s ‘stationary’ because it does the same operation at every step.
We’ll cover some classical splittings and their associated iterations. Generally we want to know whether xk
will converge to the solution of Ax = b as k →∞ for every starting vector x0.

First let’s suppose that the iteration does converge to something, and call it x∞. We’ll verify that this
limit does solve Ax = b:

x∞ = M−1Nx∞ + M−1b⇒

(I−M−1N)x∞ = M−1b

(M−N)x∞ = Ax∞ = b.

Next we’ll ask under what conditions the splitting will converge. It’s easiest to show that the error goes
to 0, rather than that xk → x∞. The error is ek = x∞ − xk, and it solves (use Mx∞ = Nx∞ + b)

ek+1 = Bek, B = M−1N.

Now we want to know under what conditions this will converge to 0 for any initial error. A necessary and
sufficient condition is:

The iteration is convergent (i.e converges for any initial condition) iff the largest eigenvalue of B
has amplitude less than 1. (I.e. the spectral radius ρ(B) < 1.)

See Atkinson Theorem 7.9. This is basically linear algebra background, so we won’t prove it.
It’s not always easy to check this condition. The following condition is sufficient but not necessary:

If ‖B‖ < 1 for some matrix norm induced by a vector norm, then the iteration is convergent.

The proof of this is simple and is omitted.

How fast is the iteration converging?

If ρ(B) < 1 then

lim
k→∞

(
‖ek‖
‖e0‖

)1/k

= ρ(B)

for any vector norm.

This means that for large enough k,
‖ek‖ . ‖e0‖ρ(B)k.

The proof of the above is based on a nontrivial fact about the spectral radius, found in NMMC Lemma
4.1.2. If the iteration matrix B is non-normal, actual errors can grow at low k, even when the method is
convergent. They can grow by many orders of magnitude before eventually settling into asymptotic decay,
so be careful.

7

2 The standard splittings first decompose A into diagonal, upper, and lower parts:

A = D−E− F = D(I− L−U).

• Gauss-Jacobi, aka Jacobi. Based on the idea that it’s easy to invert a diagonal matrix. The splitting
is M = D, and the iteration is

xk+1 = D−1(E + F)xk + D−1b.

• Gauss-Seidel. Based on the idea that a triangular matrix is easy to invert. The splitting is M = D−E,
and the iteration is

xk+1 = (D−E)−1Fxk + (D−E)−1b.

• Successive Over-Relaxation (SOR). Part of the diagonal goes into M and part goes into N:

xk+1 = (D− ωE)−1[ωF + (1− ω)D]xk + ω(D− ωE)−1b.

Both GS and SOR have ‘symmetric’ variants. A single step of symmetric GS consists of a step with
M = D−E, followed by a step with M = D− F.

Convergence Theorems

(Definition) The square matrix A is diagonally dominant by rows when the absolute value of the
diagonal element in each row is larger than the sum of the absolute values of the remaining terms

|aii| ≥
∑
j 6=i

|aij |.

“Strict” diagonal dominance replaces the ≥ by >. Diagonal dominance by columns is similar.

The Gershgorin Disk theorem (Atkinson Theorem 9.1) guarantees that strictly diagonally dominant matrices
are nonsingular.

Convergence Theorem #1 If A is strictly diagonally dominant then the Gauss Jacobi and
Seidel iterations are convergent.

Proof for Jacobi: The Jacobi iteration matrix is B = D−1(E + F). If A is row-dominant then the ∞
norm is strictly less than 1. (If A is column-dominant then the 1 norm is strictly less than 1.)

Proof for Seidel: Note B = (D−E)−1F. Let ek be the standard basis vector such that ‖BT ‖1 = ‖B‖∞ =
‖BTek‖1. Note that

(I−D−1E)B = D−1(D−E)(D−E)−1F = D−1F⇒
B = D−1EB + D−1F

Take transpose, then multiply by ek and take the 1-norm

‖B‖∞ ≤ ‖B‖∞‖(D−1E)Tek‖1 + ‖(D−1F)Tek‖1

‖B‖∞ ≤
‖(D−1F)Tek‖1

1− ‖(D−1E)Tek‖1
To justify the division without reversing the inequality we need that ‖(D−1E)Tek‖1 < 1. The fact that A
is strictly-diagonally-dominant by rows guarantees this (since the vector is a column sum of a transpose).
Now we’re trying to prove that ‖B‖∞ < 1; this is transparent if

‖(D−1E)Tek‖1 + ‖(D−1F)Tek‖1 < 1.

Again this is just a full row sum of the Jacobi iteration matrix broken into two absolute-value pieces (absolute
value of the sum of elements left of the diagonal plus absolute value of the sum of those right of the diagonal);
strict diagonal-dominance then guarantees the desired result. Column-wise DD is similar.

It is possible to weaken the conditions to irreducible diagonal dominance.

8

Convergence Theorem #2 If A is symmetric positive definite then the Gauss Seidel iteration
is convergent.

Proof from GvL, Theorem 11.2.3. The proof examines the spectral radius, not the norm (naturally, since we
only know something about the eigenvalues of A). The iteration matrix for a symmetric A is

BGS = (D−E)−1ET .

First notice that this matrix has the same eigenvalues as

G = D1/2BD−1/2 = (I− L)−1LT

where
L = D−1/2ED−1/2.

Suppose that v is a unit-2-norm eigenvector of G

(I− L)−1LTv = λv.

Move inverse to RHS then take standard inner product:

v∗LTv = λ(1− v∗Lv).

Note that (if A is real) then v∗LTv = v∗Lv. Let v∗Lv = a+ ib, so that

a− ib = λ(1− a− ib)⇒ |λ|2 =
a2 + b2

1− 2a+ a2 + b2
.

Now consider that since A is SPD, we have

0 < v∗D−1/2AD−1/2v = 1− v∗Lv − v∗LTv = 1− 2a.

This implies that |λ|2 < 1, as desired.

SOR First show that a necessary condition is 0 < ω < 2. The SOR iteration matrix is

B = (D− ωE)−1[ωF + (1− ω)D] = (I− L)−1[(1− ω)I + ωU].

The determinant of B is

det[B] = det[(I− L)−1]det[(1− ω)I + ωU] = 1× (1− ω)n.

The determinant is the product of the eigenvalues. Let λi be the eigenvalues of B, then

ρ(B)n = |λmax|n ≥ Πn
i=1|λi|n = |1− ω|n.

In order to have ρ(B) < 1 we have to have 0 < ω < 2.

Convergence Theorem #3 If A is symmetric positive definite and 0 < ω < 2 then SOR is
convergent.

This is Theorem 4.10 from Saad “Iterative methods for sparse linear systems” given there without proof or
reference. SOR was a hot item ∼40 years ago, and has a very well-developed theory. It’s not widely used
any more as a stand-alone method.

9

Steepest Descent & Conjugate Gradients

1 We will next look at Conjugate Gradient algorithm, which is a bridge between iterative & direct methods.
It is ‘iterative’ in the sense that it produces a new, better approximation at each step, but it is also ‘direct’
in the sense that after n steps in exact arithmetic it produces the true solution. To understand CG, we start
with steepest descent, which is a true iterative method. Both CG and steepest descent apply to systems
with A symmetric positive-definite.

Consider

f(x) =
1

2
xTAx− xT b

where A is SPD. The gradient is
∇f = Ax− b.

The only critical point is the solution to Ax = b. The Hessian is A; since it’s SPD, the critical point is
a minimizer. This function is quadratic, so the solution to Ax = b is the unique global minimizer of f .
Solving Ax = b is therefore equivalent to finding the minimizer of f .

Steepest descent is an iterative method for finding the minimum of f . It takes the form

xk+1 = xk − αkgk

where gk is the gradient of f at xk, and αk is some scalar chosen so that f(xk+1) < f(xk). The gradient of
f at xk is

gk = ∇f |xk
= Axk − b = −rk

where rk is the residual at step k. (Recall that the direction of steepest increase of a function is the gradient,
and the direction of steepest decrease/descent is minus the gradient.)

How can we choose αk? Note that

f(xk+1) =
1

2
(xk − αkgk)TA(xk − αkgk)− (xk − αkgk)T b

= f(xk)− αk
(
gTk Axk − gTk b

)
+
α2
k

2
gTk Agk

= f(xk)− αkgTk gk +
α2
k

2
gTk Agk

An exact line search chooses αk to minimize this expression; the minimum occurs at

αk =
gTk gk
gTk Agk

=
‖rk‖22
rTk Ark

.

This is the steepest descent method with exact line search. It can be quite slow, especially when A is
ill-conditioned; the objective function f has level sets that are highly-anisotropic ellipsoids and the steepest-
descent method jumps back & forth a lot.

Now consider if and how the error decreases. The error dynamics is

ek+1 = ek − αkrk.

Since A is SPD, it induces a norm:
‖x‖2A = xTAx.

The steepest-descent method decreases the A-norm of the error at every step:

‖ek+1‖2A = ‖ek‖2A − 2αkr
T
k Aek + α2

k‖rk‖2A
= ‖ek‖2A − 2αk‖rk‖22 + α2

k‖rk‖2A

= ‖ek‖2A −
‖rk‖42
‖rk‖2A

< ‖ek‖2A

10

This fact by itself is not enough to guarantee convergence, but steepest descent is in fact convergent whenever
A is SPD. The rate of convergence can be bounded as follows (Saad §5.3.1). The A-norm of the error at
step k + 1 is bounded by

‖x(k+1) − x∗‖A ≤
λmax − λmin

λmax + λmin
‖x(k) − x∗‖A

where λ are eigenvalues of A. As usual, the convergence can be slow when A is ill-conditioned.

2 Steepest-descent minimizes f over a 1D affine subspace. Perhaps we could improve by minimizing over a
larger subspace, but which subspace to choose? Steepest descent uses the residual, which is easy to compute.
Consider the following:

1. First do a steepest-descent step.

2. Now, compute the new residual, but find the minimum in the affine subspace x1+span{r0, r1} instead
of just x1 + span{r1}.

3. At step k, find the minimum in the affine subspace xk+span{r0, . . . , rk}.

Try it for step 2:
x2 = x1 + α0r0 + α1r1

f(x2) = f(x1) + α0r
T
0 (Ax1 − b) + α1r

T
1 (Ax1 − b) + α0α1r

T
0 Ar1

f(x2) = f(x1) + α0r
T
0 r1 + α1r

T
1 r1 + α0α1r

T
0 Ar1 +

1

2
(α2

0r
T
0 Ar0 + α2

1r
T
1 Ar1)

We want to find the α0 and α1 that minimize f(x2). This is exactly the same kind of problem we started
with, but 2D; at step k it will be a k-dimensional quadratic minimization problem. How will we solve it?
Steepest descents? The same algorithm we’re using now? That way lies madness.

3 The problem with the foregoing algorithm is that at step k we have to minimize a quadratic in k variables,
which is equivalent to solving a k × k SPD linear system, which is basically the problem we were trying to
solve originally.

The key to the solution is to change basis. We used the obvious basis for span{r0, r1}, but this basis is
inconvenient. Every n-dimensional subspace has an orthogonal basis; orthogonality is always defined with
respect to an inner product. Rather than use the standard inner product (dot), use a basis that’s orthogonal
with respect to the following inner product: 〈u,v〉 = uTAv. This is only an inner product when A is
SPD (in fact, any inner product on Rn can be written in this form for some SPD matrix). Vectors that are
‘orthogonal’ with respect to this inner product are called ‘conjugate’ or ‘A-conjugate.’

4 For convenience suppose that x0 = 0 so that r0 = b. The CG algorithm starts with a steepest-descent
step

x1 = x0 + ar0 = ar0.

The next step seeks to minimize over the subspace x2 = x1 +br0 +cr1 = (a+b)r0 +cr1. Because we started
at 0, we’re seeking a solution within the subspace spanned by {r0, r1} (rather than an affine subspace if we
started at a nonzero location). At step k + 1 we’re seeking xk+1 ∈span{r0, . . . , rk}.

Suppose {p0, . . . ,pk} is any A-conjugate basis for the span of r0, . . . , rk. Then

xk+1 =

k∑
i=0

αipi

I really should have used αi,k, but you’ll see why I don’t need to shortly. Look at f(xk+1) using conjugacy

f(xk+1) =

k∑
i=0

pTi

(
α2
i

2
Api − αib

)
.

11

The αi that minimize this are

αi =
pTi b

pTi Api
.

Clearly this doesn’t depend on k, unless we choose a different set of pi at every step. The next section shows
that we don’t need to do that: at each new step k we just add a new pk to our basis. It also means that

xk+1 = xk + αkpk

(because the p vectors don’t change as you go from step to step). We will also need to note that αk 6= 0
unless xk is the solution. Since the Hessian of f is positive definite, expanding the search space will always
lead to a decrease in f unless you’re already at the minimizer.

5 To move to step k + 1 we need to construct an A-conjugate basis for the span of r0, . . . , rk+1. We could
do this using Gram-Schmidt:

pk+1 = rk+1 −
〈p0, rk+1〉
‖p0‖2A

p0 − . . .−
〈pk, rk+1〉
‖pk‖2A

pk.

This will only work if rk+1 is not in the span of the previous residuals.
Now I will show that rk+1 is orthogonal (not conjugate) to all previous residuals, which implies that it’s

not in the span (unless it’s 0, in which case we’re done: xk+1 is the solution). First compute the residual at
k + 1:

rk+1 = b−Axk+1 = b−
k∑
i=0

αiApi.

Take the dot product with pj :

pTj rk+1 = pTj b−
k∑
i=0

αip
T
j Api

Using conjugacy
pTj rk+1 = pTj b− αjpTj Apj = 0, j = 0, . . . , k

Last equality used definition of αj . This only shows that rk+1 is orthogonal to pi for i = 1, . . . , k, but since
the p vectors span the same subspace as the r vectors this result implies what we want to prove, i.e. that
rk+1 is orthogonal to all previous residuals.

This section shows that either (i) rk+1 = 0 in which case you’ve found the exact solution, or (ii) rk+1 is
orthogonal to all previous ones so you can use Gram-Schmidt to construct pk+1.

6 We could stop there, but when you implement you’ll find that almost all the terms in the Gram-Schmidt
construction of pk+1 are zero, leaving

pk+1 = rk+1 −
〈pk, rk+1〉
‖pk‖2A

pk.

The goal of this section is to prove that statement, i.e. to prove that

〈pj , rk+1〉 = 0, j = 0, . . . , k − 1.

• Recall that rk+1 is orthogonal to the span of the pj ; this implies that rk+1 must also be orthogonal to
all the rj (j = 1, . . . , k) (because span of p’s is equal to the span of the r’s).

• Now notice a recursion for the residuals

rk+1 = b−Axk+1 = b−A(xk + αkpk) = rk − αkApk.

Now take the dot product with rk+1, using orthogonality noted above

‖rk+1‖22 = −αk〈rk+1,pk〉 (*)

12

• Now expand the recursion

rk+1 = b−A(xk−1 + αk−1pk−1 + αkpk) = rk−1 − αk−1Apk−1 − αkApk.

Now take the dot product with rk+1

‖rk+1‖22 = −αk−1〈rk+1,pk−1〉 − αk〈rk+1,pk〉

Using (*) this implies
0 = −αk−1〈rk+1,pk−1〉

(Recall that we noted that αk 6= 0 unless xk is the solution.)

• Continuing inductively yields the desired result. I.e. expand again and use previous results to show
αk−j〈rk+1,pk−1〉 = 0.

7 We just showed that

pk+1 = rk+1 −
〈pk, rk+1〉
‖pk‖2A

pk.

Computing the coefficient requires O(n2) flops for a non-sparse matrix A. It turns out that there is an
equivalent way of computing the coefficient that only costs O(n) flops. To wit,

〈pk, rk+1〉 = pTkArk+1 = rTk+1Apk

Now use

rk+1 = rk − αkApk ⇒ Apk = − 1

αk
(rk+1 − rk)

Plugging in and using that rTk+1rk = 0

〈pk, rk+1〉 =
1

αk
rTk+1rk+1 = −‖rk+1‖22

αk
.

Now look at the denominator

‖pk‖2A = pTkApk = (rk − ()pk−1)
T

Apk = rTk

(
1

αk
(rk+1 − rk)

)
=

rTk rk
αk

=
‖rk‖22
αk

(using conjugacy of pk−1 and pk and orthgonality of rk+1 and rk). So we can write

pk+1 = rk+1 −
〈pk, rk+1〉
‖pk‖2A

pk = rk+1 +
‖rk+1‖22
‖rk‖22

pk.

The rightmost expression only costs O(n) flops to evaluate, and is therefore cheaper than the middle expres-
sion.

8 The CG method will produce the exact solution for any SPD A after at most n steps in exact arithmetic.
In finite-precision arithmetic we usually stop the iteration well before n steps, once the residual is small
enough. We will not discuss methods for deciding when to stop the iteration.

13

