Lecture \#21

$\mathbf{1}$ We now consider the trigonometric interpolation problem. We seek for a function of the following form

$$
p(x)=a_{0}+\sum_{j=1}^{n} a_{j} \cos (j x)+b_{j} \sin (j x)
$$

If a_{n} and b_{n} are not both zero, then this is called a trigonometric polynomial of degree n.
We've implicitly given a basis for our function space (dimension $2 n+1$)

$$
\{1, \cos (x), \sin (x), \ldots, \cos (n x), \sin (n x)\}
$$

We should really first consider whether these functions are linearly independent; otherwise the interpolation problem posed here might have multiple solutions (if it has any). I will assume you already know that these functions are a basis for their span.

We will reduce the trig interpolation problem to the polynomial one. Note that

$$
\begin{gathered}
e^{\mathrm{i} j x}=\cos (j x)+\mathrm{i} \sin (j x) \\
\cos (j x)=\frac{e^{\mathrm{i} j x}+e^{-\mathrm{i} j x}}{2}, \quad \sin (j x)=\frac{e^{\mathrm{i} j x}-e^{-\mathrm{i} j x}}{2 \mathrm{i}} \\
p(x)=\sum_{j=-n}^{n} \tilde{c}_{j} \mathrm{i}^{\mathrm{i} j x}=\sum_{j=-n}^{n} \tilde{c}_{j}\left(e^{\mathrm{i} x}\right)^{j} \\
\tilde{c}_{0}=a_{0}, \quad \tilde{c}_{j}=\frac{1}{2}\left(a_{j}+\mathrm{i} b_{j}\right), \quad \tilde{c}_{-j}=\tilde{c}_{j}^{*} \equiv a_{j}=\tilde{c}_{j}+\tilde{c}_{-j}, \quad b_{j}=\frac{\tilde{c}_{j}-\tilde{c}_{-j}}{\mathrm{i}} \\
\tilde{p}(z)=\sum_{j=-n}^{n} \tilde{c}_{j} z^{j}, \quad p(x)=\tilde{p}(z) \text { when } z=e^{\mathrm{i} x} . \\
P(z)=z^{n} \tilde{p}(z)=\sum_{j=0}^{2 n} c_{j} z^{j}, \quad \tilde{c}_{j-n}=c_{j}
\end{gathered}
$$

so
P is a polynomial of degree $\leq 2 n$. Because there is a one-to-one relationship between the c_{j} and the a_{j}, b_{j}, the trig interpolation problem is equivalent a (complex) polynomial interpolation problem. The latter has a unique solution whenever the z_{j} are distinct; what does this mean for the x_{j} ? Since $z=e^{\mathrm{i} x}$, the z_{j} will be distinct whenever the x_{j} are distinct modulo 2π. Typically we would first rescale all of our x_{j} so that they lie in the interval $[0,2 \pi)$.

2 The above shows that the trig interpolation problem has a unique solution provided that the x_{j} are distinct modulo 2π; what about computing the solution? For non-equispaced nodes you can just solve the associated polynomial problem using Newton Divided Differences, and then re-map the coefficients c_{j} to the a_{j}, b_{j}. If the nodes are equispaced there are better methods.

WLOG, let (not the same as Atkinson)

$$
[0,2 \pi) \ni x_{j}=j \frac{2 \pi}{2 n+1}, \quad z_{j}=e^{\mathrm{i} x_{j}}, \quad j=0, \ldots, 2 n
$$

Consider the Vandermonde matrix of the associated polynomial interpolation problem.

$$
\begin{gathered}
P\left(z_{j}\right)=\sum_{k=0}^{2 n} c_{k} z_{j}^{k}=c_{0}+c_{1} z_{j}+\ldots+c_{2 n} z_{j}^{2 n}=y_{j} \\
{\left[\begin{array}{cccc}
1 & z_{0} & \cdots & z_{0}^{2 n} \\
1 & z_{1} & \cdots & z_{1}^{2 n} \\
& & \vdots & \\
1 & z_{2 n} & \cdots & z_{2 n}^{2 n}
\end{array}\right] .}
\end{gathered}
$$

We will now show that the columns of this matrix are orthogonal with respect to the standard complex dot product. A single column has the form

$$
\mathbf{V}_{k}=\boldsymbol{v}^{(k)} ; \quad \boldsymbol{v}_{j}^{(k)}=z_{j}^{k}, \quad j=0, \ldots, 2 n, \quad k=0, \ldots, 2 n .
$$

The complex dot product of two columns is

$$
\boldsymbol{v}^{(k)} \cdot \boldsymbol{v}^{(l)}=\sum_{j=0}^{2 n} z_{j}^{k}
$$

Now use

$$
\begin{gathered}
z_{j}^{k}=\exp \left\{j k \frac{2 \pi \mathrm{i}}{2 n+1}\right\} \\
\boldsymbol{v}^{(k)} \cdot \boldsymbol{v}^{(l)}=\sum_{j} \exp \left\{j \frac{2 \pi \mathrm{i}}{2 n+1}(k-l)\right\}=\sum_{j=0}^{2 n} \omega(k-l)^{j}, \quad \omega(k-l)=\exp \left\{(k-l) \frac{2 \pi \mathrm{i}}{2 n+1}\right\}
\end{gathered}
$$

We can use the geometric series formula

$$
\sum_{j=0}^{2 n} \omega(k-l)^{j}=\frac{1-\omega(k-l)^{2 n+1}}{1-\omega(k-l)} .
$$

Now consider

$$
\omega(k-l)^{2 n+1}=\exp \left\{(k-l) \frac{2 \pi(2 n+1) \mathrm{i}}{2 n+1}\right\}=1 .
$$

If $k-l=0$ we just have

$$
\boldsymbol{v}^{(k)} \cdot \boldsymbol{v}^{(k)}=2 n+1
$$

The Vandermonde system can be solved easily

$$
\mathbf{V} \boldsymbol{c}=\boldsymbol{y}, \quad \boldsymbol{c}=\frac{\mathbf{V}^{*} \boldsymbol{y}}{2 n+1} .
$$

The matrix \mathbf{V}^{*}, up to normalization, is the 'discrete Fourier transform.' There are a fast algorithms to apply it to vectors (i.e. costing less than $\mathcal{O}\left(n^{2}\right)$ flops) called the Fast Fourier Transform.

3 Accuracy/convergence. Theorem 3.6 in Atkinson. If f is $2-\pi$ periodic and continuous then the error in the trig interpolation (with equispaced nodes) is bounded by

$$
\left\|f-p_{n}\right\|_{\infty} \leq c \ln (n+2) \rho_{n}(f)
$$

where $\rho_{n}(f)$ is the error in the best-possible approximation (in the ∞ norm) of f using a trig polynomial of degree $\leq n$. The constant c is independent of f and n. Of course this doesn't imply convergence unless you know how ρ_{n} scales with n. We'll come back to equispaced trig interpolation from a different perspective later, and return to the question of errors \& convergence.

