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Introduction to Markov Chains

A Markov chain {Xn} is a stochastic process with a sort of “limited
memory”:

P(Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X0 = i0)

= P(Xn+1 = j |Xn = i)

Note:

This does not mean that Xn+1 is independent of the earlier
X0,X1, . . . ,Xn−1.

Though we can say that Xn+1 is “conditionally independent” of
X0,X1, . . . ,Xn−1, “given Xn”.
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Markov Chains

Note that the Markov property not only implies that (for example)

P(X3 = 4|X2 = 0,X1 = 2,X0 = 8) = P(X3 = 4|X2 = 0)

but also that P(X3 = 4|X1 = 2,X0 = 8) = P(X3 = 4|X1 = 2)

Since P(X3 = 4|X1 = 2,X0 = 8)

=
∑

j P(X3 = 4,X2 = j |X1 = 2,X0 = 8)

=
∑

j P(X3 = 4|X2 = j ,X1 = 2,X0 = 8) · P(X2 = j |X1 = 2,X0 = 8)

M.P.
=

∑
j P(X3 = 4|X2 = j) · P(X2 = j |X1 = 2)

M.P.
=

∑
j P(X3 = 4|X2 = j ,X1 = 2) · P(X2 = j |X1 = 2)

=
∑

j P(X3 = 4,X2 = j ,X1 = 2) = P(X3 = 4|X1 = 2)
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Markov Chains

Example 1:

Suppose that a warehouse stocks a certain item to satisfy a continuing
demand. The stock is checked at times tn, n > 1.

At each checking time, if the stock is below some prescribed level a, then
the stock is replenished up to some prescribed level b (a < b), otherwise
nothing is done.

The demand for the item during the time interval [tn−1, tn) is random.
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Markov Chains

Example 1 (continued):

For n = 0, 1, . . ., let

Xn = stock level just before time tn

Then {Xn} is a discrete time stochastic process with (finite) “state space”

S = {0, 1, 2, . . . , b}

Furthermore, {Xn}n≥0 is a Markov chain.
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Markov Chains

Example 2:

Customers arrive at a taxi stand and a taxi arrives every 5 minutes.
Assume that a single customer is served during each time period, if there
are customers and that the taxi drives away empty if there are no
customers.

Assume that the customers are arriving at random times, say

Yn = # arriving during time period n

(Assumed to be iid and independent of the number of customers waiting.)

Let
Xn = # customers waiting at the start of time period n
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Markov Chains

Example 2 (continued):

Then {Xn}n≥0 is a Markov chain with state space S = {0, 1, 2, . . .}

Proof:
Xn+1 =

{
Xn − 1 + Yn , if Xn ≥ 1
Yn , if Xn = 0

So, if i ≥ 1,

P(Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X0 = i0)

= P(Xn − 1 + Yn = j |Xn = i ,Xn−1 = in−1, . . . ,X0 = i0)

= P(Yn = j − in + 1|Xn = i ,Xn−1 = in−1, . . . ,X0 = i0)

= P(Yn = j − i + 1)

by assumption of the independence of the {Yn} and {Xn} processes.
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Markov Chains

Example 2 (continued):

Proceeding in the same way, we can get

P(Xn+1 = j |Xn = i) = P(Yn = j − i + 1)

So we see that

P(Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X0 = i0) = P(Xn+1 = j |Xn = i)

Warning: It would not have been enough to only show that

P(Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X0 = i0)

depends only on i and j .
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Markov Chains

Note that, since the Yn are iid,

P(Xn+1 = j |Xn = i) = P(Yn = j − i + 1)

does not depend on time.

This is a time-homogeneous Markov chain.

In this case we can write

pij = P(Xn+1 = j |Xn = i)

which is the same as
P(Xn = j |X0 = i).
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Markov Chains

For a time-homogeneous Markov chain, say on S = {0, 1, 2, . . .}, we can
organize transition probabilities into a (one-step) transition probability
matrix:

P =


p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·

...
...

...
. . .


0 1 2 · · ·

0
1
2
...

“stochastic
matrix”∑

j∈S
pij = 1 pij = P(Xn+1 = j |Xn = i)
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Markov Chains

Example:

Suppose that items produced by a certain worker in a factory are classified
as “defective” or “non-defective”.

Further suppose that, due to trends in raw material quality, whether or not
a particular item is defective depends, in part, on whether the previous
item was defective.
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Markov Chains

Example (continued):

Let

Xn =

{
0 , if nth item is not defective
1 , if nth item is defective

Suppose that the probability transition matrix is

P =

[
0.99 0.01
0.08 0.92

]0 1
0
1

(This suggests that defective items tend to appear in bunches.)
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Finite Dimensional Distributions of DTMCs

Given the probability transition matrix P, how do we find

P(X0 = i0,X1 = i1, . . . ,Xn = in)?

The transition matrix describes transitions but we still need a starting
(initial) distribution:

Definition:
πi = P(X0 = i)

(
∑
i∈S

πi = 1)
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Finite Dimensional Distributions of DTMCs

Claim: Let {Xn} be a DTMC on a state space S with probability
transition matrix P = [pij ].

Then for any i0, i1, . . . , in ∈ S ,

P(X0 = i0,X1 = i1, . . . ,Xn = in) = πi0pi0i1pi1i2 · · · pin−1in

Proof: P(X0 = i0,X1 = i1, . . . ,Xn = in)

= P(Xn = in|Xn−1 = in−1, . . . ,X0 = i0) · P(Xn−1 = in−1, . . . ,X0 = i0)

= P(Xn = in|Xn−1 = in−1) · P(Xn−1 = in−1, . . . ,X0 = i0)

= pin−1in · P(Xn−1 = in−1, . . . ,X0 = i0) = · · · =

= pin−1in · pin−2in−1 · · · pi0i1 · P(X0 = i0) = pin−1in · pin−2in−1 · · · pi0i1 · πi0
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Finite Dimensional Distributions of DTMCs

What about the distribution of Xn1 ,Xn2 , . . . ,Xnk for some
n1 < n2 < · · · < nk?

Just sum (integrate) out the ones you don’t want.

For the defective factory items example:

Suppose
π0 = 0.89
π1 = 0.11

P =

[
0.99 0.01
0.08 0.92

]
P(X1 = 1,X3 = 0) =
P(X0 = 0,X1 = 1,X2 = 0,X3 = 0)
+P(X0 = 1,X1 = 1,X2 = 0,X3 = 0)
+P(X0 = 0,X1 = 1,X2 = 1,X3 = 0)
+P(X0 = 1,X1 = 1,X2 = 1,X3 = 0)
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Finite Dimensional Distributions of DTMCs

So,
P(X1 = 1,X3 = 0) = (0.89)(0.01)(0.08)(0.99)

+(0.11)(0.92)(0.08)(0.99)

+(0.89)(0.01)(0.92)(0.08)

+(0.11)(0.92)(0.92)(0.08)

≈ 0.0168
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n-Step Transition Probabilities

Before: pij = P(Xk+1 = j |Xk = i)

Now define: p
(n)
ij = P(Xk+n = j |Xk=i )

and write the n-step transition matrix:

P(n) =


p
(n)
00 p

(n)
01 p

(n)
02 · · ·

p
(n)
10 p

(n)
11 p

(n)
12 · · ·

p
(n)
20 p

(n)
21 p

(n)
22 · · ·

...
...

...
. . .



0 1 2 · · ·
0
1
2
...

(Still a time-homogeneous setting.)
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n-Step Transition Probabilities

Question:

How does the n-step transition probability matrix relate to the one-
step transition probability matrix?

Example: Return to Defective Factory Items

Let’s find P(X2 = 1|X0 = 0).

Given we started at 0, we either went from

0→ 0→ 1

or

0→ 1→ 1
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n-Step Transition Probabilities

0→ 0→ 1
0→ 1→ 1

These paths represent disjoint events.
So

P(X2 = 1|X0 = 0) = p00p01 + p01p11

Look familiar?[
p00 p01
p10 p11

] [
p00 p01
p10 p11

]
=

[
p00p00 + p01p10 p00p01 + p01p11
p00p10 + p11p10 p10p01 + p11p11

]
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n-Step Transition Probabilities

Theorem:

The n-step transition probability

p
(n)
ij = P(Xk+n = j |Xk = i)

is the ij th entry of the nth power of P.

P(n) = Pn

(Though p
(n)
ij 6= pnij .)

Lesson 13: Markov Chains Stochastic Simulation
(Discrete Time)October 8, 2018 20

/ 58



Finite Dimensional Distributions of DTMCs

To prove this, we need the

Chapman-Kolmogorov Equations

p
(m+n)
ij =

∑
k∈S

p
(m)
ik · p(n)kj

Then the theorem is proven since

p
(m+1)
ij =

∑
k∈S

p
(m)
ik · pkj

is the ij th entry of P(m) · P.
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Proof of Chapman-Kolmogorov:

p
(m+n)
ij = P(Xm+n = j |X0 = i)

=
∑
k∈S

P(Xm+n = j ,Xn = k|X0 = i)

=
∑
k∈S

P(Xm+n = j |Xn = k,X0 = i) · P(Xn = k |X0 = i)

M.P.
=

∑
k∈S

P(Xm+n = j |Xn = k) · P(Xn = k |X0 = i)

=
∑
k∈S

p
(m)
ik · p(n)kj
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=

∑
k∈S

P(Xm+n = j |Xn = k) · P(Xn = k |X0 = i)

=
∑
k∈S

p
(m)
ik · p(n)kj
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First Step Analysis of a Markov Chain

Consider a MC on S = {0, 1, 2, 3} with transition probability matrix

P =


0.2 0.8 0 0
0.5 0.2 0.1 0.2
0.2 0.1 0.6 0.1
0 0 0.7 0.3


0 1 2 3

0
1
2
3

Suppose that we start the chain in state 1 and that we stop observing the
chain when it first hits state 3.
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First Step Analysis of a Markov Chain

Question 1:

What is the expected number of steps the chain will take before
stopping?

Let T = min{n ≥ 0 : Xn = 3}. (T is a “first hitting time”.)

We want
E[T |X0 = 1].

Let’s define
ui = E[T |X0 = i ].

Then we want to find u1.
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First Step Analysis of a Markov Chain

ui = E[T |X0 = i ]


0.2 0.8 0 0
0.5 0.2 0.1 0.2
0.2 0.1 0.6 0.1
0 0 0.7 0.3



u1 = 1 + 0.5u0 + 0.2u1 + 0.1u2 + 0.2(0)

u0 = 1 + 0.2u0 + 0.8u1

u2 = 1 + 0.2u0 + 0.1u1 + 0.6u2 + (0.1)(0)

⇒
u0 ≈ 9.861
u1 ≈ 8.610
u2 ≈ 9.583
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Result by Simulation

Pseudocode:

steps = 0
state = 1
while(state is not 3)

uniform = a random number
cdf = 0
do i=1,3
if(uniform<cdf+P(state,I)
state = I
exit I loop

else
cdf = cdf + P(state,I)

end if
end do
steps = steps + 1

end while

Lesson 13: Markov Chains Stochastic Simulation
(Discrete Time)October 8, 2018 26

/ 58



Result by Simulation

I simulated:

100, 000 reps starting in state 0

100, 000 reps starting in state 1

100, 000 reps starting in state 2

Results:
û0 ≈ 9.866239
û1 ≈ 8.615456
û2 ≈ 9.605806
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Stationarity and Limit Behavior

A really strong form of stability that one might require of a Markov chain
{Xn}, is that the distribution of Xn does not change in time.

Definition:

A stochastic process is said to be stationary if, for any k ∈ Z, the
distribution of (Xn,Xn+1, . . . ,Xn+k) does not change as n varies.
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Stationarity and Limit Behavior

It is clear that, for a stationary process, the distribution of Xn does not
change in time.

On the other hand, for a time-homogeneous Markov chain, if the
distribution of Xn does not change in time, then the process is stationary.
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Stationarity and Limit Behavior

We will call this common distribution π.

ie:
πi := P(Xn = i), i ∈ S

We will refer to π as the stationary or invariant distribution for the Markov
chain.

(“Invariant” refers to time invariance.)

Note that:
πj =

∑
i∈S

πi pij

(
π(j) =

∑
i∈S

π(i) p(i , j)

)
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Stationarity and Limit Behavior

For a continuous state space, if π is the stationary distribution for a MC
with “transition law” P, π satisfies:

π(A) =

∫
S
π(x)P(x ,A) dx

Here, P(x ,A) is the probability that, starting at x , we move into set A in
the next time step.

For any continuous density f (x), we are using the notation
f (A) =

∫
A f (x) dx . So, π(A) =

∫
A π(x) dx .

We will assume that P(x ,A) =
∫
A p(x , y) dy for some “transition

density” p(x , y).

For the moment, we will assume that π exists and is unique...
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Stationarity and Limit Behavior

The key thing about the stationary distribution is that, if we start a chain
according to a draw from it, and iterate forward according to the transition
law P, the chain will maintain that distribution at all fixed time points.

ie : X0 ∼ π ⇒ Xn ∼ π ∀ n > 0

If we don’t know π, we can’t run a sample path of the Markov chain in
“stationary mode” because we don’t know how to choose a starting value
according to π.
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Stationarity and Limit Behavior

What if we start with some arbitrary X0 and run a sample path for a really
long time until we are convinced that the path couldn’t possibly remember
where it started...

We could then think of the end value of the sample path as a draw from
π.

In fact, we will get the distribution π in the limit:

lim
n→∞

p(n)(x , y) = π(y)

(If the limit exists.)
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Stationarity and Limit Behavior

Proof:

Suppose we start the chain according to some distribution ϕ.

ie : ϕi = P(X0 = i)

... or, in the continuous setting

ϕ(A) = P(X0 ∈ A) =

∫
A
ϕ(x) dx

We continue the proof in the continuous setting since it is more general...

(Note that ϕ could be concentrated at one point.)
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Stationarity and Limit Behavior

Proof (continued):

Now suppose that there is a limiting distribution:

Pϕ(Xn ∈ A)→ γϕ(A)

for some probability measure γϕ(·).
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Stationarity and Limit Behavior

Proof (continued):
Then,

γϕ(A) = lim
n→∞

Pϕ(Xn ∈ A)

= lim
n→∞

∫
ϕ(x)P(n)(x ,A) dx

= lim
n→∞

∫
ϕ(x)

∫
p(n−1)(x ,w)P(w ,A) dw dx

where p(n−1)(x ,w) is the density associated with P(n−1)(x , ·).

ie : P(n−1)(x ,B) =

∫
B
p(n−1)(x ,w) dw
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Stationarity and Limit Behavior

Proof (continued):

γϕ(A) = limn→∞
∫
ϕ(x)

∫
p(n−1)(x ,w)P(w ,A) dw dx

= limn→∞
∫ [∫

ϕ(x)p(n−1)(x ,w) dx
]
P(w ,A) dw

=
∫

limn→∞
[∫
ϕ(x)p(n−1)(x ,w) dx

]
P(w ,A) dw

=
∫
γϕ(w)P(w ,A) dw

⇒ γϕ is stationary
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Stationarity and Limit Behavior
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Stationarity and Limit Behavior

Proof (continued):

γϕ(A) = limn→∞
∫
ϕ(x)

∫
p(n−1)(x ,w)P(w ,A) dw dx

= limn→∞
∫ [∫

ϕ(x)p(n−1)(x ,w) dx
]
P(w ,A) dw

=
∫

limn→∞
[∫
ϕ(x)p(n−1)(x ,w) dx

]
P(w ,A) dw

=
∫
γϕ(w)P(w ,A) dw

⇒ γϕ is stationary

Lesson 13: Markov Chains Stochastic Simulation
(Discrete Time)October 8, 2018 37

/ 58



Stationarity and Limit Behavior
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Stationarity and Limit Behavior

So, a limiting distribution is stationary (invariant)!

Often the limit is independent of the starting distribution.

lim
n→∞

P(n)(x ,A) = γ(A)

So, if the stationary distribution π is unique and if a limiting
distribution exists, that limiting distribution is π:

lim
n→∞

P(n)(x ,A) = π(A)

or
lim
n→∞

p(n)(x , y) = π(y)

or (discrete state space)

lim
n→∞

p
(n)
ij = πj
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Stationarity and Limit Behavior

This forms the basis for all “Markov chain Monte Carlo” (MCMC)
methods.

We either:

have some sort of Markov process for which we want to understand
an equilibrium distribution

have a (target) distribution we want to draw from for which we will
create a Markov chain that will converge in distribution towards the
target distribution
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Stationarity and Limit Behavior

A Simple Example:

Let {Xn} be a Markov chain on S = {0, 1} with probability transition
matrix

P =

[
0.99 0.01
0.08 0.92

]

Let’s find the distribution π.

We need to specify π0 and π1.
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Stationarity and Limit Behavior

Recall that π satifies
πj =

∑
i∈S

πipij

for all j .

In other “words”:
~π = ~πP

where ~π = (π0, π1, . . .).
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Stationarity and Limit Behavior

Back to the Example:

Let {Xn} be a Markov chain on S = {0, 1} with probability transition
matrix

P =

[
0.99 0.01
0.08 0.92

]

In this case,

π0 = 8/9, π1 = 1/9.
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Stationarity and Limit Behavior

Seeing stationarity in action:

P =

[
0.99 0.01
0.08 0.92

]
π0 = 8/9, π1 = 1/9

I started 100,000 sample paths (realizations of {Xn}).

with probability 8/9, I started from 0

with probability 1/9, I started from 1

I ran each path for one time step according to P.
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Stationarity and Limit Behavior

Results:

89, 012 trials resulted in 0

10, 988 trials resulted in 1

ie:
π̂0 = 0.89012
π̂1 = 0.10988
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Stationarity and Limit Behavior

Seeing limiting behavior in action:

I started 100,000 sample paths, all from state 0, and ran for one time
step.
Results

98,955 trials resulted in 0
1,045 trials resulted in 1

ie: after 1 step
π̂0 = 0.98955
π̂1 = 0.01045
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Stationarity and Limit Behavior

Repeated estimates for π0 for samples of size 100,000:

1 step 2 steps 3 steps

0.98955 0.98099 0.97318
0.98992 0.98104 0.97316
0.98972 0.98102 0.97247

10 steps 25 steps 100 steps

0.93196 0.89821 0.88874
0.93321 0.89855 0.88894
0.93210 0.89920 0.89009
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Stationarity and Limit Behavior

We could have predicted these results since a 3 step simulation, for
example, is a single step simulation with transition probability matrix

P3 = P(3) = P3 =

[
0.972619 0.027281
0.219048 0.780952

]

The 25 step transition probability matrix is the first one to break the
0.90/0.80 barrier for 0→ 0:

P25 = P(25) = P25 =

[
0.8994 . . . 0.1006 . . .
0.8048 . . . 0.1952 . . .

]
(Still hasn’t converged because the columns haven’t “stabilized”.)
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Stationarity and Limit Behavior

At 50, the transitions really start to settle down,

P50 = P(50) = P50 =

[
0.8899 . . . 0.1101 . . .
0.8809 . . . 0.1191 . . .

]

That is, there is much less change with each additional matrix
multiplication.

In general, the question of “How far do I need to go?” to see this
convergence is a really tough question to answer and is different for each
“type” of Markov chain!
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Analysis of Convergence Rate via Eigenvalues

Stationarity:
~πP = ~π

Note that ~π is a (left) eigenvector of the transition matrix corresponding
to the eigenvalue 1.

Facts:

The determinant of a stochastic matrix is at most 1.

The largest eigenvalue of a stochastic matrix is 1.

(Perron-Frobenius Theorem)
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Analysis of Convergence Rate via Eigenvalues

We consider the case of a unique stationary distribution. (ie: only one
eigenvector associated with eigenvalue 1.

Denote all eigenvalues

1 = λ1 > |λ2| ≥ |λ3| ≥ · · ·

and associated eigenvectors

π,~v2, ~v3, · · ·

We can represent the intial distribution

~ϕ = ~π + a2~v2 + a3~v3 + · · ·
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Analysis of Convergence Rate via Eigenvalues

~ϕ = ~π + a2~v2 + a3~v3 + · · ·

Then, starting with a draw from ~ϕ, the distribution of the chain after n
steps is

Pϕ(Xn = i) = i th component of ~ϕPn

But,
ϕPn = ~πPn + a2~v2Pn + a3~v3Pn + · · ·

stat.&evals
= ~π + a2λ

n
2~v2 + a3λ

n
3~v3 + · · ·

Since the λ’s have magnitude smaller than 1, as n increases ϕPn will
converge to ~π with a rate of convergence governed by the magnitude of
the second largest eigenvalue (λ2) of P.
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Analysis of Convergence Rate via Eigenvalues

In particular
||P(n)(x , ·)− π||TV ≤ Cλn2

where ||µ− ν||TV is the total variation norm distance defined by

||µ− ν||TV = max
A⊆S
|µ(A)− ν(A)|.

One can show that if µ and ν are discrete densities,

||µ− ν||TV =
1

2

∑
x∈S
|µ(x)− ν(x)|.
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Existence and Uniqueness of π

To explore existence and uniqueness, we need a different classification of
states based on the mean recurrence time:

µi = Ei [Ti ]

where Ti = min{n ≥ 1 : Xn = i}

A recurrent state for a Markov chain is one that you will eventually return
to with probability 1. It is

positive recurrent if µi <∞
null recurrent if µi =∞

(If there is some positive probability to get away, never to return again, the state is

called transient).
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Existence and Uniqueness of π

Theorem: Let {Xn}n≥0 be an irreducible Markov chain.

(irreducible= all states can be reached from all states)

a) If the chain has stationary distribution π, then π is given by

π(i) =
1

Ei [Ti ]

(Hence π is unique!)
(Moreover, all states are positive recurrent!)
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Existence and Uniqueness of π

Theorem:

b) Conversely, if the chain is positive recurrent (all states positive
recurrent), then π, defined by

π(i) =
1

Ei [Ti ]

is the unique stationary distribution.
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Simulation Through First Hitting Time

I started 100, 000 sample paths from 0

I ran each path until 0 was hit at time n > 0

Results:
The average number of steps it took to hit 0 starting from 0:

1.1251 ⇒ π̂(0) =
1

1.1251
≈ 0.88881
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Simulation Through First Hitting Time

Similarly,

I started 100, 000 sample paths from 1

I ran each path until 1 was hit at time n > 0
item Results:
The average number of steps it took to hit 1 starting from 1:

8.9978 ⇒ π̂(1) =
1

8.9978
≈ 0.11138

Lesson 13: Markov Chains Stochastic Simulation
(Discrete Time)October 8, 2018 57

/ 58



Existence and Uniqueness of π

Theorem:
An irreducible aperiodic Markov chain belongs to one of the following
classes:

i. All states are transient or all are null recurrent. In this case,
limn→∞ P(n)(i , j) = 0 for all i , j and there is no stationary distribution.

ii. All states are positive recurrent. In this case

πj = lim
n→∞

P(n)(i , j) > 0

is the unique stationary distribution.
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