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Turbulent fluid flows have long been recognized as a superior means of diluting ini-

tial concentrations of scalars due to rapid stirring. Conversely, experiments have

shown that the structures responsible for this rapid dilution can also aggregate ini-

tially distant reactive scalars and thereby greatly enhance reaction rates. Indeed,

chaotic flows not only enhance dilution by shearing and stretching, but also organize

initially distant scalars along transiently attracting regions in the flow. To show the

robustness of this phenomenon, a hierarchical set of three numerical flows is used: the

periodic wake downstream of a stationary cylinder, a chaotic double gyre flow, and a

chaotic, aperiodic flow consisting of interacting Taylor vortices. We demonstrate that

Lagrangian coherent structures, as identified by ridges in finite time Lyapunov expo-

nents, are directly responsible for this coalescence of reactive scalar filaments. When

highly concentrated filaments coalesce, reaction rates can be orders of magnitude

greater than would be predicted in a well-mixed system. This is further supported

by an idealized, analytical model that was developed to quantify the competing ef-

fects of scalar dilution and coalescence. Chaotic flows, known for their ability to

efficiently dilute scalars, therefore have the competing effect of organizing initially

distant scalars along the LCS at timescales shorter than that required for dilution,

resulting in reaction enhancement.
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I. INTRODUCTION

The stirring and subsequent mixing of passive scalars in turbulent or chaotic flows is

of vital importance for a variety of natural and anthropogenic systems. Whether it is

the stirring of plankton on the free surface of the ocean,1 or the mixing of reactive gases

in a combustion chamber,2 turbulent stirring plays a significant role in the transport and

dispersion of scalars. Chaotic dynamics provides a general framework to study the advection

of scalars and the theory of mixing, areas that had previously been studied on a case-by-

case basis.3 The fundamental processes responsible for the complexity of chaotic advection

are the repeated stretching and folding of fluid elements. Stretching leads to exponential

divergence of nearby fluid parcels (evidenced by positive Lyapunov exponents), while folding

gives rise to chaotic stirring. The resulting large concentration gradients of the advected

scalars then leads to enhanced diffusive mixing.

Chaotic stirring has been studied extensively as an efficient means of quickly diluting

concentrated scalars.3,4 A blob of dye, for example, will quickly be stretched into thin fila-

ments as it is advected in a chaotic flow, leading to an exponential decay of concentration

with time. Though many studies have focused on the mixing of single scalars, few have

looked at the complex interactions that can occur for a pair of reactive species in a turbu-

lent/chaotic environment. Most of the latter studies focus on initial conditions where the

reactive scalars share an interface.5,6 In this case, molecular diffusion results in immediate

onset of reaction between the scalars and advection leads to increasing reaction rates as

the interface between scalars is lengthened and sharpened by stretching. In many natural

systems, however, reactive scalars do not initially share an interface, and it is fluid stirring

that initiates a reaction.7,8 In this topology, the initial reaction rate is zero, and stirring

leads to reaction only if it causes the initially segregated scalars to come into contact.

A. Enhanced Reaction of Initially Distant Scalars

Both numerical9,10 and experimental11 studies have shown that the stirring of initially

distant scalars may result in their eventual overlap. When the concentration of the filaments

is not too low, these coalescence events have been shown to lead to reaction rates much

greater than would be predicted by a well-mixed system, a process that we refer to as
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reaction enhancement. Crimaldi et al.9 considered a simple point vortex and showed—both

numerically and analytically—that the vortical strain can result in reaction rates greatly

exceeding that of pure diffusion. Next, Crimaldi and Kawakami10 studied coalescence events

downstream of a stationary cylinder that shed periodic vortices. Here, the strain between

the counter-rotating downstream vortices resulted in the coalescence of filaments that were

initially separated upstream of the cylinder. The coalescence of concentrated filaments is due

to the structured stirring from a superposition of vortices, which creates regions of coherent

strain and results in the stretching and coalescence of nearby filaments. The mechanisms

that lead to this coalescence, however, have not yet been studied. In the current paper, we

will elaborate on these mechanisms and quantify the resulting enhanced reaction rates.

B. Lagrangian Coherent Structures

The visualization of coherent structures within turbulent flows dates back to the time

of Leonardo da Vinci.12 In flowing water, da Vinci saw eddies of many different sizes that

interacted with each other in a complex manner, a prelude to the work of Richardson and the

energy cascade. The coherent structures, in this view, were Eulerian in nature: turbulent

structure was viewed as an instantaneous snapshot of a scalar field that highlights persistent,

coherent regions. A component of vorticity, for example, was often used to track regions

of persistent rotation, which can then be characterized as coherent. More recently, the

Lagrangian viewpoint has become a useful tool to uncover coherent structures that persist

across space and time. By adopting a frame of reference that moves with fluid parcels, we

gain a natural means of describing the transport of passive scalars in fluids that have a

complicated time history of stretching and folding.13

Lagrangian coherent structures (LCS) have been defined as material lines or surfaces in

fluid flows that either enhance or inhibit mixing.14 These time-evolving surfaces have been

described as the hidden skeleton of a flow because of how they mold the complex patterns

of a passive tracer.15,16 Haller showed that such material surfaces could be either attracting

or repelling, analogous to the invariant unstable and stable manifolds of hyperbolic orbits

in time-periodic chaotic systems.13 Fluid parcels in the neighborhood of such surfaces are

either attracted or repelled at an exponential rate. Repelling LCS (rLCS) act as transport

barriers in fluid flows. These have been studied, for example, in a geophysical context to time
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the release of pollutants near a coastline in order to make them predominantly wash out to

sea.17 By contrast, attracting LCS (aLCS), analogous to unstable manifolds, are attracting

surfaces for a passive scalar. For example, larvae on the ocean surface have been shown to

aggregate from different source regions onto an aLCS.18 Not surprisingly, marine predators

have also been shown to track aLCS in the ocean in order to locate food patches.19

One standard technique to locate the repelling and attracting surfaces in fluid flows,

is the Finite-Time Lyapunov Exponent (FTLE). The FTLE is a scalar field that can be

estimated by seeding the domain with a uniform grid of tracer particles and advecting these

particles either forward or backward in time. After an integration time T , the rate at which

neighboring particles have separated is calculated for each grid point, as described in Shadden

et al.20 Forward integration yields the repelling surfaces by finding the local maximum rate

of separation, while backward integration gives attracting surfaces by finding the maximum

rate of contraction. The integration time—for example a typical turnover time—must be

selected by the physics of the flow to determine features of interest. Lagrangian coherent

structures can be extracted from the FTLE field by locating its ridge lines. It is important

to note, however, that ridges in an FTLE field can erroneously identify regions of high shear

that are not true attracting or repelling LCS.15

II. METHODOLOGY

Reactions between initially distant scalars form through some combination of stirring at

large scales and diffusion at small scales. We consider reactions that obey second order

kinetics, with the reaction rate given by

R(x, t) = kC1(x, t)C2(x, t) (1)

where k is the reaction rate constant, and C1 and C2 are the concentrations of the two

scalars. The location and magnitude of the resulting reactions depends on the details of

the flow field. In this paper, we demonstrate that Lagrangian coherent structures provide a

template for locations where reactions are likely to occur. To demonstrate the generality of

the correspondence between LCS and reaction zones, we will study three models. Each has

a 2D incompressible flow and is dominated by vortex interactions.

The first flow is the periodic vortex wake behind a stationary cylinder, the second is the

time-periodic double gyre, and the third consists of an interacting set of Taylor vortices.
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This last flow is both aperiodic and chaotic, and is most representative of a 2D turbulent

velocity field.

A. Flow Field Descriptions

Cylinder Wake

The first flow is the laminar cylinder wake from Crimaldi and Kawakami10 where a uni-

form flow with speed u0 impinges on a circular cylinder with diameter a. When Re =

u0a/ν = 100, this leads to the periodic shedding of vortices with a period T0 = 9.3, down-

stream of the cylinder. Representative streamlines for this flow are shown in Fig. 1. In order

to separate the underlying vortex motion from the ambient flow (Fig. 1a), streamlines are

also computed for u = (u − 0.95u0, v) (Fig. 1b). Immediately downstream of the cylinder,

counter-rotating vortices are periodically shed leading to localized Lagrangian chaos.21 The

separatrix region between these vortices is an area of significant fluid straining.22 Particle

paths further downstream are not chaotic; nevertheless, the separatrices persist and are

asymptotic to stable and unstable manifolds of a steady flow.

A pair of reactive scalars (red and blue) with constant concentration over a width w and

lateral separation s, are continuously released upstream of the cylinder at x = −2.4a (as

shown in Fig. 6). The scalars obey an advection-diffusion equation with diffusivity D. The

velocity and scalar fields were computed numerically using a finite-element discretization

of the Navier-Stokes and reactive transport equations within the COMSOL Multiphysics

package. Details are given by Crimaldi and Kawakami.10

Double Gyre

The second flow is a simplified dynamical model of a double gyre (Fig. 2), an incompress-

ible flow consisting of two counter-rotating vortices that alternately expand and contract

periodically. The flow exhibits Lagrangian chaos and has been used in many previous stud-

ies as a test-bed for Lagrangian diagnostics.20,23 The velocity field is given by

u = −πU sin(πf(x)) cos(πy),

v = πU cos(πf(x)) sin(πy)
∂f

∂x
,
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FIG. 1. a) Streamlines u = (u, v) and vorticity for the cylinder wake at Re=100. b) In order to

separate the underlying vortex motion from the ambient flow, the streamlines are computed for

u = (u − 0.95u0, v). Regions of positive (red) and negative (blue) vorticity are superimposed on

the streamlines. The dashed box in a) and b) denotes the cropped subregion shown in Figs. 5 and

6.

where

f(x, t) = x [1 + ε sin(2πt/T0)(x− 2)] .

For the computations below, we choose velocity magnitude U = 0.1, perturbation amplitude

ε = 0.25, and oscillation period T0 = 10. Scalar concentrations are computed using a

Lagrangian particle tracking method as discussed in Crimaldi et al.9 and are advected using

a second-order improved Euler scheme.

Interacting Taylor Vortices

The third example, in the tradition of Aref,24 consists of a collection of interacting Taylor

vortices; it serves as a simple model for 2D incompressible turbulence. From a dynamical

systems perspective, the system of interacting Taylor vortices is the most complex used in

this study, as it is both aperiodic and chaotic. A Taylor vortex centered at the origin has

angular velocity

uθ = Ur exp

(
− r2

2r20

)
,
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FIG. 2. Streamlines and vorticity (red is positive and blue is negative) for the double-gyre flow at

quarter-period intervals. a) t = 0, T0/2, T0. b) t = T0/4. c) t = 3T0/4.

where U is the strength of the vortex, r is the distance from its center, and r0 is the radius

of the core. This is one member of a family of exact vortex solutions to the Navier-Stokes

equations.25 This shielded vortex, shown in Fig. 3, has a relatively compact rotational core

which then transitions to a nearly irrotational, sheared outer region. In our model, the center

of each Taylor vortex is advected by a superposition of the velocities from the remaining

vortices, but each vortex has fixed shape and strength. The vortices move in a square

with domain size 10r0, and periodic boundary conditions are imposed. For this model, 36

vortices are placed randomly in the domain, as shown in Fig. 4a; each vortex has radius

r0 = 1 and strength U = ±0.5. The sign of U determines the rotation direction—clockwise

or counterclockwise—and it is chosen randomly; in our simulation there were 14 positive

and 22 negative vortices. The superposed velocity field of the vortices at t = 0, as well

as a contour plot of the total vorticity, is shown in Fig. 4b. Vortices are advected (by

the superposed velocity at the vortex center) using a second-order improved Euler scheme.
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FIG. 3. Single Taylor vortex: a) velocity (solid line) and vorticity (dashed line) on a slice through

the core; b) velocity vectors overlaid onto the vorticity field (colors).

Scalar concentrations are computed in the same manner as the double gyre.

B. Calculating Finite Time Lyapunov Exponents

Backward finite-time Lyapunov exponents were computed for the three flows following the

method of Shadden et al.20 A flow map φt0−Tt0 is generated by advecting an initially uniform

array of points (350 × 1200 for the cylinder flow, 201 × 401 for the double gyre, and 401 ×

401 for the Taylor vortices) backwards from t = t0 over an integration time T . In this study,

T ranged between 2 and 2.5 periods or turnover times of the flow in order to resolve the

appropriate dynamics (for a discussion of the appropriate choice for T in reacting flows, see

App. A). Approximate derivatives of φt0−Tt0 with respect to initial conditions are computed

using centered finite differences to generate the so-called right Cauchy-Green deformation

tensor

∆ =
dφt0−Tt0 (x)

dx

∗
dφt0−Tt0 (x)

dx
.
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FIG. 4. a) Initial locations and direction of rotation (red is positive, blue negative) for the 36

vortices used in the Taylor vortex flow. b) Velocity field and vorticity for the superposition of the

Taylor vortices in (a).

Finally, the FTLE is computed as

σTt0(x) =
1

2T
ln
(
λmax(∆)

)
, (2)

where λmax(∆) is the maximum eigenvalue of ∆. The topological ridge lines of the spatial

distribution of the FTLE field correspond to aLCS, a region of strain which attracts nearby

particle trajectories.

III. RESULTS

A. LCS as a Template for Reaction

Cylinder Wake

The FTLE field for the periodic cylinder wake computed using Eq. (2) is shown in Fig. 5.

Since the far downstream wake is not chaotic, increasing T does not grow the manifolds as

it would for chaotic systems, but it does sharpen the ridges.

Spatial distributions of scalar concentrations and corresponding reaction rates for the

cylinder wake are shown for three different scalar releases in Fig. 6. The left column shows
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FIG. 5. FTLE field at a single phase of the cylinder wake for T = 25, approximately 2.5 times the

shedding period, T0 = 9.3.

concentrations of C1 (blue) and C2 (red) for three sets of parameters at t = 80. The two

scalars are initially separated upstream of the cylinder and they begin coalescing in the

wake as stirring and diffusion act to bridge the initial separation. The right column shows

resulting reaction rates R (purple) from Eq. (1), superimposed on the FTLE field for the

same flow phase (gray).

Note that though the FTLE field is solely a function of the flow (and integration time

T ), the spatial distribution of the concentration and reaction rates depends upon both

the flow and the details of the scalar diffusivity and release positions. Nonetheless, the

FTLE ridges serve as a template for the reaction locations. Though the presence of an

LCS does not guarantee that there will be a local reaction, where there is a reaction, it

invariably corresponds to a ridge. The larger initial scalar separation in Fig. 6(a) delays

the onset of reaction until further downstream relative to (b), for which initial separation is

smaller. As a consequence, there are locations near the cylinder for case (a) where there is

no reaction on the LCS, while for case (b) the reaction migrates upstream along the LCS.

These two cases also have different scalar diffusivities (as quantified by the Schmidt number

Sc = ν/D). Reaction filaments always have finite widths, whereas the LCS is, in principle,

simply a curve. When the diffusivity is larger, as in case (a), the reaction filament is wider

and extends further spanwise from the centerline of the LCS. For the set of parameters,

Fig. 6(c), the scalars are both released to one side of the cylinder; this demonstrates that

even asymmetric scalar release conditions result in reaction zones that are constrained to

the ridges of the FTLE.
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FIG. 6. The left column shows scalar concentrations (red and blue) and the right shows reaction

rates (purple) superimposed on the corresponding FTLE field (gray) for the cylinder wake. a)

s = 2a, w = a, and Schmidt number Sc = 1. b) s = 0.25a, w = a, and Sc = 10. c) An asymmetric

scalar release with s = 0.25a, w = a, and Sc = 10.

Double Gyre

Figure 7 shows the evolution of the scalar concentrations and corresponding reaction rates

for the double gyre flow for four sequential times. As in Fig. 6, the left column shows scalar

concentrations, and the right column shows corresponding reaction rates superimposed on

the FTLE field. The first row shows the initial conditions; because the scalars are separated,

there is no reaction. As time evolves, scalars begin coalescing and reacting on the LCS. The

figures in the second row shows that by t = 2.5T0, multiple red and blue filaments have been

attracted to the same manifold and that reaction has begun near the unstable periodic orbit

on the upper boundary. Continual stretching along the unstable manifold of this saddle

brings these filaments into closer contact, further enhancing the reaction, as shown in the

third and fourth rows. As in the previous case, reactions do not occur everywhere on an

LCS ridge, but where reactions do occur, they are centered on these ridges.
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FIG. 7. Scalar concentrations (left) and reaction rates superimposed on the corresponding FTLE

field (right) for the double gyre at a) t = 0, b) t = 2.5T0, c) t = 3T0, and d) t = 3.5T0. Note that

the flow phase alternates between rows. The blue dye is initially centered at (x, y) = (0.5, 0.5) and

red dye at (1.6, 0.5).

Taylor Vortices

Representative scalar concentrations and corresponding reaction rates for this flow are

shown at four different times in Fig. 8. Even for this more complex flow, stirring of the two

initially distant scalars leads to coalescence and initiation of reactions on the LCS.

B. Reaction Rate Enhancement

The results of the previous section show qualitatively that Lagrangian coherent structures

serve as spatial templates for reactions in a range of 2D flows. We now turn to a quantitative

investigation of the reactions rates. Because Crimaldi and Kawakami10 previously reported
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FIG. 8. (left) Scalar concentrations (red and blue) and (right) reaction rates (purple) superimposed

on the corresponding FTLE field (gray) for the Taylor vortex flow at a) t∗ = 0, b) t∗ = 2.25, c)

t∗ = 3.38, and d) t∗ = 4.51, where t∗ = t2π/eA is the time scaled by the turnover time at the core

radius r0.

reaction rates for the cylinder wake case, we limit ourselves herein to the double gyre and

Taylor vortex flow. For simplicity, and because we are interested fundamentally in the role
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of structured stirring in promoting reactant coalescence to enable reactions, we calculate

reactions only in the low-Damköhler number limit (see App. A), when reaction timescales

are sufficiently slow relative to advective timescales that the reactions do not measurably

deplete the associated reactants.9 Because both the double gyre and Taylor vortex flows have

bounded domains, it is convenient to normalize the reaction rates using the steady-state rate

Rss = kC1,ssC2,ss, (3)

where Ci,ss is the spatially constant, well-mixed concentration as t → ∞, i.e., Ci,ss =

1
AD

∫
Ci(x, 0)dA, where AD is the area of the full domain. The reaction rate enhancement

factor is then defined to be the ratio of the instantaneous, spatially averaged reaction rate

to (3):

R∗(t) =
1

RssAD

∫
R(x, t)dA. (4)

To compute the reaction rate enhancement in our models, we begin with a pair of point

sources placed randomly in the domain. As is natural for a chaotic systems, R∗(t) is highly

sensitive to the initial locations of the sources. Representative values of R∗ as a function of

time are shown in Fig. 9(a) for the double gyre, and in Fig. 9(b) for the Taylor vortex flow.

In each case, since the scalars are separated at t = 0, R∗(0) = 0, and since the diffusivity

is non-zero, R∗(t) → 1 as t → ∞. However, there are two qualitatively different types of

behavior. For some initial conditions, R∗ rises monotonically to unity, while for others, R∗

may sometimes greatly exceed unity at intermediate times. An example of each behavior is

shown for both flows in Fig. 9. In all cases, there is an initial time during which R∗ remains

effectively zero while the scalars are being stretched and folded, but have not yet substantially

overlapped. Depending upon the initial locations of the scalars, the concentrated filaments

of the two scalars may coalesce on an FTLE ridge at a relatively early time; in this situation,

R∗ rises to a peak before decaying back to unity. The magnitude of the peak depends on

the rapidity of the coalescence (and therefore on the residual concentration). In cases with

no reaction enhancement, the coalescence of filaments took longer to occur, and thus the

concentrations on the filaments is significantly diluted. Indeed, the exponential stretching

characteristic of a chaotic flow also reduces concentrations exponentially.

Because the behavior and magnitude of R∗ is sensitive to initial conditions, it is convenient

to use a Monte Carlo approach to quantify the likelihood of observing reaction enhancement.

To do this, we vary the initial location of the point sources and determine the peak value
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FIG. 9. Representative values of R∗ as a function of time for (a) the double gyre and (b) Taylor

vortex flows, each shown for two initial conditions. For these simulations LB = 0.01 for (a)

and LB = .07 for (b), and the dye was initialized to a square with sized LB. For the double

gyre, time is nondimensionalized by the oscillation period T0. For the Taylor vortex flow, time is

nondimensionalized by 2π/eA, the turnover timescale at the core radius r0.

of R∗ during each simulation. Figure 10 shows a cumulative density function (CDF) of

maximum R∗ values from 5000 simulations with randomly chosen initial conditions. The

CDF gives the probability that a given initial condition results in a maximum reaction rate

greater than a chosen R∗. For example, about 3% of the trajectories give R∗
max ≥ 10. The

data are not normally distributed and contain a fat, algebraic tail. The dashed black line in

Fig. 10 corresponds to a power-law fit to the PDF,

P (R∗
max = x) ∼ x−β, β = 1.9, (5)

obtained from a Smirnov goodness-of-fit test.26 Note that this power law tail implies that

the mean and variance of the PDF do not exist. Though a majority of the simulations do

not result in significant enhanced reaction, about 65% of them had R∗
max > 1. Reaction

enhancement, therefore, is a significant feature of flows with attracting Lagrangian coherent

structures.
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FIG. 10. Cumulative density function (dots) of maximum R∗ for 5000 simulations of the double

gyre flow with random initial scalar locations. The dashed line shows the power-law fit (5).

IV. AN ANALYTICAL MODEL

We now proceed to use simple scaling arguments to develop an analytical model that

explains the large range of reaction enhancements seen in Fig. 10. From Figs. 6–8, it is clear

that large reaction rates occur due to coalescence of concentrated scalar filaments on the

LCS. However, a hallmark of chaotic flows is rapid dilution of diffusive scalar concentrations.

Thus, the same structured stirring that produces filament coalescence also promotes dilution

of filament concentrations. In order for reaction enhancement (R∗ > 1) to occur, scalars

must coalesce at an early enough time so that their concentrations are still sufficiently strong.

If diffusion is neglected, an initially localized passive scalar in a two-dimensional flow

will stretch into a filament aligned in the direction of the local strain. When the flow is

incompressible, there must be a corresponding contraction in a transverse direction such

that area is preserved and the concentration remains constant. For diffusive scalars, the dif-

fusive flux driven by strong transverse gradients eventually balances the stretching-induced

contraction. Batchelor27 used scaling arguments to demonstrate that for turbulent flows this

17



d0 d(t)

LB

LB

LB
LB

LB

t = 0 t = tC tC < t < tM

L(tC) L(t)
Wu

Ws

FIG. 11. Schematic for the analytical model at three times showing two scalars (red and blue)

that start at t = 0 a distance d0 apart along the stable direction W s, coalesce at t = tC , stretching

along the unstable direction W u, and subsequently overlap on an area Ao (purple) for t > tC .

equilibrium filament width (now known as the Batchelor scale) is

LB ∼
√
Dτη,

where D is the scalar diffusivity and τη is the Kolmogorov time. When the flow is chaotic,

LB is commonly estimated by replacing τη by λ−1, where λ is the largest Lyapunov exponent,

a metric of the mean strain rate;28 thus,

LB ∼
√
D

λ
. (6)

A chaotic flow will cause a filament to stretch in the unstable direction with an exponentially

growing length: on average, L(t) ∼ exp(λt). It simultaneously contracts along the stable

direction, and so once it reaches the equilibrium width LB, the concentration must decay

exponentially as exp(−λt) (ignoring any reactions).

As a simple model, we consider two scalars with the same initial concentration, C0,

localized to squares of size LB ×LB (Fig. 11). We will suppose, as the simplest model, that

the flow is uniformly hyperbolic with a positive Lyapunov exponent λ, and that the stable

and unstable directions are independent of the position of the Lagrangian element. Diffusion

will maintain the width of the scalars in the stable direction at the Batchelor scale; however,

they will stretch exponentially along the unstable direction—we assume that this holds even

for macroscopic lengths, ignoring the folding that also must occur. Thus the area occupied
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by each scalar is A(t) = L2
Be

λt, and its concentration is

C1(t) = C2(t) = C0e
−λt.

However, this exponential decay will stop when the exponential stretching causes the scalar

to fill the entire domain, i.e., the area AD. Thus the decay is valid up to a “mixing time”

when A(tM) = AD or to

tM =
1

λ
log

(
AD
L2
B

)
. (7)

We will assume that the scalars are initially separated a distance d0 along the stable

manifold (nominally the vertical direction in Fig. 11), but they are at the same unstable

location (i.e., there is no horizontal separation in Fig. 11). Given the exponential contraction

in the stable direction, the stable distance will decrease exponentially with time

d(t) = d0e
−λt. (8)

When d(t) = LB, the scalars come into contact; this is the “coalescence time”,

tC =
1

λ
log

(
d0
LB

)
, (9)

and the reaction is initiated. As the vertical distance between the centers of the scalars

continues to decrease according to Eq. (8), they overlap, i.e., the purple rectangle in Fig. 11.

Generally, the overlap area is

Ao(t) =


0, 0 < t < tC

LBe
λt(LB − d(t)), tC < t < tM

AD

LB
(LB − d(t)), tM < t

.

The integrated reaction rate is thus
∫
R(x, t)dA = kC1(t)C2(t)Ao(t). Since the steady state

reaction rate, Eq. (3), is Rss = k(C0L
2
B/AD)2, then the normalized rate Eq. (4) becomes

R∗(t) =


0, 0 < t < tC

eλ(tM−t)(1− e−λ(t−tC)), tC < t < tM

1− e−λ(t−tC), tM < t

. (10)

This implies that R∗(t) reaches a maximum at tmax = tC + log 2/λ, provided that tC ≤

tmax ≤ tM , with the peak value

R∗
max =

1

4
eλ(tM−tC) =

AD
2L2

B

e−λtmax . (11)
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FIG. 12. A series of normalized reaction rate curves from (10) (solid lines) for various coalescence

times, tC , with λtM = 9.903, corresponding to AD/L
2
B = 2(10)4. The peak reaction rate (dashed

line) is given by Eq. (11).

The enhancement is largest when the coalescence time is small, or equivalently when the

initial separation distance d0 approaches the Batchelor scale. The pre-factor AD/L
2
B in Eq.

(11) represents the maximum possible enhancement for scalars that completely overlap at

t = 0. If R∗(t) has a peak at some positive time, tmax > 0, then the initial scalars have

at most 50% overlap, d0 ≥ 1
2
LB, and R∗

max is at most half of this theoretical maximum.

Curves from Eq. (10) for seven values of tC are shown in Fig 12 (solid lines) for the case

that AD/L
2
B = 2(10)4. The peak value (Eq. (11)) is also shown in Fig. 12 (dashed line) as a

function of λt. A comparison of these curves with those in Fig. 9 shows that the competing

effects of scalar coalescence and dilution, described by Eq. (10), give rise to the behavior

that we observe in the simulations.

To test the validity of (10), we performed Monte Carlo simulations for both the double

gyre and Taylor vortex flows. The scalars are given initially uniform concentrations on

squares of size LB×LB, with the diffusivity chosen so that AD/L
2
B = 2(10)4. The scalars were

placed along the repelling LCS in order to avoid elliptic islands in the flow. Initial overlap of

the two squares was permitted (this corresponds to a negative coalescence time); however,

in the vast majority of the initial conditions there was no overlap. For each simulation, the
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peak R∗ value and the corresponding time tmax are noted. Results are shown in Fig. 13(a)

for the double gyre and in Fig. 13(b) for the Taylor vortex. To compare with the analytical

model, λ is estimated to be spatial mean of the FTLE; i.e., λ = 0.13 for the double gyre

and λ = 0.32 for the Taylor vortex. The R∗ values from the Monte Carlo data generally fall

below the bound given by (11), though there are a few points above, especially for larger

values of λtmax. This is due, we believe, to scalars not being stretched at the maximal,

idealized rate of the model. Indeed, the flows shown in Figs. 7-8 are certainly not uniformly

hyperbolic, and their unstable manifolds fold in a complex way. This could give rise to

concentrations larger than predicted by the model, since diffusive dilution is a much slower

process than stretching induced dilution.

The large spread in R∗ values (across four orders of magnitude) seen in Fig. 13 for small

λtmax is probably due a variation in the filament overlap that can occur at these early times.

In particular there there is no reason that the randomly placed scalars should be “vertically”

aligned like we have assumed in the idealized model. In other words, they can approach

the same unstable manifold from “different” stable manifolds—and therefore have lateral

separation that reduces the overlap area. This spread in enhancement values is reduced for

larger times since the magnitude of reaction enhancement decays at an exponential rate, as

predicted by (11).

V. DISCUSSION

Lagrangian coherent structures have been demonstrated to play a crucial role in bringing

distant scalars together. This idea has a wide range of applicability, ranging from the

biological sciences to combustion chemistry. This paper has shown that LCS can serve

as templates for reaction zones and that the peak reaction rate enhancement appears to

obey a universal, power-law distribution. This contrasts with the predominant viewpoint

in the existing literature that maximum reaction rates occur when the system reaches a

well-mixed state. Under this latter view, optimizing reactions corresponds to maximizing

mixing in the sense of rapid and uniform spread of Lagrangian scalars over the flow domain.

However, our work has shown that coherent structures in fluid flows can result in enhanced

reaction at intermediate time scales and that the peak can be orders of magnitude greater

than the steady state rate. The mechanism responsible for this is the persistent straining
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FIG. 13. Peak reaction (R∗) and peak reaction times from double gyre (a)) and Taylor vortex (b))

from Monte Carlo simulations. The solid line shows (11) for AD = 2, LB = 0.01 with λ =0.13 for

the double gyre, and AD = 100, LB = 0.0707 with λ =0.32 for the Taylor vortex.

of an attracting LCS that causes the contraction of the scalars onto filaments where the

concentrations can be much larger than in a well-mixed system.
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Appendix A: Damköhler Number and the Integration Time for FTLE

The results in Sec. III show that LCS do indeed serve as templates for the enhanced reac-

tion zones within chaotic/turbulent flows, regardless of initial scalar placement. Reactions

are initiated when the scalars coalesce on the LCS and are then transported throughout the

flow. As LCS begin to dissipate, however, it is possible that reactants that coalesced many

turnover times ago will have not yet completely reacted. Such remnant reaction zones will

22



no longer appear to be on the FTLE ridge. In such a slowly reacting system, the FTLE

field needs to to be integrated for a time period appropriate to the reaction rate. Longer

integration times will lengthen the approximate unstable manifolds and give a template for

reaction zones over a timescale that can match that of the reaction. By contrast, in a highly

reactive system, a shorter FTLE integration time is sufficient to capture the reaction zones.

How long one grows the manifold, therefore, is entirely dependent upon the reactivity of the

system.

Reactivity is quantified by the advective Damköhler number, which compares the advec-

tive timescale, ta of the flow to the reaction timescale, tr, of the scalars.

Da =
ta
tr
.

Using this definition, the Damköhler number becomes

Da =
takM

L2
, (A1)

where k is the reaction rate constant, M is the total mass of one of the scalars, and L is the

initial separation distance between the two scalars.

By using this scaling, a Da � 1 indicates that reactants are not being degraded appre-

ciably, Da ∼ 1 signifies that reactants will be depleted within a few turnover times of the

flow, and Da� 1 indicates significant depletion of reactants without appreciable advection.

The choice of integration time, T , to compute the FTLE field should therefore match the

reactive timescale; that is,

T ∼ L2

kM
. (A2)

In any case, the flow will have appreciable effect on the reaction only when Da <∼ 1.

In this study, we focused on the moment of coalescence and not on reaction kinetics; thus

we set Da = 0 for all simulations: the scalars were not degraded, but only advected and

diffused. The integration time T ∼ 2 − 2.5 turnover times, was chosen to resolve only the

coalescence events.
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28H. Aref, J.R. Blake, M. Budǐsić, J.H.E. Cartwright, H.J.H. Clercx, U. Feudel, R. Golesta-

nian, E. Gouillart, Y.L. Guer, G.F. van Heijst, et al. Frontiers of chaotic advection. arXiv

preprint arXiv:1403.2953, 2014.

25


