9 Hypothesis Tests

(Ch 9.1-9.3, 9.5-9.9)



| Statistical Hypotheses

Statistical hypothesis: a claim about the value of a
parameter or population characteristic.

Examples:

 H: u=75cents, where u is the true population
average of daily per-student candy+soda expenses in
US high schools

 H:p<.10, where p is the population proportion of
defective helmets for a given manufacturer

* If u; and u, denote the true average breaking
strengths of two different types of twine, one

hypothesis might be the assertion that u;— u, =0, or
another is the statement wu;—u, > 5



| Components of a Hypothesis Test

1. Formulate the hypothesis to be tested.

2. Determine the appropriate test statistic and
calculate it using the sample data.

3. Comparison of test statistic to critical region to
draw initial conclusions.

4. Calculation of p-value.

5. Conclusion, written in terms of the original
problem.



| Components of a Hypothesis Test

1. Formulate the hypothesis to be tested.



| 1. Null vs Alternative Hypotheses

In any hypothesis-testing problem, there are always two
competing hypotheses under consideration:

1. The status quo (null) hypothesis

2. The research (alternative) hypothesis

The objective of hypothesis testing is to decide, based on
sample information, if the alternative hypotheses is actually
supported by the data.

We usually do new research to challenge the existing
(accepted) beliefs.



| 1. Null vs Alternative Hypotheses

Is there strong evidence for the alternative?

The burden of proof is placed on those who believe in the
alternative claim.

This initially favored claim (H,) will not be rejected in favor
of the alternative claim (H, or H,) unless the sample
evidence provides significant support for the alternative
assertion.

If the sample does not strongly contradict H,, we will
continue to believe in the plausibility of the null hypothesis.

The two possible conclusions: 1) Reject H,
2) Fail to reject H,,.



| 1. Null vs Alternative Hypotheses

Why be so committed to the null hypothesis?

« Sometimes we do not want to accept a particular
assertion unless (or until) data can show strong support

* Reluctance (cost, time) to change

Example: Suppose a company is considering putting a new
type of coating on bearings that it produces.

The true average wear life with the current coating is
known to be 1000 hours. With u denoting the true average
life for the new coating, the company would not want to
make any (costly) changes unless evidence strongly
suggested that u exceeds 1000.



| 1. Null vs Alternative Hypotheses

An appropriate problem formulation would involve testing
Ho: 1= 1000 against H,: u > 1000.

The conclusion that a change is justified is identified with
H,, and it would take conclusive evidence to justify
rejecting Hy and switching to the new coating.

Scientific research often involves trying to decide whether a
current theory should be replaced, or “elaborated upon.”



| 1. Null vs Alternative Hypotheses

The alternative to the null hypothesis H,. 8 = 6, will look like
one of the following three assertions:

1. Ha: O # 60
2. H,. 6> 6, (in which case the null hypothesis is 0 < 6,)
3. H,. 68< 6, (in which case the null hypothesis is 6= 6,)

* The equality sign is always with the null hypothesis.

* The alternate hypothesis is the claim for which we are
seeking statistical proof.



| Components of a Hypothesis Test

2. Determine the appropriate test statistic and
calculate it using the sample data.
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| 2. Test Statistics

A test statistic is a rule, based on sample data, for
deciding whether to reject H,.

The test statistic is a function of the sample data that will be
used to make a decision about whether the null hypothesis
should be rejected or not.
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| 2. Test Statistics

Example: Company A produces circuit boards, but 10% of
them are defective. Company B claims that they produce
fewer defective circuit boards.

Ho: p = .10 versus H,: p < .10

Our data is a random sample of n = 200 boards from
company B.

What test procedure (or rule) could we devise to decide if
the null hypothesis should be rejected?
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| 2. Test Statistics

Which test statistic is “best”??

There are an infinite number of possible tests that could be
devised, so we have to limit this in some way or total
statistical madness will ensue!

Choice of a particular test procedure must be based on the
probability the test will produce incorrect results.
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| 2. Errors in Hypothesis Testing

Definition
« Atype |l error is when the null hypothesis is rejected,
but it is true.

« Atype ll error is not rejecting H, when H, is false.
This is very similar in spirit to our diagnostic test examples

» False negative test = type | error
« False positive test = type Il error
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| 2. Errors in Hypothesis Testing

Definition
« Atype |l error is when the null hypothesis is rejected,
but it is true.

« Atype ll error is not rejecting H, when H, is false.
This is very similar in spirit to our diagnostic test examples
» False negative test = type | error

« False positive test = type Il error

How do we apply this to the circuit board problem?
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| 2. Type | errors

Usually: Specify the largest value of o that can be
tolerated, and then find a rejection region with that a.

The resulting value of « is often referred to as the
significance level of the test.

‘raditional levels of significance are .10, .05, and .01,
though the level in any particular problem will depend on
the seriousness of a type | error—

The more serious the type | error, the smaller the
significance level should be.
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| 2. Errors in Hypothesis Testing

We can also obtain a smaller value of a -- the probability that
the null will be incorrectly rejected — by decreasing the size of
the rejection region.

However, this results in a larger value of g for all parameter
values consistent with H.,.

No rejection region that will simultaneously make both o
and all B’ s small. A region must be chosen to strike a
compromise between o and p.
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| 2. Testing means of a normal population with known o

Null hypothesis: Hy: u= uy

Test statistic value : z = X~ Mo
' o/N'n

Alternative Hypothesis Rejection Region for Level a Test

H: w > wu, z =z, (upper-tailed test)
H:p <, z= —z, (lower-tailed test)
H:p # p, either z = z,, or z = —z,, (two-tailed test)
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| Components of a Hypothesis Test

3. Comparison of test statistic to critical region to
draw initial conclusions.

5. Conclusion, written in terms of the original
problem.
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| 3. Critical region

z curve (probability distribution of test statistic Z when H is true)

Total shaded area
= a = P(type I error)

Shaded area
= a = P(type I error)

Shaded area Shaded
= al area = a/2

e = I - = > ’ | :
0 % 1 =gy, O T ~Zar2 O Zaf2 [
Rejection region: 2 = —z, Rejection region: either
Rejection region: z = z,, 2= Zgn O Z=—Z4p
(a) (b) (¢)

Rejection regions for z tests: (a) upper-tailed test; (b) lower-tailed test; (c) two-tailed test

20




| Example

An inventor has developed a new, energy-efficient lawn mower
engine. He claims that the engine will run continuously for more
than 5 hours (300 minutes) on a single gallon of regular
gasoline. (The leading brand lawnmower engine runs for 300
minutes on 1 gallon of gasoline.)

From his stock of engines, the inventor selects a simple random
sample of 50 engines for testing. The engines run for an average
of 305 minutes. The true standard deviation ¢ is known and is
equal to 30 minutes, and the run times of the engines are
normally distributed.

Test hypothesis that the mean run time is more than 300

minutes. Use a 0.05 level of significance.
21



| 2. Testing means of a large sample

When the sample size is large, the z tests for case | are
easily modified to yield valid test procedures without
requiring either a normal population distribution or
Known o.

Earlier, we used the key result to justify large-sample
confidence intervals:

A large n (>30) implies that the standardized variable

X — My

Z —
S/N/n

has approximately a standard normal distribution.
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| 2. Testing means of a small sample coming from a normal

The One-Sample t Test
Null hypothesis: Hy: u = uq

P C X = My
Test statistic value: ¢ N

Alternative Hypothesis Rejection Region for a Level «
Test

t =t,, , (upper-tailed)

H: w>u,
H: pn<p, t = —t,,  (lower-tailed)
Ha: H 7 Fo eithert . Ia/2.iz—l orf7 = _ta/2./1—l (tWO'taﬂed)
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| Cl vs. Hypotheses

Rejection regions have a lot in common with confidence intervals.

A

Confidence
interval:

x-E | X+E

Hypothesis
testing:

Ho-E 1o = 10000 u+E

Source:




| Cl vs. Hypotheses

Example: The Brinell scale is a measure of how hard a
material is. An engineer hypothesizes that the mean Brinell
score of all subcritically annealed ductile iron pieces is not
equal to 170.

The engineer measured the Brinell score of 25 pieces of this
type of iron and calculated the sample mean to be 174.52 and
the sample standard deviation to be 10.31.

Perform a hypothesis test that the true average Brinell score is
not equal to 170, as well as the corresponding confidence
interval. Set alpha = 0.01.
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| Components of a Hypothesis Test

4. Calculation of p-value.

5. Conclusion, written in terms of the original
problem.
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| 4. p-Values

The p-value measures the “extremeness” of the sample.

Definition: The p-value is the probability we would get
the sample we have or something more extreme if the
null hypothesis were true.

So, the smaller the P-value, the more evidence there is in
the sample data against the null hypothesis and for the
alternative hypothesis.

So what constitutes “sufficiently small” and “extreme
enough” to make a decision about the null hypothesis?
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| 4. p-Values

The p-value measures the “extremeness” of the sample.

Definition: The p-value is the probability we would get
the sample we have or something more extreme if the
null hypothesis were true.

*This probability is calculated assuming that the null
hypothesis is true.

* Beware: The p-value is not the probability that H,,
Is true, nor is it an error probability!

* The p-value is between 0 and 1.
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| 4. p-Values

Select a significance level a (as before, the desired type |
error probability), then o defines the rejection region.

Then the decision rule is:
reject H, if P-value =

do not reject H, if P-value > «

Thus if the p-value exceeds the chosen significance level,
the null hypothesis cannot be rejected at that level.

Note, the p-value can be thought of as the smallest
significance level at which H, can be rejected.
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| P-Values for z Tests

The calculation of the P-value depends on whether the test
IS upper-, lower-, or two-tailed.

(1 — d(2) for an upper-tailed z test
P-value: P = { ®(z) or an lower-tailed z test
2[1 — d(|z])] for a two-tailed z test

Each of these is the probability of getting a value at least as
extreme as what was obtained (assuming H, true).
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| P-Values for z Tests

zcurve

P-value = area in upper tail
I. Upper-tailed test = 1- d(2)

H, contains the inequality >

Calculated 7

P-value = area in lower tail
2. Lower-tailed test = ®(z)
H, contains the inequality <

zcurve

Calculated z
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| P-Values for z Tests

cont’ d

P-value = sum of area in two tails = 2[1 — ®(Iz])]

3. Two-tailed test
H, contains the inequality #

Calculated z, —z
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' Example

Back to the lawnmower engine example: There, we had

H,: =300 vs H,. u> 300
and
Z=1.18

What is the p-value for this result?
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| Example

Back to the lawnmower engine example: There, we had

H,: =300 vs H,. u> 300
and
Z=1.18

Assuming our average doesn’'t change much, what sample
size would we need to see a statistically significant result?
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' Example

Back to the Brinell scale example: There, we had

Ho:u=170 vs H,: u#170
and
T=219

What is the p-value for this result?
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' Example

Back to the Brinell scale example: There, we had

Ho:u=170 vs H,: u#170
and
T=219

What if we had used alpha = 0.05 instead?
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| Distribution of p-values

Figure below shows a histogram of the 10,000 P-values from a simulation
experiment undera null y = 20 (with n =4 and o = 2).

When H, is true, the probability distribution of the P-value is a uniform
distribution on the interval from 0 to 1.

Percent

-
Y

0.00 0.15 030 045 0.60 0.75 0.90
P-value
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| Distribution of p-values

About 4.5% of these P-values are in the first class interval
from O to .05.

Thus when using a significance level of .05, the null
hypothesis is rejected in roughly 4.5% of these 10,000
tests.

If we continued to generate samples and carry out the test
for each sample at significance level .05, in the long run 5%
of the P-values would be in the first class interval.
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| Distribution of p-values

A histogram of the P-values when we simulate under an alternative
hypothesis. There is a much greater tendency for the P-value to be
small (closerto 0) when u =21 than when u = 20.

A

20
15
£
2 10
[<P]
=5
5_
0 | I~ Fr1 >
0.00 0.15 030 045 0.60 0.75 0.90
P-value
(b) =21
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| Distribution of p-values

Again H, is rejected at significance level .05 whenever
the P-value is at most .05 (in the first bin).

Unfortunately, this is the case for only about 19% of the
P-values. So only about 19% of the 10,000 tests correctly

reject the null hypothesis; for the other 81%, a type Il error
IS committed.

The difficulty is that the sample size is quite small and 21 is
not very different from the value asserted by the null
hypothesis.
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| Distribution of p-values

Figure below illustrates what happens to the P-value when
H, is false because u = 22.

50 -
40 —
= 30
5]
2
& 20 -
10
0 S E— | | >
0.00 0.15 030 045 060 0.75 0.90
P-value
(c)u=22
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| Distribution of p-values

The histogram is even more concentrated toward values
close to 0 than was the case when u = 21.

In general, as u moves further to the right of the null value
20, the distribution of the P-value will become more and
more concentrated on values close to 0.

Even here a bit fewer than 50% of the P-values are smaller
than .05. So it is still slightly more likely than not that the
null hypothesis is incorrectly not rejected. Only for values of
u much larger than 20 (e.qg., at least 24 or 25) is it highly
likely that the P-value will be smaller than .05 and thus give

the correct conclusion.
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| Proportions: Large-Sample Tests

The estimator p = X/n is unbiased (E(p) = p), has
approximately a normal distribution, and its standard
deviation is o; = Vp(1 — p)/n.

When H, is true, E(p) = p, and a5 = Vpy(1 — py)in, so o
does not involve any unknown parameters. It then follows
that when n is large and H, is true, the test statistic

7 - l3 — Do
Vp,(1 = py)in

has approximately a standard normal distribution.
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| Proportions: Large-Sample Tests

Alternative Hypothesis Rejection Region
H,: b > pg Z = z,, (upper-tailed)
H.: p < p, Z <—-Z, (lower-tailed)
H.. p # pg either z= z_,

or z s -z, (two-tailed)

These test procedures are valid provided that np, = 10 and
n(1 - py) = 10.
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| Example

Natural cork in wine bottles is subject to deterioration, and
as a result wine in such bottles may experience
contamination.

The article “Effects of Bottle Closure Type on Consumer
Perceptions of Wine Quality” (Amer. J. of Enology and

Viticulture, 2007: 182—-191) reported that, in a tasting of
commercial chardonnays, 16 of 91 bottles were considered

spoiled to some extent by cork-associated characteristics.

Does this data provide strong evidence for concluding that
more than 15% of all such bottles are contaminated in this
way? Use a significance level equal to 0.10.
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TWO SAMPLE TESTING

46



| Normal Population, Known Variances

In general:
Null hypOtheSiS: HO: U= Up = AO

X—y— A,
Test statistic value: z = \/

(\0]

‘72
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I Test Procedures for Normal Populations with Known Variances

Null hypothesis: Hy: ui— u,= Aq

Alternative Hypothesis  Rejection Region for Level o Test

H,: wy—uy,> Ay Z =z, (upper-tailed)

H: wy— up, < Ay z< -z, (lower-tailed)

H,: uy— upy # Ay eitherz=z_, 0r z<—z_,(two-
tailed)
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| Example 1

Analysis of a random sample consisting of 20 specimens of
cold-rolled steel to determine yield strengths resulted in a
sample average strength of ¥ = 29.8 ksi.

A second random sample of 25 two-sided galvanized steel
specimens gave a sample average strength of
y = 34.7 ksi.

Assuming that the two yield-strength distributions are
normal with o, = 4.0 and o, = 5.0, does the data indicate
that the corresponding true average yield strengths u, and
u, are different?

Let’ s carry out a test at significance level a = 0.01
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| Large-Sample Tests

The assumptions of normal population distributions and
known values of o, and o, are fortunately unnecessary
when both sample sizes are sufficiently large. WHY?

Furthermore, using 52 and s2 in place of o1 and o2 gives a
variable whose distribution is approximately standard
normal:

X—Y— (0 — )
¢ﬁ+ﬁ
m n

These tests are usually appropriate if both m > 30 and n >
30.
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| Example

Data on daily calorie intake both for a sample of teens who
said they did not typically eat fast food and another sample
of teens who said they did usually eat fast food.

Eat Fast Food Sample Size Sample Mean Sample SD
No 663 2258 1519
Yes 413 2637 1138

Does this data provide strong evidence for concluding that
true average calorie intake for teens who typically eat fast
food exceeds more than 200 calories per day the true

average intake for those who don’ t typically eat fast food?

Let’ s investigate by carrying out a test of hypotheses at a
significance level of approximately .05. 51



| The Two-Sample f Test

When the population distribution are both normal, the
standardized variable

X—Y— () — iy

9.2
\/ .t -
- _|_ —=
m n

has approximately a t distribution with df v estimated
from the data by
(3+3)
- _|_ _——
m n

N (s1/m)? N (s3/n)>
m — 1 n—1

T =
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| The Two-Sample f Test

The two-sample ttest for testing Hy: uq— u, = Ay is as
follows:

Test statistic value: f =

2 2
51, %
I
m n
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| The Two-Sample f Test

Alternative Hypothesis Rejection Region for
Approximate Level a Test

H,: ui— uy,> Ag t=1t,,(upper-tailed)

H,: wi— up, < Ag t<—t,,(lower-tailed)

H,: uqy— us = Ay eithert=t,,, ort=—t,,
(two-tailed)
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| A Test for Proportion Differences

Theoretically, we know that:

lA71 B lA72 — 0
1 1

Ve )

has approximately a standard normal distribution when H,
IS true.

/ =

However, this Z cannot serve as a test statistic because the
value of p is unknown—H, asserts only that there is a
common value of p, but does not say what that value is.
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| A Large-Sample Test Procedure

Under the null hypothesis, we assume that p; = p, = p,
instead of separate samples of size m and n from two
different populations (two different binomial distributions).
So, we really have a single sample of size m + n from one

population with proportion p.

The total number of individuals in this combined sample
having the characteristic of interestis X + Y.

The estimator of p is then
(9.95)
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|{ A Large-Sample Test Procedure

Using p and ¢ =1 —p in place of p and g in our old
equation gives a test statistic having approximately a
standard normal distribution when H, is true.

Null hypothesis: Hy: p1 —p>, =0

Test statistic value (large samples):

A

lsl_P:z

JML+£
qu "
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| A Large-Sample Test Procedure

Alternative Hypothesis Rejection Region for
Approximate Level o Test

Ha:p1_p2>o Z=zZ,

Ha:p1_p2<0 Z=—Z,

H,.p;—p,=0 eitherzzz ,orz=-z_

A P-value is calculated in the same way as for previous z
tests.

The test can safely be used as long as mp,. mq,. np,. and ngq,
are all at least 10.

58



The F Test for Equality of Variances

59




| The F Distribution

The F probability distribution has two parameters, denoted
by v, and v,. The parameter v, is called the nhumerator
degrees of freedom, and v, is the denominator degrees of
freedom.

A random variable that has an F distribution cannot
assume a negative value. The density function is
complicated and will not be used explicitly, so it’ s not
shown.

There is an important connection between an F variable
and chi-squared variables.
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| The F Distribution

If X; and X, are independent chi-squared rv’ s with v, and
v, df, respectively, then the rv

X/,
X,/v,

can be shown to have an F distribution.

Recall that a chi-squared distribution was obtain by
summing squared standard Normal variables (such as
squared deviations for example). So a scaled ratio of two
variances is a ratio of two scaled chi-squared variables.
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| The F Distribution

Figure below illustrates a typical F density function.

F density curve with
} v and % df

/ Shaded area = «
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| The F Distribution

We use I for the value on the horizontal axis that

captures a of the area under the F density curve with v,
and v, df in the upper tail.

The density curve is not symmetric, so it would seem that
both upper- and lower-tail critical values must be tabulated.
This is not necessary, though, because of the fact that

F, = 1/F

—a,V |V, V),V
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| The F Distribution

We use I, , , forthe value on the horizontal axis that
captures « of the area under the F density curve with v,
and v, df in the upper tail.

The density curve is not symmetric, so it would seem that

both upper- and lower-tail critical values must be tabulated.

This is not necessary, though, because of the fact that

F, = 1/F

—a,V |V, V),V

For example, F.O5,6,1O = 3.22 and F.95,1O,6 = (0.31 = 1/3.22.
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| The F Test for Equality of Variances

A test procedure for hypotheses concerning the ratio oi/o3
Is based on the following result.

Theorem

Let X;,..., X, be a random sample from a normal
distribution with variance o7, let Y;,..., Y, be another

random sample (independent of the X/’ s) from a normal
distribution with variance 3. and let ST and S3 denote the
two sample variances. Then the rv

S%/O'%

S3/o73

has an F distribution withv, =m-1and v, =n—1.
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| The F Test for Equality of Variances

This theorem results from combining the fact that the
variables (m — 1)Si/oiand (n — 1)S5/05 each have a
chi-squared distribution with m—1 and n— 1 df,
respectively.

Because F involves a ratio rather than a difference, the test
statistic is the ratio of sample variances.

The claim that o1 = o3 is then rejected if the ratio differs by
too much from 1.
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I The F Test for Equality of Variances

Null hypothesis: H,: o7 = o3

Test statistic value: f = si/s3

Alternative Hypothesis Rejection Region for a Level

Test
. 2 2 =
Ha‘ 0-1 > 0-2 f — Fa.m—l.n—l
.« 2 2 <<
Ha‘ 0-1 < 0-2 f_ Fl—a.m—l.n—l
o 2 2 > -~ <
Ha' 0-1 ;& 0-2 eltherf - Fa/Z.m—l./l—l Oor f_ Fl—a/Z.m—l.n—l
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| Example

On the basis of data reported in the article “Serum Ferritin in
an Elderly Population™ (J. of Gerontology, 1979:

521-524), the authors concluded that the ferritin distribution
In the elderly had a smaller variance than in the younger
adults. (Serum ferritin is used in diagnosing iron deficiency.)

For a sample of 28 elderly men, the sample standard
deviation of serum ferritin (mg/L) was s; = 52.6; for 26 young
men, the sample standard deviation was s, = 84.2.

Does this data support the conclusion as applied to men?
Use alpha = .01.
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