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| Multiple Regression Analysis

Definition
The multiple regression model equation is
Y= IBO"' ,B1X1 + IBZXZ .ot ,Bpo e
where E(¢) = 0 and Var(e) = 2.
Again, it is assumed that € is normally distributed.

This is not a regression line any longer, but a regression
surface and we relate y to more than one predictor variable
X1, X2 ..., X, (€X. Blood sugar level vs. weight and age)



| Multiple Regression Analysis

The regression coefficient g, is interpreted as the expected
change in Y associated with a 1-unit increase in x; while
Xa,..., X, @re held fixed.

Analogous interpretations hold for S,,..., f,.

Thus, these coefficients are called partial or adjusted
regression coefficients.

In contrast, the simple regression slope is called the
marginal (or unadjusted) coefficient.



| Easier Notation?

The multiple regression model can be written in matrix
form.



| Estimating Parameters

To estimate the parameters Sy, p4,..., B, using the principle
of least squares, form the sum of squared deviations of the
observed y;" s from the regression line:

n n

0= zgiz = Z(YL — (:80 — B1Xy; — o — ﬁkxpi))z

i=1 i=1
The least squares estimates are those values of the S;s that
minimize the equation. You could do this by taking the partial
derivative w.r.t. to each parameter, and then solving the k+17

unknowns using the k+171 equations (akin to the simple regression
method).

But we don’t do it that way.



| Models with Categorical Predictors

Sometimes, a three-category variable can be included in a
model as one covariate, coded with values 0, 1, and 2 (or
something similar) corresponding to the three categories.

This is generally incorrect, because it imposes an ordering
on the categories that may not exist in reality. Sometimes
it's ok to do this for education categories (e.g.,
HS=1,BS=2,Grad=3), but not for ethnicity, for example.

The correct approach to incorporating three unordered
categories is to define two different indicator variables.



| Example

Suppose, for example, that y is the lifetime of a certain tool, and
that there are 3 brands of tool being investigated.

Let:

x,1 =1 if tool A is used, and O otherwise,
X, =1 if tool B is used, and 0 otherwise,
x3 =1 if tool C is used, and 0 otherwise.

Then, if an observation is on a:

brand A tool: we have x; =1 and x, = 0 and x5 =0,
brand B tool: we have x; =0 and x, = 1 and x5 =0,
brand C tool: we have x; =0 and x, = 0 and x; = 1.

What would our X matrix look like?



A\
R? and c*



| R?

Just as with simple regression, the error sum of squares is
SSE = Z(y,-—)?i ).

It is again interpreted as a measure of how much variation
In the observed y values is not explained by (not attributed
to) the model relationship.

The number of df associated with SSE is n—(p+17) because
p+1 df are lost in estimating the p+7 [ coefficients.



| R?

Just as before, the total sum of squares is
SST = X(yi - y),
And the regression sum of squares is:

SSR = Z(Z —Y)? = SST — SSE.

Then the coefficient of multiple determination R? is
R? =1 - SSE/SST = SSR/SST

It is interpreted in the same way as before.
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| R?

Unfortunately, there is a problem with R?: Its value can be
inflated by adding lots of predictors into the model even if
most of these predictors are frivolous.
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| R?

For example, suppose y is the sale price of a house. Then
sensible predictors include

x, = the interior size of the house,

X, = the size of the lot on which the house sits,
X3 = the number of bedrooms,

x, = the number of bathrooms, and

x5 = the house’s age.

Now suppose we add Iin

Xg = the diameter of the doorknob on the coat closet,
x7 = the thickness of the cutting board in the kitchen,
xg = the thickness of the patio slab.

12



| R?

The objective in multiple regression is not simply to
explain most of the observed y variation, but to do so using

a model with relatively few predictors that are easily
Interpreted.

It is thus desirable to adjust R? to take account of the size
of the model:

_SSE/(n—-(p+1D) n—1  SSE

Rz =1 =1- X
¢ SST/(n—1) n—(p+1) SST
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| R?

Because the ratio in front of SSE/SST exceeds 1, R; is
smaller than R?. Furthermore, the larger the number of
predictors p relative to the sample size n, the smallerr? will
be relative to R-.

Adjusted R? can even be negative, whereas R? itself must
be between 0 and 1. A value of R2 that is substantially
smaller than R?itself is a warning that the model may
contain too many predictors.
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| 67

SSE is still the basis for estimating the remaining model
parameter:

— SSE
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| Example

Investigators carried out a study to see how various
characteristics of concrete are influenced by

X1 = % limestone powder
X, = water-cement ratio,

resulting in data published in “Durability of Concrete with
Addition of Limestone Powder,” Magazine of Concrete

Research, 1996: 131-137.
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| Example

cont'd

Consider predicting compressive strength (strength) with
percent limestone powder (perclime) and water-cement
ratio (watercement).

> fit = lIm(strength ~ perclime + watercement, data = dataset)

> summary (fit)

Coefficients: Estimate Std. Error t wvalue Pr(>]|t])
(Intercept) 86.2471 21.7242 3.970 0.00737 **
perclime 0.1643 0.1993 0.824 0.44119
watercement -80.5588 35.1557 -2.291 0.06182

Signif. codes: 0 Y***’ (0,001 “**’ 0.01 >’ 0.05 .’ 0.1 Y"1
Residual standard error: 4.832 on 6 degrees of freedom
Multiple R-squared: 0.4971, Adjusted R-squared: 0.3295

F-statistic: 2.965 on 2 and 6 DF, p-value: 0.1272
17



| Example

Now what happens if we add an interaction term? How do
we interpret this model?

> fit.int = lm(strength ~ perclime + watercement +
perclime:watercement, data = dataset)

> summary (fit.int)

Coefficients: Estimate Std. Error t value Pr(>|t])
(Intercept) 7.0647 56.492 0.135 0.898
perclime 5.779 3.783 1.528 0.187
watercement 50.441 93.821 0.538 0.614
perclime:watercement -9.357 6.298 -1.486 0.197

Residual standard error: 4.408 on 5 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.4418
F-statistic: 3.111 on 3 and 5 DF, p-value: 0.1267
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| Model Selection

Important Questions:

Model utility: Are all predictors significantly related to
our outcome? (Is our model any good?)

Does any particular predictor or predictor subset
matter more?

Are any predictors related to each other?

Among all possible models, which is the “best™?

19



| A Model Utility Test

The model utility test in simple linear regression involves
the null hypothesis H,: 5, = 0, according to which there is
no useful linear relation between y and the predictor x.

In MLR we test the hypothesis

HO: ﬂ1 = O, ﬂz = O,..., ﬂp = O,
which says that there is no useful linear relationship

between y and any of the p predictors. If at least one of
these f's is not 0, the model is deemed useful.

We could test each S separately, but that would take time
and be very conservative (if Bonferroni correction is used).
A better test is a joint test, and is based on a statistic

that has an F distribution when H, is true. 20



| A Model Utility Test

Null hypothesis: Hy: g1 =B =... = 3, =0

Alternative hypothesis: H_: atleastone 5, #0 (i

Test statistic value:

B SSR/p
- SSE/(n— (p+ 1))

f

Rejection region for a level atest: f> F, , ,_p+ 1)
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| Example — Bond shear strength

The article "How to Optimize and Control the Wire Bonding
Process: Part II” (Solid State Technology, Jan 1991. 67-72)
described an experiment carried out to asses the impact of
force (gm), power (mW), temperature (C) and time (msec)
on ball bond shear strength (gm).

22



| Example — Bond shear strength

The article “How to Optimize and Control the Wire Bonding Process:
Part II” (Solid State Technology, Jan 1991: 67-72) described an
experiment carried out to asses the impact of force (gm), power (mW),
temperature (C) and time (msec) on ball bond shear strength (gm).
The output for this model looks like this:

Coefficients: Estimate Std. Error t value Pr(>|t])
(Intercept) -37.42167 13.10804 -2.855 0.00853 **
force 0.21083 0.21071 1.001 0.32661
power 0.49861 0.07024 7.099 1.93e-07 ***
temp 0.12950 0.04214 3.073 0.00506 **
time 0.25750 0.21071 1.222 0.23308

Signif. codes: 0 Y***’ (0.001 “**’ 0.01 > 0.05 . 0.1 Y"1
Residual standard error: 5.161 on 25 degrees of freedom

Multiple R-squared: 0.7137, Adjusted R-squared: 0.6679
F-statistic: 15.58 on 4 and 25 DF, p-value: 1.607e-06 23



| Example — Bond shear strength

How do we interpret our model results?
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| Example — Bond shear strength

A model with p = 4 predictors was fit, so the relevant
hypothesis to determine if our model is “okay” is

Ho: B1= 2= P3=P4s=0

H.,: at least one of these four s is not O

In our output, we see:

Coefficients: Estimate Std. Error t value Pr(>|t])
(Intercept) -37.42167 13.10804 -2.855 0.00853 =*~*

Signif. codes: (0 Y***’ (0,001 “**’ (0.01 >’ 0.05 . 0.1 " 1
Residual standard error: 5.161 on 25 degrees of freedom
Multiple R-squared: 0.7137, Adjusted R-squared: 0.6679
F-statistic: 15.58 on 4 and 25 DF, p-value: 1.607e-06
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| Example — Bond shear strength

The null hypothesis should be rejected at any reasonable
significance level.

We conclude that there is a useful linear relationship
between y and at least one of the four predictors in the

model.

This does not mean that all four predictors are useful!

26



| Inference for Single Parameters

All standard statistical software packages compute and
show the standard deviations of the regression coefficients.

Inference concerning a single g;is based on the
standardized variable

which has a t distribution with n—(p + 1) df. A 100(1 — )%
Cl for S is

2+ D
Bi = tapa—wr) * Sg,

This is the same thing we did for simple linear regression. ,
7



| Inference for Single Parameters

Our output:

Coefficients:
(Intercept) -37

force 0.
.49801
.12950
.25750

power

temp

o O O

time

Signif. codes:

Estimate Std. Error t wvalue Pr(>]|t])

42167

21083

0 Yx*x*x7 0.001 “**" 0.

13.
21071
.07024
.04214
.21071

o O O O

10804

-2

Pow e

.855 0.00853 =*~*
.001 0.32661

.099 1.93e-07 **~*
.073 0.00506 =**
.222 0.23308

o1 > 0.05 Y 0.1 ¥ " 1

What is the difference between testing each of these
parameters individually and our F-test from before?



| Inference for Parameter Subsets

In our output, we see that perhaps “force” and “time” can
be deleted from the model. We then have these results:

Coefficients: Estimate Std. Error t value Pr(>|t])
(Intercept) -24.89250 10.07471 -2.471 0.02008 *
power 0.49861 0.07088 7.035 1.46e-07 **x*
temp 0.12950 0.04253 3.045 0.00514 *~*

Signif. codes: 0 Y***’ (.001 “**’ 0.01 > 0.05 . 0.1 Y " 1
Residual standard error: 5.208 on 27 degrees of freedom
Multiple R-squared: 0.6852, Adjusted R-squared: 0.6619
F-statistic: 29.38 on 2 and 27 DF, p-value: 1.674e-07
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| Inference for Parameter Subsets

In our output, we see that perhaps “force” and “time” can
be deleted from the model. We then have these results:

Coefficients: Estimate Std. Error t value Pr(>|t])
(Intercept) -24.89250 10.07471 -2.471 0.02008 *
power 0.49861 0.07088 7.035 1.46e-07 **x*
temp 0.12950 0.04253 3.045 0.00514 *~*

Signif. codes: 0 Y***’ (.001 “**’ 0.01 > 0.05 . 0.1 Y " 1
Residual standard error: 5.208 on 27 degrees of freedom
Multiple R-squared: 0.6852, Adjusted R-squared: 0.6619
F-statistic: 29.38 on 2 and 27 DF, p-value: 1.674e-07

In our previous model:
Multiple R-squared: 0.7137, Adjusted R-squared: 0.6679

30



| Inference for Parameter Subsets

An F Test for a Group of Predictors.

The “model utility F test” was appropriate for testing
whether there is useful information about the dependent

variable in any of the p predictors (i.e., whether ;= ... = 3,
= 0).

In many situations, one first builds a model containing p
predictors and then wishes to know whether any of the

predictors in a particular subset provide useful information
about Y.

31



| Inference for Parameter Subsets

The relevant hypothesis is then:

Ho: Bis1 = Bra == Bk = 0,
H,: at least one among B4,..., B, 1S not 0.

32



| Inferences for Parameter Subsets

The test is carried out by fitting both the full and reduced
models.

Because the full model contains not only the predictors of
the reduced model but also some extra predictors, it should
fit the data at least as well as the reduced model.

That is, if we let SSE, be the sum of squared residuals for
the full model and SSE, be the corresponding sum for the
reduced model, then SSE, < SSE,.

33



| Inferences for Parameter Subsets

Intuitively, if SSE, is a great deal smaller than SSE,, the full
model provides a much better fit than the reduced model;
the appropriate test statistic should then depend on the
reduction SSE, — SSE,, in unexplained variation.

SSE, = unexplained variation for the full model

SSE, = unexplained variation for the reduced model

(SSEx — SSE,)/(p — k)
SSE,/(n— (p + 1))

Rejection region: f=F, , «n_(p+1)

Test statistic value: f =

34



| Inferences for Parameter Subsets

Let's do this for the bond strength example:

> anova (fitfull)

Analysis of Variance Table

Response: strength Df Sum Sg Mean Sgq F value Pr (>F)
force 1 26.67 26.67 1.0012 0.326611

power 1 1342.51 1342.51 50.3967 1.931e-07 ***

temp 1 251.55 251.55 9.4431 0.005064 **

time 1 39.78 39.78 1.4934 0.233080

Residuals 25 665.97 26.64

Signif. codes: 0 ‘***’ (0.001 “**’ 0.01 >’ 0.05 ." 0.1 Y " 1
> anova (fitred)

Analysis of Variance Table

Response: strength Df Sum Sg Mean Sg F wvalue Pr (>F)
power 1 1342.51 1342.51 49.4901 1.458e-07 **x*

temp 1 251.55 251.55 9.2732 0.005142 **

Residuals 27 732.43 27.13

Signif. codes: 0 ‘***’ (0.001 ‘“**’ 0.01 >’ 0.05 ." 0.1 » " 1

35



| Inferences for Parameter Subsets

Let's do this for the bond strength example:

> anova (fitfull, fitred)

Analysis of Variance Table

Model 1: strength ~ force + power + temp + time
Model 2: strength ~ power + temp

Res.Df RSS Df Sum of Sg F Pr (>F)
25 665.97
27 732.43 =2 -66.454 1.2473 0.3045

36



| Multicollinearity

What is multicollinearity?

Multicollinearity occurs when 2 or more predictors in one
regression model are highly correlated. Typically, this
means that one predictor is a function of the other.

We almost always have multicollinearity in the data. The
guestion is whether we can get away with it; and what to do
if multicollinearity is so serious that we cannot ignore it.

37



| Multicollinearity

Example: Clinicians observed the following measurements
for 20 subjects:

* Blood pressure (in mm Hg)
« Weight (in kg)

« Body surface area (in sq m)
« Stress index

The researchers were interested in determining if a
relationship exists between blood pressure and the other
covariates.

38



| Multicollinearity

A scatterplot of the predictors looks like this:
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| Multicollinearity

And the correlation matrix looks like this:

logBP BSA

logBP 1.
BSA 0.
Stress 0.
Weight O.

000 0.908
908 1.000
6l6 0.680
905 0.999

Stress Weight
0.

0
1
0

616

. 680
.000
.6677

0

0
0
1

. 905
.999
.607
.000
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| Multicollinearity

A model summary (including all the predictors, with blood
pressure log-transformed) looks like this:

Coefficients: Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 4.2131301 0.5098890 8.263 3.64e-07 ***
BSA 0.5846935 0.7372754 0.793 0.439
Stress -0.0004459 0.0035501 -0.126 0.902
Weight -0.0078813 0.0220714 -0.357 0.726

Signif. codes: 0 Y***’ (0.001 ‘**’ 0.01 ‘>’ 0.05 '.” 0.1 Y’ 1
Residual standard error: 0.02105 on 16 degrees of freedom
Multiple R-squared: 0.8256, Adjusted R-squared: 0.7929
F-statistic: 25.25 on 3 and 16 DF, p-value: 2.624e-06
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| What is Multicollinearity?

The overall F-test has a p-value of 2. 624e-06, indicating that we

should reject the null hypothesis that none of the variables in the model
are significant.

But none of the individual variables is significant. All p-values are
bigger than 0.43.

Multicollinearity may be a culprit here.

42



| Multicollinearity

Multicollinearity is not an error — it comes from the lack of
information in the dataset.

For example if
X;=a+b*™X,+c™" X
then the data doesn’t contain much information about how

X, varies that isn’t already contained in the information
about how X, and X; vary.

Thus we can’ t have much information about how changing
X, affects Y if we insist on not holding X, and X5 constant.

43



| Multicollinearity

What happens if we ignore multicollinearity problem?

If it is not “serious”, the only thing that happens is that our
confidence intervals are a bit bigger than what they would
be if all the variables are independent (i.e. all our tests will
be slightly more conservative, in favor of the null).

But if multicollinearity is serious and we ignore it, all
confidence intervals will be a lot bigger than what they
would be, the numerical estimation will be problematic, and
the estimated parameters will be all over the place.

This is how we get in this situation when the overall F-test

IS significant, but none of the individual coefficients are. 14



| Multicollinearity

When is multicollinearity serious and how do we detect

this?

* Plots and correlation tables show highly linear
relationships between predictors.

A significant F-statistic for the overall test of the model
but no single (or very few single) predictors are
significant

* The estimated effect of a covariate may have an
opposite sign from what you (and everyone else) would
expect.
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|Reducing multicollinearity

STRATEGY 1. Omit redundant variables. (Drawbacks? Information
needed?)

STRATEGY 2: Center predictors at or near their mean before constructing
powers (square, etc) and interaction terms involving them.

STRATEGY 3: Study the principal components of the X matrix to discern
possible structural effects (outside of scope of this course).

STRATEGY 4: Get more data with X’s that lie in the areas about which the
current data are not informative (when possible).
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'Model Selection Methods

So far, we have discussed a number of methods for finding the
“best” model:

« Comparison of R? and adjusted R?.

» F-test for model utility and F-test for determining significance
of a subset of predictors.

* |ndividual parameter t-tests.
* Reduction of collinearity.

* Transformations.

» Using your brain.

47



'Model Selection Methods

So far, we have discussed a number of methods for finding the
“best” model:

« Comparison of R? and adjusted R?.

» F-test for model utility and F-test for determining significance
of a subset of predictors.

* |ndividual parameter t-tests.
* Reduction of collinearity.

* Transformations.

* Using your brain.
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'Model Selection Methods

So far, we have discussed a number of methods for finding the
“best” model:

« Comparison of R? and adjusted R?.

» F-test for model utility and F-test for determining significance
of a subset of predictors.

* |ndividual parameter t-tests.
* Reduction of collinearity.

* Transformations.

» Using your brain.

* Forward and backward stepwise regression, AlC values, etc.
(graduate students)
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