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Optimizing a jump-diffusion model of a starving forager
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We analyze the movement of a starving forager on a one-dimensional periodic lattice, where each location
contains one unit of food. As the forager lands on sites with food, it consumes the food, leaving the sites
empty. If the forager lands consecutively on s empty sites, then it will starve. The forager has two modes of
movement: it can either diffuse, by moving with equal probability to adjacent sites on the lattice, or it can jump
to a uniformly randomly chosen site on the lattice. We show that the lifetime T of the forager in either paradigm
can be approximated by the sum of the cover time τcover and the starvation time s, when s far exceeds the number
n of lattice sites. Our main findings focus on the hybrid model, where the forager has a probability of either
jumping or diffusing. The lifetime of the forager varies nonmonotonically according to pj , the probability of
jumping. By examining a small system, analyzing a heuristic model, and using direct numerical simulation,
we explore the tradeoff between jumps and diffusion, and show that the strategy that maximizes the forager
lifetime is a mixture of both modes of movement. However, when extending the model to include time penalties
for long-range movement, the forager’s lifetime is no longer typically nonmonotonic in pj . Pure jumping is
typically optimal when there is an upper bound on the time penalty, but pure diffusion is optimal when jumping
becomes too perilous. A mixed jump-diffusion strategy is recovered if a forager is allowed to avoid jumping if
they will die midjump.
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I. INTRODUCTION

Virtually all motile organisms must forage for resources
such as food, habitats, or mates. Optimal foraging theory typ-
ically examines what strategies best balance search cost with
reward [1]. An integral component of foraging is the balance
between exploiting the known and/or nearby resources versus
exploring one’s broader environment for new resources [2].
Organisms typically deplete resources in their immediate
vicinity over time [3], unless depletion is slow and resources
are renewable [4]. Thus, organisms often invoke strategies in
which they compare the known yield at their current location
with distribution of yields from distant sites [5].

The predictions of theoretical models of foraging strongly
depend on the information available to the forager. If for-
agers have partial knowledge of the statistical distribution of
resources, optimal foraging strategies are usually straightfor-
ward to identify and typically balance an explore and exploit
tradeoff [1,6]. In contrast, foragers may possess no knowledge
of their environment and may be incapable or unwilling to
learn based on their foraging history [7]. Recent models
along these lines study the dynamics of foragers moving in
environments organized on a lattice, according to a random
walk. Previous work has examined the effect of making
the forager more or less likely to pursue food [8], making
the forager wait before consuming food [9], and giving the
forager a chance not to consume encountered food [10]. In
particular, this recent work has studied the added constraint

*nikhil.krishnan@colorado.edu
†zpkilpat@colorado.edu

of starvation, whereby the forager cannot go longer than s

steps without food. Exploration and exploitation tradeoffs are
then determined by how search strategy parameters shape the
lifetime of the forager, corresponding to the number of steps
until it starves.

Our model is similar to a starving forager executing a
random walk developed in [7,8]. We consider the movement
of a forager on a one-dimensional periodic lattice with n sites,
where each location contains one unit of food. If the forager
lands on a site with food, the forager consumes the food,
leaving the site empty. After the forager lands on s consecutive
empty sites, it starves. Since the food is depleted and never
regenerated, the forager will eventually starve, and can survive
at most s · n steps, though the mean lifetime T is typically
much less than this upper limit.

Recent analyses have focused on cases in which foragers
only move locally, according to biased or unbiased random
walks [7–9]. In contrast here, we explore the effects of al-
lowing the forager to make large jumps. Food is typically
distributed heterogeneously in an environment, and animals
can adapt their foraging strategy as such [1]. For example,
penguins alternate between foraging locally on patches of krill
and moving ballistically between them [11]. One foraging
strategy for this situation is a Lévy-type movement, where
animals combine small-scale movements with long-distance
displacements [12–15]. Our model will emulate this type of
movement as follows.

Our forager has two modes of movement [Fig. 1(a)]: it can
either diffuse, by moving with equal probability to adjacent
points on the lattice [Fig. 1(b)], or it can jump to a uniformly
randomly chosen site on the lattice [Fig. 1(c)]. In particu-
lar, we examine a hybridized approach, where the forager
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FIG. 1. Jump-diffusion foraging model parametrized by pj the
probability of jumping. (a) The forager moves to nonadjacent sites
with probability

pj

n
and to adjacent sites with probability

pj

n
+ 1−pj

2 ,
accounting for the possibility of diffusion. (b)–(d) Example forager
paths (blue lines and dots) for pj = 0, 1, 0.03. Green represents sites
with food, while white represents empty sites.

jumps with probability pj , or diffuses with probability 1 − pj

[Fig. 1(d)]. Providing our forager with both types of move-
ment allows us to consider how much time the forager should
spend exploiting a given location, and how frequently the
forager should move to other locations. We demonstrate that
the mean lifetime T of the forager varies nonmonotonically
with respect to pj , and the forager’s lifetime is maximized
through a mixture of jumping and diffusion.

This work extends the recent studies of [7–9] by incor-
porating long-range motion into the dynamics of a starving
forager. Those previous studies were primarily concerned
with how additional considerations like greed or frugality
could affect the lifetime of a starving forager that moves via
local diffusion. Note that in the limit of pj → 0 our model
reduces to the basic form of those previous models.

Obtaining an explicit formula for the forager lifetime
proves difficult, perhaps even intractable. Thus, we employ
a number of alternative methods for gaining insight into how

the mean forager lifetime T depends on model parameters.
First, we study separately the two boundary cases of pure
diffusion and pure jumping. In both cases, we can determine
an upper bound for the forager lifetime as the sum of the
cover time and survival time, and explicitly derive formulas
for the forager lifetime. This reveals that a diffusive strategy
is more advantageous when the survival time s is longer,
whereas a jumping strategy is better for short survival times.
Next, we analyze the jump-diffusion model in a very small
environment (with n = 4 food sites) and short survival time
(s = 2), showing mean lifetime is optimized by using a mix
of jumping and diffusion. Finally, we analyze a jump-wait
model, where we replace the diffusive behavior with waiting
behavior where the forager remains in the same location until
jumping. The qualitative performance of this model is similar
to the jump-diffusion model, suggesting that foragers extend
their lifetime by simply not consuming food when they have
recently fed.

Our study concludes by considering several extensions of
our model in which long-range jumps require more time than
diffusion. In this extended model, the nonmonotonicity of the
forager lifetime in pj mostly disappears. Typically, the forager
does best when enacting a strategy of pure jumping in these
cases. Although, when time penalties scale linearly with dis-
tance, pure diffusion becomes optimal, as most jumps result in
death. In either case, a forager’s lifetime can be lengthened by
allowing a mixed jump-diffusion strategy whereby the forager
only makes jumps that do not kill them and diffuse otherwise.

II. OPTIMAL JUMP RATE

To begin, we consider the full hybrid model, where the
forager can both jump and diffuse. We will numerically deter-
mine the effect of pj on the mean forager lifetime T (n, s, pj ),
while varying the environment size n and survival time s.
Across a wide range of parameters, a mixture of jumping and
diffusion (0 < pj < 1) leads to higher values of T . For larger
s relative to n, the value of pj that maximizes T becomes
smaller. This trend will be studied in detail by analyzing
related models in subsequent sections. Numerical results are
shown in Fig. 2. As shown in Fig. 2(a), T is nonmonotonic
in pj for different values of s, so there is an interior pj that
maximizes T . As we demonstrate in subsequent sections, a
larger pj (more jumping) causes the forager to consume food
more rapidly, lowering the odds of starving between feedings,
but depleting the resources more rapidly. Thus, the optimal pj

balances the tradeoff of slowing the rate of food consumption
(decreasing pj ) with decreasing the probability of starving
early on (increasing pj ). For lower values of s, there is a broad
range of pj values over which T is relatively unchanged. This
suggests that the advantage gained by slowing the rate of food
consumption is roughly counteracted by the increased prob-
ability of starvation. As the survival time s is increased, the
optimal value of pj decreases since the forager becomes less
likely to die between feedings [Fig. 2(b)]. Utilizing diffusive
motion (lower pj ) more often limits that rate at which food is
consumed. On the other hand, as the size of the environment is
increased (larger n), the optimal pj increases. This is because
there is more food initially available, so the forager can afford
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FIG. 2. (a) Mean survival time T of a starving forager obeying
jump diffusion with jump rate pj . Forager lifetime T varied non-
monotonically with pj for s = 320, 160, 80, 40, 20 (top to bottom).
The maximal lifetime is marked in black. Environment size n = 40.
Means at each value of pj are generated using 106 Monte Carlo
simulations. (b) The jump rate pj that maximizes the forager lifetime
primarily decreases as a function of s. Shown for n = 400, 80, 20
(top to bottom). Maxima are found using golden-section search [16]
using 106 simulations per point.

to increase the rate of food consumption to decrease their
probability of starving.

Our interpretations of the mean lifetime T dependence on
pj , s, and n can be analyzed in further detail by considering
a few different limiting cases and approximations of the
jump-diffusion model. We begin by studying the behavior
of the model at the two extremes of pure diffusion [pj = 0:
Fig. 1(b)] and pure jumping [pj = 1: Fig. 1(c)]. Our two main
findings in this analysis are that (a) a diffusive forager covers
the environment more slowly, decreasing the rate of food
consumption as discussed above; and (b) jumping is a better
strategy in large environments (large n) with lower survival
times (small s). Indeed, this is consistent with our numerical
results above. We conclude with an analysis of two simpler
models that demonstrate the same nonmonotonicity of T in
pj as shown in Fig. 2.

III. COVER TIMES AT EXTREMES

Considering the boundary cases of pure diffusion pj = 0
and pure jumping pj = 1 allows us to derive explicit formulas
for how model parameters, such as the environment size n and
starvation time s impact the mean lifetime T of the forager.
This can be approximated first by calculating the mean cover
time E(τcover ) of the forager: the time it takes the forager to
reach all of the food sites in the environment. This quantity
plus the starvation time s constitutes an upper bound on the
lifetime in general, but for large s it provides a reasonable
approximation of

T (n, s, pj ) ≈ s + E(τcover (n, pj )). (1)

This is because, when s is large, the forager generally con-
sumes almost all of the food in the domain before dying since
it will typically have enough time between feeding to locate
remaining food in the environment.

The mean cover time E(τcover ) can be computed explicitly.
If tk denotes the time the kth piece of food is eaten, then

τcover = tn, t1 = 0, and by the linearity of expectation, we have

E(τcover ) =
n∑

k=2

E(tk − tk−1). (2)

In the case of both pure diffusion (pj = 0) and pure jumping
(pj = 1), E(tk − tk−1) can be explicitly calculated.

A. Diffusion

We first consider the case where pj = 0, so the forager
moves only to adjacent sites. Following along the lines of [17],
to calculate the cover time, we first consider the time between
eating the kth piece of food and the (k − 1)th piece of food.
The kth piece of food here refers to the time ordering of food
consumption in a single foraging realization. Since the forager
can only move to adjacent locations, after eating k − 1 pieces
of food, it must be on the boundary of a contiguous region of
k − 1 sites with no food, a desert [8]. If we label the current
location of the forager as site 1, and the opposite end of the
desert as site k − 1, then the time to consume the kth piece of
food is simply the hitting time of either site 0 or site k. We let
fi be the average time to hit either state 0 or state k starting at
state i, as described by the recursion relation

fi = 1
2 (fi−1 + 1) + 1

2 (fi+1 + 1) (3)

with f0 = fk = 0. A detailed analysis of the time for a biased
random walk to escape a finite interval is given in [18],
where the lifetime of a starving greedy forager is studied.
In that work, a parameter p determines the probability of
moving towards a site containing food. Their results (given in
Appendix B of [18]) reduce to ours for the unbiased random
walk when p = 1

2 . We can solve Eq. (3) for fi = i(k − i), and
note that [19]

E(tk − tk−1) = f1 = k − 1, (4)

so by plugging into Eqs. (1) and (2), we find

T (n, s, pj = 0) ≈ s + n(n − 1)

2
. (5)

Note, this approximation is linear in s and quadratic in n,
the size of the environment. Figure 3(a) demonstrates that as
s increases, Eq. (5) becomes more accurate, as the forager
generally consumes almost all of the food in the environment.
For this to be true, s must be nearly an order of magnitude
larger than n. When s is too small, the forager will typically
die before it can consume all of the food, so the cover time
approximation breaks down.

B. Jumping

We next study the case in which the forager always
jumps to a uniformly randomly chosen site on each timestep
(pj = 1). The cover time is then precisely the solution to the
“coupon collecting problem” [17]. Assume the forager has
eaten k − 1 pieces of food. There are then n − (k − 1) pieces
of food remaining, and the time it takes to eat the kth piece of
food is geometrically distributed:

(tk − tk−1) ∼ (k − 1)t−1(n − k + 1)

nt
.
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FIG. 3. (a), (b) Forager lifetime computed from Eq. (9) in the
case of pure diffusion (a) and pure jumping (b). Cover time approx-
imations (dashed lines) computed from Eq. (1) agree in the limit
of large s: n = 15, 10, 5 for black, dark gray, and gray. Red dots
are means computed using 106 numerical simulations. (c), (d) Ratio
of forager lifetime for pure diffusion to forager lifetime for pure
jumping: Tdiff/Tjump. The contour on (d) marks where the ratio is
one, marking the boundary between where jumping vs diffusion is
the better strategy.

Plugging this result into Eqs. (1) and (2) yields

T (n, s, pj = 1) ≈ s + n

n−1∑
k=1

1

k
. (6)

Figure 3(b) shows the exact lifetime converges to this approx-
imation as s is increased. Equation (6) is again linear in s, but
now scales much more slowly in n than in the case of pure
diffusion. In the limit of large n, we can estimate the scaling
in n as follows:

n

n−1∑
k=1

1

k
� n

n∑
k=1

1

k
� 2n

∫ n

1

dx

x
= 2n log(n).

In particular, if we compare the cover times of the two
boundary cases, we see that τcover (pj = 0) = O(n2) while
τcover (pj = 1) = O(n log(n)). This shows that if the forager
can consume almost all of the food, then for large n, it will
live longer by diffusing rather than jumping. This suggests
that as s increases, the optimal value of pj goes to 0, and this
is indeed the case.

IV. FORAGER LIFETIME AT EXTREMES

We now determine the exact formula for the lifetime of
the forager. While the formula we derive actually applies to
all values of pj ∈ [0, 1], we can only compute its constituent
parts explicitly in the boundary cases pj ∈ {0, 1}. Let Xk

denote the time between eating the kth piece of food and
the (k − 1)th piece of food, where X1 = 0, since the forager
immediately consumes food at their initial position. The prob-
ability the forager, with starvation time s, consumes k pieces

of food before starving thus equals

P(k∗ = k) = P(X1, . . . , Xk � s,Xk+1 > s), (7)

so k∗ ∈ {1, . . . , n} is a random variable arising from the
stochastic movement and death of the forager. We can deter-
mine the distribution of k∗ by first computing the cumulative
distribution for each Xk:

Fk (s) = P(Xk � s) =
s∑

j=1

P(Xk = j ), Fn+1(s) = 0. (8)

Note F1(s) ≡ 1. Thus, Fk (s) is the probability the forager
survives long enough to consume the kth piece of food having
consumed the (k − 1)th piece of food. We also wish to know
the probability that the forager eats exactly k pieces of food
before dying. This is given by

P(k∗ = k) = (1 − Fk+1(s))
k∏

j=1

(Fj (s)).

The forager lifetime in each case can be computed first by
conditioning on consuming exactly k pieces of food, Tk|k∗ =
k, which is simply the time it takes to eat the k pieces of food,
plus s steps more until starvation. The expected lifetime T is
then given by marginalizing over all possible values of k∗:

T =
n∑

k=1

[Tk|k∗ = k]P(k∗ = k)

= s +
n∑

k=1

(1 − Fk+1(s))
k∏

j=1

Fj (s)
k∑

i=1

E(Xi |Xi � s). (9)

For the boundary cases of pj = 0 and 1, we can derive an
explicit formula for P(Xk = j ) in Eq. (8), allowing us to
explicitly calculate Eq. (9). In the limit of large s, we can
approximate Fj (s) = 1 for all j � n and reduce Eq. (9) to
the sum of the expectations E(Xi ), which is the cover time
upper bound given in Eq. (1).

A. Diffusion

We have a general Eq. (9) for E(T ) that requires knowing
P(Xk = j ), the probability it takes j time steps between
consumption of the kth and (k − 1)th pieces of food. In
what follows, we demonstrate how to explicitly compute this
probability mass function in the case of a diffusive forager. In
the next subsection, we study the case of a forager that purely
jumps.

When pj = 0, the forager moves by diffusion to carve out
a food desert, a simply connected region without any food.
As before, we label the sites of the desert so that site 1 is
where the forager begins after consuming the (k − 1)th piece
of food, and the other desert boundary is site k − 1. Follow-
ing [19,20], we can determine the probability mass function
of Xk .

Let u�,j be the probability that it takes exactly j steps to
first hit site 0 from site �. We then have the following recursion
relation:

u�,j+1 = 1
2u�−1,j + 1

2u�+1,j ,

u0,0 = 1, uj,0 = u0,j = uk,j = 0, ∀ j > 0. (10)
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We then define the generating function

U�(v) =
∞∑

j=0

u�,j v
j

and multiply Eq. (10) by vj+1, so that by summing over j we
obtain

U�(v) = v

2
U�−1(v) + v

2
U�+1(v),

U0(v) = 1, Uk (v) = 0. (11)

The boundary conditions arise from the fact that the probabil-
ity of hitting site 0 is u0,0 = 1 if starting there, but uk,0 = 0
if starting at the opposite food site. Considering solutions to
Eq. (11) of the form U�(v) = λ�(v), we obtain the character-
istic equation

λ(v) = v

2
+ v

2
λ2(v).

This quadratic equation has two roots:

λ±(v) = 1 ± √
1 − v2

v
, (12)

assuming 0 < v < 1. Each root is a particular solution to
Eq. (11). It follows that there are some functions A(v), B(v)
so the general solution has the form

U�(v) = A(v)λ�
+(v) + B(v)λ�

−(v). (13)

We can apply the boundary conditions A(v) + B(v) = 1
and A(v)λk

+(v) + B(v)λk
−(v) = 0 from Eq. (11) to deter-

mine A(v) and B(v). Finally, noting that by their definition
λ+(v)λ−(v) = 1, we have the explicit formula

U�(v) = λk−�
+ (v) − λk−�

− (v)

λk+(v) − λk−(v)
. (14)

To determine u�,j , we will decompose U�(v) with partial
fractions. To start, we make the change of variables v = sec φ.
Applying this to Eqs. (12) and (14), we find

λ±(v) = cos φ ± i sin φ, U�(v) = sin(k − �)φ

sin kφ
.

The denominator of U�(v) is zero for φm = mπ
k

, m =
0, . . . , k, which correspond to vm = sec φm. Furthermore,
since the degree of the numerator exceeds the degree of
the denominator by at most 1, U�(v) has a partial fraction
decomposition with the form

sin(k − �)φ

sin kφ
= Av + B + ρ1

v1 − v
+ · · · + ρk−1

vk−1 − v
. (15)

To determine the value of ρm, we multiply both sides by
vm − v, then take v → vm (and φ → φm):

ρm = sin �πm
k

sin πm
k

k cos2 πm
k

.

By decomposing each fraction of Eq. (15) into a geometric
series, we find that the coefficient of vj (which is u�,j ) is given
by

k−1∑
m=1

ρm

v
j+1
m

= 1

k

k−1∑
m=1

cosj−1
(πm

k

)
sin

(
�πm

k

)
sin

(πm

k

)
.

We are interested in two possibilities, associated with the site
the forager hits next, hk ∈ {0, k}. Either, the forager can start
at site 1 and hit site 0 (hk = 0, corresponding to u1,j ), or
the forager can start at site 1 and hit site k (hk = k), which
by symmetry is identical to the forager starting at site k − 1
and hitting site 0 (corresponding to uk−1,j ). The probability
it takes j steps from consuming the (k − 1)th to the kth food
site is then the sum over the joint probabilities P(Xk = j, hk ).
Thus, we have the following distribution for Xk:

P(Xk = j ) =
∑

hk=0,k

P(Xk = j, hk ) = u1,j + uk−1,j

= 1

k

k−1∑
m=1

cosj−1

(
πm

k

)
sin

(
πm

k

)

×
[
[1 − (−1)m] sin

(πm

k

)]
. (16)

We can compute the corresponding conditional expectations
and cumulative distributions in the standard way, and then use
Eq. (9) to compute the expected lifetime of the forager. For
small values of s, the forager lifetime is initially superlinear
in s, but that as s increases, the lifetime slowly converges to
a linear function of s, as described by the cover time approx-
imation [Fig. 3(a)]. Furthermore, the lifetime T (n, s, pj = 0)
is generally insensitive to n for small values of s. This is
because the forager will rarely ever consume all the food in
its environment in these cases.

B. Jumping

For pj = 1, the time Xk between consuming the (k − 1)th
and kth food site is geometrically distributed with success
probability [n − (k − 1)]/n. Specifically, P(Xk = j ) is the
probability of j − 1 visits to empty sites, each with prob-
ability [k − 1]/n, followed by a visit to a food site, with
probability [n − (k − 1)]/n. Thus,

P(Xk = j ) =
(

k − 1

n

)j−1(
n − (k − 1)

n

)
.

We can compute the cumulative distributions and conditional
expectations of a geometric random variable in the typical
way, to yield the following formula for the forager lifetime
from Eq. (9):

T (n, s, pj = 1) = s +
n−1∑
k=1

(
k + 1

n

)s k∏
j=1

[
1 −

(
j

n

)s]

×
k∑

i=1

[
n

n − i
+ s + s

(i/n)s − 1

]
.

From Fig. 3(b) we again see that for small values of s the
forager lifetime T (n, s, pj = 1) is initially superlinear in s

and insensitive to n, but limits to the cover time approximation
as s increases.

To compare the two strategies (pure diffusion vs pure
jumping), we compute the ratio Tdiff/Tjump of the forager
lifetime for pj = 0 to the forager lifetime for pj = 1. For
sufficiently large s, diffusion leads to longer lifetimes than
jumping [Fig. 3(c)]. This is because the diffusive forager will
cover the environment more slowly than the jumping forager,
so they will not consume food as quickly. Note, the ratio
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drops as we change s = 1 to s = 2 since in the case of pure
diffusion (and s = 1) the forager will live at least two time
steps, whereas the pure jumper may not. As soon as s = 2, this
effect becomes negligible. Furthermore, this drop in the ratio
becomes less severe for larger values of n since the jumper
will almost always live at least two time steps. In Fig. 3(d),
we display the ratio as a surface plot along both the s and n

axes. Increasing s clearly expands the region (outlined) of n

values, for which diffusion is a better strategy. Note that for
very small values of n (n � 5) the cover time for diffusion is
less than the cover time for jumping, leading to an advantage
of jumping over diffusion at those parameter values. When s is
large relative to n, the diffusive forager benefits from a larger
cover time, so for these small values of n, it is consistently
more beneficial to jump rather than diffuse. On the other hand,
when s is small compared to n, it is better to jump since this
will decrease the likelihood of starving before much of the
environment’s food has been consumed.

This concludes our analysis in the case of pure diffusion
(pj = 0) or pure jumping (pj = 1). We now turn to two sim-
pler instantiations of the jump-diffusion model of the starving
forager: one that considers a very small environment (n = 4)
and another that considers replacing diffusion with waiting.
Both of these models exhibit the same nonmonotonicity of
the lifetime T with respect to pj , and admit some explicit
analysis.

V. TRACTABLE MODELS AND APPROXIMATIONS
OF JUMP DIFFUSION

Given our insights from the extreme cases pj ∈ {0, 1}, we
now consider the full hybrid model, where the forager can
both jump and diffuse. We have seen that when s is large is
relative to n, it is more advantageous to diffuse rather than
jump. To obtain explicit expressions of this result, we will
consider two simplifications. First, for a sufficiently small
system (small n and s), the forager lifetime can be explicitly
determined either by combinatorial methods or by analyzing
the probability transition matrix for the system. Second, we
will consider a model that replaces diffusion with waiting.
This altered model still yields qualitatively similar results
to the jump-diffusion model, lending credence to our theory
that diffusion acts as a way to prevent premature resource
depletion. Both of these models demonstrate that it is most
beneficial for the forager to use a mixture of jumping and
diffusing (or waiting), specifically that T (n, s, pj ) has an
interior maximum on pj ∈ [0, 1]. Furthermore, in the case of
the jump-wait model, we will see that the larger s is relative
to n, the smaller the optimal value of pj becomes, consistent
with our results for the jump-diffusion model.

A. Small system

For a system of small enough size, the lifetime of the
forager can be analytically determined, either by enumerating
all possible outcomes or by analyzing an associated discrete-
time Markov chain. Here, we consider a lattice with n = 4
sites, and a starvation time of s = 2. The combination of food
and forager states can be described as a 13 state Markov chain
[Fig. 4(a)]. State 1 corresponds to time step 1, in which the
starting site’s food has been eaten. State 13 corresponds to

FIG. 4. Jump-diffusion model of foraging for small environment
size and survival time (n = 4, s = 2). (a) Enumeration of food and
forager geometries for n = 4 and s = 2 systems. The forager is
always in the left (bold) site after a rotation of the system. The arrows
denote admissible transitions between geometries. Note that since
s = 2, every geometry can return to itself once. (b) Expected forager
lifetime T computed explicitly as a function of pj [Eq. (17)] has an
interior maximum (black dot).

the cemetery state, in which the forager has starved. Most of
the remaining intermediate states are identical to at least one
other state, when considering rotations, so there are only six
elementary “live” states plus the cemetery state. Note that the
forager can transition from most state geometries to death, by
landing on a site without food more than s = 2 times in a
row. The nonzero entries of the associated transition matrix
Q corresponding to the probabilities to transition from state i

to j are given in Appendix A.
To calculate the forager lifetime, we compute the mean

absorption time into the 13th state (the cemetery state) as a
passage time problem for Markov chains [21]. Let us denote
by v the vector of all zeros save the first entry which is one.
Let 1 be a vector of all ones. Finally, let Q̃ be the submatrix
of the preceding probability transition matrix excluding the
cemetery state. The expected forager lifetime is then given by

T (4, 2, pj ) = 1T (I − Q̃T )−1v.

We can also determine the expected forager lifetime
T (4, 2, pj ) by enumerating outcomes directly (see
Appendix B), yielding the following polynomial:

T (4, 2, pj ) = − 3

512
p6

j − 3

256
p5

j + 15

256
p4

j (17)

− 11

128
p3

j − 39

64
p2

j + 25

32
pj + 35

8
, (18)

which can be maximized numerically [Fig. 4(b)]. With ei-
ther method of computation, the maximal forager lifetime
is T max ≈ 4.612 at pj ≈ 0.598, demonstrating it is optimal
for the forager to both jump and diffuse in this simple case.
Examining Fig. 4(a), we expect that the forager lifetime is
lengthened by allowing the system to dwell in the intermediate
states preceding the bottom cemetery state. This is the same
intuition as in the large system: the optimal forager balances a
reduction in their probability of starving before eating all the
food with a reduction in the rate at which food is consumed.
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FIG. 5. Jump-wait model of foraging. (a) Forager lifetime as a
function of pj . The maximal lifetime is marked in black: n = 40
and s = 320, 160, 80, 40, 20 top to bottom as in Fig. 2(a). Means
computed using 106 numerical simulations per point are given by
gray dots. (b) The value of pj that maximizes the forager lifetime as a
function of s: n = 400, 80, 20 top to bottom as in Fig. 2(b). Maxima
computed using golden-section search [16] using 106 simulations per
point are given by gray dots.

B. A jump-wait model

We now consider a modification of our jump-diffusion
model which admits explicit analysis as a function of the
jumping probability pj . In this case, the forager remains at
the same site (rather than diffusing) with probability 1 − pj .
This mimics diffusion in food “deserts,” which will generally
arise in large domains when pj is not too large. The forager
can thus only consume food and reset their starvation clock
by jumping. As we saw in our discussion of cover times,
a diffusing forager covers the domain more slowly than a
jumping forager. Waiting, just like diffusing, acts to slow
the rate at which the forager consumes the food, providing
qualitatively similar nonmonotonic lifetimes in pj [Fig. 5(a)].

In this case, we can obtain an analytic expression for the
forager lifetime, by noting that the interfeeding times Xk are
geometrically distributed with success probability pj

n−(k−1)
n

.
This can be derived by noting that the probability that the for-
ager lands on a piece of food is the probability that the forager
jumps at all, pj , multiplied by the probability that the forager
lands on a site with food, n−(k−1)

n
. The probability that Xk = j

is thus the probability of j − 1 visits to empty sites multiplied
by the probability of a visit to a site with food:

P(Xk = j ) =
(

1 − pj

n − (k − 1)

n

)j−1(
pj

n − (k − 1)

n

)
.

The conditional expectation and cumulative distributions for
a geometric random variable can be computed in the standard
way, giving the forager lifetime from Eq. (9):

E(T ) = s +
n−1∑
k=1

{(
pj (k − n + 1) + n

n

)s

×
k∏

�=1

[
1 −

(
pj (� − n) + n

n

)s]

×
k∑

i=1

[
s + n

(n − i)pj

+ s(pj (i−n)+n

n

)s − 1

]}
. (19)

Taking a large s limit of this expression, we obtain

E(T ) ≈ s + n

pj

n−1∑
k=1

1

k
, (20)

which is exactly the approximation (1) for the mean cover
time plus the starvation time s. The cover time is equal to
that from the case of pure jumping, Eq. (5), scaled by 1

pj
. This

demonstrates that for sufficiently large s, the smaller the value
of pj , the longer the expected forager lifetime.

By examining Fig. 5(a), we see that the jump-wait model
shares important characteristics with the jump-diffusion
model. The forager lifetime is nonmonotonic in pj and the
optimal value of pj decreases as s increases. Additionally, the
optimal pj decreases as a function of s, but increases as a
function of n [Fig. 5(b)]. Similar to the optimal pj curves
for the jump-diffusion model, the curves have sections of
relatively rapid change for intermediate values of s. Thus, our
findings for the jump-wait model again suggest that a starving
forager can maximize their lifetime by balancing a decrease
in the rate of food consumption (by lowering pj ) with an
increase probability of surviving until most of the food is
consumed (by increasing pj ).

VI. JUMP-PENALTY MODELS

Up to this point, we have considered a model in which
jumps and diffusive movements both take a single time step.
However, foragers exploring distant food patches typically
require more time for these excursions [22]. Thus, we consider
the effects of introducing a cost function associated with the
jumps. Specifically, we consider two different cost functions:
(i) a constant penalty, where each jump takes c time steps,
and (ii) a distance-based penalty function where each jump
takes cd time steps for a distance d. During the jump, the
forager cannot consume any food, and in the simplest version
of this extended model, it may starve midjump if the jump
cost is large enough. Thus, we also consider a model in which
the forager only makes jumps if it will not starve midjump.
In certain cases, models in which jumps are penalized have
longer survival times, due to the inclusion of large epochs in
which the agent is traveling and not exhausting the finite food
supply.

A. Constant penalty

We begin by considering a constant penalty function. Any
time the forager jumps, it takes c ∈ N time steps to do so.
This provides a benefit to the forager by limiting premature
resource depletion, but every jump the forager makes brings
it much closer to starvation. Despite these additional risks, it
is more beneficial for the forager to jump than to diffuse for
c > 1 [Figs. 6(a) and 6(c)]. Thus, the added risk incurred by
decreasing the number of jumps needed to starve the forager
is outweighed by the slowing of food depletion. However, a
larger c does not necessarily correspond to a greater lifetime.
The forager lives longer with c = s

2 than for c = s [Fig. 6(e)].
This is because for c = s, any time the forager makes a jump
to an empty site, it is guaranteed to starve, whereas with
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FIG. 6. Jump-diffusion model of foraging with constant penalty
c where the forager can [(a), (c), (e)] and cannot [(b), (d), (f)] starve
during a jump. (a), (b) The expected lifetime of a forager as a
function of pj with s = 40. Means are computed with 106 numerical
simulations per point. (c), (d) The optimal value of pj as a function
of s. Maxima are computed using golden-section search [16] with
107 simulations per point. (e), (f) The expected lifetime of a forager
moving with the optimal pj . Means are computed using 106 numer-
ical simulations per point. n = 40 and blue, red, yellow, and purple
correspond to c(s ) = 1, 2, s/2, and s.

c = s
2 , if the forager lands on an empty site, it can jump once

more, substantially reducing its odds of starving.
In the case of pure jumping (pj = 1) we can calculate an

explicit formula for the forager’s lifetime as long as c evenly
divides s, following along similar lines to Sec. IV. Let s =
cq, for c, q ∈ N. Let us define the geometric random variable
Xk so that

P(Xk = j ) =
(

k − 1

n

)j−1(
n − (k − 1)

n

)
. (21)

The equation for the lifetime is fairly similar to Eq. (9)
with some modifications. Now, interfeeding times are given
by cXk rather than Xk . Thus, the cumulative distribution of
interfeeding times is computed by summing over Eq. (21):

Fk (s) = P(c · Xk � s) =
q∑

j=1

P(Xk = j ), Fn+1(s) = 0,

(22)

where q = s/c ∈ N as assumed. It follows that if Fk (s) is the
probability the forager survives long enough to consume the
kth piece of food after consuming the (k − 1)th piece of food,

then the probability the forager eats exactly k pieces of food
is

P(k∗ = k) = (1 − Fk+1(s))
k∏

j=1

(Fj (s)). (23)

Finally, we calculate the conditional expectation, noting
that E(cXk|cXk � s) = cE(Xk|Xk � q ). Replacing terms in
Eq. (9) as such, and calculating the terms explicitly, using
Eqs. (21)–(23), we have the following result:

T (n, s, pj = 1, c) = s + c

n−1∑
k=1

(
k + 1

n

)q k∏
j=1

[
1 −

(
j

n

)q]

×
k∑

i=1

[
n

n − i
+ q + q

(i/n)q − 1

]
.

Indeed, the theoretical curves generated from T (n, s, pj =
1, c) match precisely with the results from numerical simu-
lations in Fig. 6(e) when pj = 1.

We can also consider an alteration to this model where the
forager will not jump if it can die midjump. If the forager has
scurrent steps left until starvation, then if scurrent < c, the forager
will strictly diffuse until it finds another piece of food or
starves. If scurrent � c, the forager will jump with probability
pj and diffuse with probability 1 − pj , exactly as before. This
addition does not affect the optimal value of pj [Figs. 6(b),
6(d), 6(f)]. For c = 1, the inability to die does not matter since
as long as the forager is alive, scurrent > 1 = c. Furthermore,
for c > 1, the addition of not being able to take a fatal jump
does not make jumping any less favorable, so the optimal pj

continues to be 1.

B. Distance-based penalty

We now consider a penalty function for the jump that
depends on the distance traveled d. If we enumerate our sites
on the periodic lattice so that site i is adjacent to sites i ± 1,
for i = 2, . . . , n, and so site 1 and site n are adjacent, then
the distance between sites x and y are d(x, y) = min(|x −
y|, n − |x − y|). The number of time steps for a jump from
site x to site y is then given by c · d(x, y). Note that for c

large enough, the average lifetime is a monotone decreasing
function of the jump probability [Fig. 7(a)]. From Fig. 7(c),
we see that for small values of s, it is better to solely diffuse,
regardless of c. If s is small compared to the average jump
penalty (≈c · n/4), the forager will likely starve midjump,
possibly even on the first jump. However, for s sufficiently
large compared to the average jump penalty, the benefits of
slower food consumption become apparent. As in the case
of constant jump penalties, the perils of dying midjump are
outweighed by the slowed rate of food depletion. At this
point, the optimal strategy flips, and it is optimal to purely
jump, which results in more rapid growth of the optimal
survival time T as a function of s [Fig. 7(e)]. However, this
never occurs for c = s

2 , s since the forager has a very small
probability of surviving a jump, so it is always better to
diffuse.

We can calculate the lifetime of the forager in the case
where pj = 1 and c = s explicitly. When c = s, the forager
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FIG. 7. Jump-diffusion model of foraging with distance based
penalty cd where the forager can [(a), (c), (e)] and cannot [(b),
(d), (f)] starve during a jump. (a), (b) The expected lifetime of a
forager as a function of pj with s = 40. Means are computed with
106 numerical simulations per point. (c), (d) The optimal value of
pj as a function of s. Maxima are computed using golden-section
search [16] with 107 simulations per point. (e), (f) The expected
lifetime of a forager moving with the optimal pj . Means are com-
puted using 106 numerical simulations per point. n = 40 and blue,
red, yellow, and purple correspond to c(s ) = 1, 2, s/2, and s.

can only survive jumps if it jumps to an adjacent site that still
contains food. Since it takes zero time to jump to the site it
is currently at, the forager essentially has n − 1 choices each
time it needs to jump. For the first jump, it can survive if it
jumps to either of the two adjacent sites, with probability 2

n−1 .
If it jumps to any other site with probability n−3

n−1 , it will starve
midjump in s time steps. For the forager to survive s · k steps
for 1 < k < n, it must survive the first jump with probability

2
n−1 (by jumping to the either of the two adjacent sites), it
must survive k − 2 jumps with probability 1

n−1 (by jumping to
the one adjacent site with food), and then it must starve with
probability n−2

n−1 (jumping to any site other than the adjacent
site with food). The forager will live s · n steps if it survives
the first jump with probability 2

n−1 , and it survives n − 1
jumps each with probability 1

n−1 . The expected lifetime is

T (n, s, pj = 1, c = s) = s
n − 3

n − 1

+ 2s(n − 2)
n−1∑
k=2

k

(
1

n − 1

)k

+ 2sn

(n − 1)n
.

It is clear from Fig. 7(c) that it is always better to diffuse for
such large values of the penalty scaling c.

We can also consider a modification to the model where the
forager will only execute a jump if it does not starve midjump.
In models discussed prior to this one, the forager jumps by
selecting a uniformly randomly distributed site on the full
domain to jump to [Fig. 1(a)]. In the modified model we
consider now, a jumping forager restricts the space of possible
next site locations to the set V = {y : cd(x, y) � scurrent},
where d(x, y) is the distance between the current x and next
possible y site. This restriction prevents the forager from
dying midjump. If V = {x}, then the forager will only diffuse
until it consumes another piece of food, or it starves. The
inability to die midjump substantially alters optimal strategy
[Figs. 7(b) and 7(d)]. For small values of s, it is now optimal
to strictly jump for c = 1, 2 since the forager cannot make
a jump that it will not survive. Thus, jumping outperforms
diffusion for even smaller s. Even more altered is the optimal
strategy for c = s. The forager is only permitted to move to
neighboring sites, which will typically have a probability 1

2 of
containing food, as a desert is carved out in the forager’s wake.
Now that the forager survives a jump with probability no less
than 1

2 instead of 1
n−1 , it is always optimal to jump. Finally,

for c = s
2 , the optimal values of pj look qualitatively similar

to the optimal values of pj in the original model [Fig. 2(b)].
Lifetimes are longer when c is relatively small as compared to
s [Fig. 7(f)]. However, once s becomes large enough that the
forager can comfortably reach the entire domain, the optimal
strategy for c = 2 leads to longer lifetimes than c = 1.

We can again calculate the forager lifetime in the case
of pure jumping with c = s. The forager is guaranteed to
survive at least the first jump. Every subsequent jump is
survived with probability 1

2 if it jumps to the adjacent site
with food. Otherwise, it will starve upon reaching the empty
adjacent site. Thus, the probability that the forager lives ck

time steps is 1
2k−1 for 1 < k < n − 1. To survive sn steps,

the forager needs to survive the first jump with probability
1, and n − 2 subsequent jumps each with probability 1

2 . The
expected forager lifetime is

T (n, s, pj = 1, c = s) = s

n−1∑
k=2

k

2k−1
+ sn

2n−2
= s(3 − 22−n),

which matches the points generated from numerical simula-
tions in Fig. 7(f).

VII. DISCUSSION

We have extended the recently developed starving forager
model [7] to account for the possibility of long-range motion
via jumping. The combination of these two modes of move-
ment is related to Lévy-type motion often found in the dynam-
ics of motile organisms’ foraging strategies [12]. By analyzing
cover times, we have shown that jumping consumes food
more rapidly than diffusion. This provides an explanation for
why a mixture of jumping and diffusion is optimal: excessive
jumping leads to rapid food depletion, excessive diffusion
leads to earlier starvation of the forager who gets stuck in
food “deserts.” In a sense, the forager optimally balances
exploration (via jumping) and exploitation (via diffusion)
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when using a mixture of these modes of movement. This
explanation is further validated by the qualitative similarities
of the jump-diffusion and jump-wait models. In either model,
making s larger or n smaller lead to situations in which the
forager maximizes their lifetime by diffusing more, while the
converse corresponds to more jumping being optimal.

The nonmonotonicity of the forager’s lifetime in pj breaks
down when considering a model with time-penalized jump-
ing. For constant time penalties, foragers obtain the longest
lifetime by practicing pure jumping. The advantage formerly
gained by diffusing, the slowing of food consumption, is now
accomplished via the time penalties: no food is consumed
while the forager is in the midst of a jump. When jumps
are penalized as a function of their distance, pure diffusion
becomes optimal, as most jumps will result in sudden death.
However, if foragers enact a strategy of not jumping if it
causes them to die, the best strategy is then for foragers
to make long-distance jumps unless they will die midjump,
in which case they diffuse. This more sophisticated strategy
recovers an exploration and exploitation tradeoff that depends
on the the forager’s nearness to starvation.

Our model of a starving forager with a mixture of
movement modes suggests several other possible extensions.
Throughout this work, jumping has represented movement
with equal probability to any lattice site. However, a for-
ager executing a jump may more often select a site that is
further away, to avoid revisiting empty sites. They may also
be less likely to make extremely large jumps. This would
suggest a model where the jump process is associated with a
nonuniform distribution of jump distances. Our extension to a
model that considers distance-penalized jumping has partially
incorporated such a strategy by only allowing jumps below a
certain distance, when the forager wishes to avoid starvation.
However, we could also consider strategies whereby the for-
ager only takes jumps above a certain size, to try and promote
movement out of food deserts.

Our work has also only considered a periodic one-
dimensional lattice environment. The behavior of the forager
in higher dimensions is still open, and it would be interesting
to see how the forager lifetime depends on domain size and
geometry in higher dimensions (e.g., plane, torus, or sphere).
Another relevant extension would be for the forager to retain
some information about its previous actions. For example, pj

could increase, as the number of steps without food increases.

This would provide a strategy in which the forager only
executes long range movement if they are starving, which will
probably limit the rate at which food is consumed and increase
the overall lifetime T . Our model could also incorporate
greed (or antigreed) as a parameter [8]. As shown in previous
work, the lifetime of foragers increases in one-dimensional
environments if their diffusion is biased away from food. This
finding mirrors our own conclusion, that foragers maximize
their lifetime by balancing a reduction in the probability of
early starvation with the conservation of resources.
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APPENDIX A: TRANSITION MATRIX
FOR SMALL SYSTEM

We define the states of the small system with n = 4 sites
and survival time s = 2 according to the relative location
of the forager and the arrangement of food sites remaining.
This numbers 13 distinct states, with a transition matrix
Q for the update of the state vector St+1 = QT St where
Q1,2 = Q1,3 = Q2,3 = Q2,13 = Q9,10 = Q9,11 = Q10,11 =
pj

4 , Q1,5 = Q2,5 = Q9,8 = 2−pj

2 , Q3,4 = Q4,13 = Q7,8 = pj

2 ,

Q3,9 = Q4,9 = Q7,10 = Q7,11 = Q8,11 = 2−pj

4 , Q5,6 = Q5,7

= Q6,7 = Q6,13 = 1
2 , Q8,13 = 2+pj

4 , Q10,13 = 4−pj

4 , Q11,12

= Q12,13 = Q13,13 = 1. Note that the 13th state is the
absorbing cemetery state.

APPENDIX B: CALCULATING T (4, 2, p j )

With a four site geometry, the forager has two types of
movement. It can either move to the opposite site or remain at
the current site both with probability p+ = pj

4 or it can move

to a specific adjacent site with probability p− = 2−pj

4 . For
brevity, we denote P(T (4, 2, pj ) = i) as pi , and enumerate
all possible paths

p2 = p2
+, p3 = p−

2
+ 4p3

+, p4 = p+p3 + 2(p2
− + p−p+)(2p2

− + 3p−p+ + 4p2
+) + 2(p+p−)(2p2

− + 6p−p+ + p2
+),

p5 = p+(2(p2
− + p−p+)(2p2

− + 3p−p+ + 4p2
+) + 2(p+p−)(2p2

− + 6p−p+ + p2
+)) + 2(p3

− + p2
−p+ + p−p2

+)

+ (1/2)p−(2p2
− + 3p−p+ + 4p2

+) + 4p−p2
+(2p2

− + 6p−p+ + p2
+),

p6 = 2(p2
− + p−p+)(3p−p+) + 2p−p+(2p2

− + p2
+) + p+2(p3

− + p2
−p+ + p−p2

+) + p−(p2
− + p+p−)

+ 4p3
+p− + p+[(1/2)p−(2p2

− + 3p−p+ + 4p2
+) + 4p−p2

+(2p2
− + 6p−p+ + p2

+)],

p7 = (3/2)p2
−p+ + 4p2

+p−(2p2
− + p2

+) + p+[2(p2
− + p−p+)(3p−p+) + 2p−p+(2p2

− + p2
+)]

+ p+[p−(p2
− + p+p−) + 4p3

+p−],

p8 = p+[(3/2)p2
−p+ + 4p2

+p−(2p2
− + p2

+)].

We have E(T (4, 2, pj )) = ∑8
i=2 ipi which yields Eq. (17).
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