Optimizing a jump-diffusion model of a starving forager

Nikhil Krishnan* and Zachary P. Kilpatrick†

Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA

(Received 17 July 2018; revised manuscript received 24 September 2018; published 19 November 2018)

We analyze the movement of a starving forager on a one-dimensional periodic lattice, where each location contains one unit of food. As the forager lands on sites with food, it consumes the food, leaving the sites empty. If the forager lands consecutively on s empty sites, then it will starve. The forager has two modes of movement: it can either diffuse, by moving with equal probability to adjacent sites on the lattice, or it can jump to a uniformly randomly chosen site on the lattice. We show that the lifetime T of the forager in either paradigm can be approximated by the sum of the cover time t_{cover} and the starvation time s, when s far exceeds the number n of lattice sites. Our main findings focus on the hybrid model, where the forager has a probability of either jumping or diffusing. The lifetime of the forager varies nonmonotonically according to p_j, the probability of jumping. By examining a small system, analyzing a heuristic model, and using direct numerical simulation, we explore the tradeoff between jumps and diffusion, and show that the strategy that maximizes the forager lifetime is a mixture of both modes of movement. However, when extending the model to include time penalties for long-range movement, the forager’s lifetime is no longer typically nonmonotonic in p_j. Pure jumping is typically optimal when there is an upper bound on the time penalty, but pure diffusion is optimal when jumping becomes too perilous. A mixed jump-diffusion strategy is recovered if a forager is allowed to avoid jumping if they will die midjump.

DOI: 10.1103/PhysRevE.98.052406

I. INTRODUCTION

Virtually all motile organisms must forage for resources such as food, habitats, or mates. Optimal foraging theory typically examines what strategies best balance search cost with reward [1]. An integral component of foraging is the balance between exploiting the known and/or nearby resources versus exploring one’s broader environment for new resources [2]. Organisms typically deplete resources in their immediate vicinity over time [3], unless depletion is slow and resources are renewable [4]. Thus, organisms often invoke strategies in which they compare the known yield at their current location with distribution of yields from distant sites [5].

The predictions of theoretical models of foraging strongly depend on the information available to the forager. If foragers have partial knowledge of the statistical distribution of resources, optimal foraging strategies are usually straightforward to identify and typically balance an explore and exploit tradeoff [1,6]. In contrast, foragers may possess no knowledge of their environment and may be incapable or unwilling to learn based on their foraging history [7]. Recent models along these lines study the dynamics of foragers moving in environments organized on a lattice, according to a random walk. Previous work has examined the effect of making the forager more or less likely to pursue food [8], making the forager wait before consuming food [9], and giving the forager a chance not to consume encountered food [10]. In particular, this recent work has studied the added constraint of starvation, whereby the forager cannot go longer than s steps without food. Exploration and exploitation tradeoffs are then determined by how search strategy parameters shape the lifetime of the forager, corresponding to the number of steps until it starves.

Our model is similar to a starving forager executing a random walk developed in [7,8]. We consider the movement of a forager on a one-dimensional periodic lattice with n sites, where each location contains one unit of food. If the forager lands on a site with food, the forager consumes the food, leaving the site empty. After the forager lands on s consecutive empty sites, it starves. Since the food is depleted and never regenerated, the forager will eventually starve, and can survive at most $s \cdot n$ steps, though the mean lifetime T is typically much less than this upper limit.

Recent analyses have focused on cases in which foragers only move locally, according to biased or unbiased random walks [7–9]. In contrast here, we explore the effects of allowing the forager to make large jumps. Food is typically distributed heterogeneously in an environment, and animals can adapt their foraging strategy as such [1]. For example, penguins alternate between foraging locally on patches of krill and moving ballistically between them [11]. One foraging strategy for this situation is a Lévy-type movement, where animals combine small-scale movements with long-distance displacements [12–15]. Our model will emulate this type of movement as follows.

Our forager has two modes of movement [Fig. 1(a)]: it can either diffuse, by moving with equal probability to adjacent points on the lattice [Fig. 1(b)], or it can jump to a uniformly randomly chosen site on the lattice [Fig. 1(c)]. In particular, we examine a hybridized approach, where the forager...
jumps with probability \(p_j \), or diffuses with probability \(1 - p_j \) [Fig. 1(d)]. Providing our forager with both types of movement allows us to consider how much time the forager should spend exploiting a given location, and how frequently the forager should move to other locations. We demonstrate that the mean forager lifetime \(T \) varies nonmonotonically with respect to \(p_j \), and the forager’s lifetime is maximized through a mixture of jumping and diffusion.

This work extends the recent studies of [7–9] by incorporating long-range motion into the dynamics of a starving forager. Those previous studies were primarily concerned with how additional considerations like greed or frugality could affect the lifetime of a starving forager that moves via local diffusion. Note that in the limit of \(p_j \to 0 \) our model reduces to the basic form of those previous models.

Obtaining an explicit formula for the forager lifetime proves difficult, perhaps even intractable. Thus, we employ a number of alternative methods for gaining insight into how the mean forager lifetime \(T \) depends on model parameters. First, we study separately the two boundary cases of pure diffusion and pure jumping. In both cases, we can determine an upper bound for the forager lifetime as the sum of the cover time and survival time, and explicitly derive formulas for the forager lifetime. This reveals that a diffusive strategy is more advantageous when the survival time \(s \) is longer, whereas a jumping strategy is better for short survival times.

Next, we analyze the jump-diffusion model in a very small environment (with \(n = 4 \) food sites) and short survival time \((s = 2) \), showing mean lifetime is optimized by using a mix of jumping and diffusion. Finally, we analyze a jump-wait model, where we replace the diffusive behavior with waiting behavior where the forager remains in the same location until jumping. The qualitative performance of this model is similar to the jump-diffusion model, suggesting that foragers extend their lifetime by simply not consuming food when they have recently fed.

Our study concludes by considering several extensions of our model in which long-range jumps require more time than diffusion. In this extended model, the nonmonotonicity of the forager lifetime in \(p_j \) mostly disappears. Typically, the forager does best when enacting a strategy of pure jumping in these cases. Although, when time penalties scale linearly with distance, pure diffusion becomes optimal, as most jumps result in death. In either case, a forager’s lifetime can be lengthened by allowing a mixed jump-diffusion strategy whereby the forager only makes jumps that do not kill them and diffuse otherwise.

II. OPTIMAL JUMP RATE

To begin, we consider the full hybrid model, where the forager can both jump and diffuse. We will numerically determine the effect of \(p_j \) on the mean forager lifetime \(T(n, s, p_j) \), while varying the environment size \(n \) and survival time \(s \). Across a wide range of parameters, a mixture of jumping and diffusion \((0 < p_j < 1)\) leads to higher values of \(T \). For larger \(s \) relative to \(n \), the value of \(p_j \) that maximizes \(T \) becomes smaller. This trend will be studied in detail by analyzing related models in subsequent sections. Numerical results are shown in Fig. 2. As shown in Fig. 2(a), \(T \) is nonmonotonic in \(p_j \) for different values of \(s \), so there is an interior \(p_j \) that maximizes \(T \). As we demonstrate in subsequent sections, a larger \(p_j \) (more jumping) causes the forager to consume food more rapidly, lowering the odds of starving between feedings, but depleting the resources more rapidly. Thus, the optimal \(p_j \) balances the tradeoff of slowing the rate of food consumption (decreasing \(p_j \)) with decreasing the probability of starving early on (increasing \(p_j \)). For lower values of \(s \), there is a broad range of \(p_j \) values over which \(T \) is relatively unchanged. This suggests that the advantage gained by slowing the rate of food consumption is roughly counteracted by the increased probability of starvation. As the survival time \(s \) is increased, the optimal value of \(p_j \) decreases since the forager becomes less likely to die between feedings [Fig. 2(b)]. Utilizing diffusive motion (lower \(p_j \)) more often limits that rate at which food is consumed. On the other hand, as the size of the environment is increased (larger \(n \)), the optimal \(p_j \) increases. This is because there is more food initially available, so the forager can afford...
to increase the rate of food consumption to decrease their probability of starving.

Our interpretations of the mean lifetime T dependence on p_j, s, and n can be analyzed in further detail by considering a few different limiting cases and approximations of the jump-diffusion model. We begin by studying the behavior of the model at the two extremes of pure diffusion ($p_j = 0$; Fig. 1(b)) and pure jumping ($p_j = 1$; Fig. 1(c)). Our two main findings in this analysis are that (a) a diffusive forager covers the environment more slowly, decreasing the rate of food consumption as discussed above; and (b) jumping is a better strategy in large environments (large n) with lower survival times (small s). Indeed, this is consistent with our numerical results above. We conclude with an analysis of two simpler models that demonstrate the same nonmonotonicity of T in p_j as shown in Fig. 2.

III. COVER TIMES AT EXTREMES

Considering the boundary cases of pure diffusion $p_j = 0$ and pure jumping $p_j = 1$ allows us to derive explicit formulas for how model parameters, such as the environment size n and starvation time s impact the mean lifetime T of the forager. This can be approximated first by calculating the mean cover time $E(\tau_{\text{cover}})$ of the forager: the time it takes the forager to cover all of the food sites in the environment. This quantity plus the starvation time s constitutes an upper bound on the lifetime in general, but for large s it provides a reasonable approximation of

$$T(n, s, p_j) \approx s + E(\tau_{\text{cover}}(n, p_j)).$$

This is because, when s is large, the forager generally consumes almost all of the food in the domain before dying since it will typically have enough time between feeding to locate remaining food in the environment.

The mean cover time $E(\tau_{\text{cover}})$ can be computed explicitly. If t_k denotes the time the kth piece of food is eaten, then

$$\tau_{\text{cover}} = t_n, t_1 = 0,$$

and by the linearity of expectation, we have

$$E(\tau_{\text{cover}}) = \sum_{k=2}^{n} E(t_k - t_{k-1}).$$

In the case of both pure diffusion ($p_j = 0$) and pure jumping ($p_j = 1$), $E(t_k - t_{k-1})$ can be explicitly calculated.

A. Diffusion

We first consider the case where $p_j = 0$, so the forager moves only to adjacent sites. Following along the lines of [17], to calculate the cover time, we first consider the time between eating the kth piece of food and the $(k - 1)$th piece of food. The kth piece of food here refers to the time ordering of food consumption in a single foraging realization. Since the forager can only move to adjacent locations, after eating $k - 1$ pieces of food, it must be on the boundary of a contiguous region of $k - 1$ sites with no food, a desert [8]. If we label the current location of the forager as site 1, and the opposite end of the desert as site $k - 1$, then the time to consume the kth piece of food is simply the hitting time of either site 0 or site k. We let f_i be the average time to hit either state 0 or state k starting at state i, as described by the recursion relation

$$f_i = \frac{1}{2} f_{i-1} + 1 + \frac{1}{2} f_{i+1} + 1$$

with $f_0 = f_k = 0$. A detailed analysis of the time for a biased random walk to escape a finite interval is given in [18], where the lifetime of a starving greedy forager is studied. In that work, a parameter p determines the probability of moving towards a site containing food. Their results (given in Appendix B of [18]) reduce to ours for the unbiased random walk when $p = \frac{1}{2}$. We can solve Eq. (3) for $f_1 = t(k - 1)$, and note that [19]

$$E(t_k - t_{k-1}) = f_1 = k - 1,$$

so by plugging into Eqs. (1) and (2), we find

$$T(n, s, p_j = 0) \approx s + \frac{n(n-1)}{2}.$$

Note, this approximation is linear in s and quadratic in n, the size of the environment. Figure 3(a) demonstrates that as s increases, Eq. (5) becomes more accurate, as the forager generally consumes almost all of the food in the environment. For this to be true, s must be nearly an order of magnitude larger than n. When s is too small, the forager will typically die before it can consume all of the food, so the cover time approximation breaks down.

B. Jumping

We next study the case in which the forager always jumps to a uniformly randomly chosen site on each timestep ($p_j = 1$). The cover time is then precisely the solution to the “coupon collecting problem” [17]. Assume the forager has eaten $k - 1$ pieces of food. There are then $n - (k - 1)$ pieces of food remaining, and the time it takes to eat the kth piece of food is geometrically distributed:

$$E(t_k - t_{k-1}) \sim \frac{(k - 1)^{-1}(n - k + 1)}{n!}.$$
of food before starving thus equals
\[P(k^* = k) = P(X_1, \ldots, X_k \leq s, X_{k+1} > s), \]
so \(k^* \in \{1, \ldots, n\} \) is a random variable arising from the stochastic movement and death of the forager. We can determine the distribution of \(k^* \) by first computing the cumulative distribution for each \(X_k \):
\[F_k(s) = P(X_k \leq s) = \sum_{j=1}^{\infty} P(X_k = j), \quad F_{n+1}(s) = 0. \]
Note \(F_1(s) \equiv 1 \). Thus, \(F_k(s) \) is the probability the forager survives long enough to consume the \(k \)th piece of food. We also wish to know the probability that the forager eats exactly \(k \) pieces of food before dying. This is given by
\[P(k^* = k) = (1 - F_{k+1}(s)) \prod_{j=1}^{k} (F_j(s)). \]
The forager lifetime in each case can be computed first by conditioning on consuming exactly \(k \) pieces of food, \(T_k|k^* = k \), which is simply the time it takes to eat the \(k \) pieces of food, plus \(s \) steps more until starvation. The expected lifetime \(T \) is then given by marginalizing over all possible values of \(k^* \):
\[T = \sum_{k=1}^{n} (T_k|k^* = k) P(k^* = k) = s + \sum_{k=1}^{n} (1 - F_{k+1}(s)) \prod_{j=1}^{k} F_j(s) \sum_{i=1}^{k} \mathbb{E}(X_i|X_i \leq s). \]
For the boundary cases of \(p_j = 0 \) and 1, we can derive an explicit formula for \(P(X_k = j) \) in Eq. (8), allowing us to explicitly calculate Eq. (9). In the limit of large \(n \), we can approximate \(F_j(s) \approx 1 \) for all \(j \leq n \) and reduce Eq. (9) to the sum of the expectations \(\mathbb{E}(X_i) \), which is the cover time upper bound given in Eq. (1).

A. Diffusion

We have a general Eq. (9) for \(\mathbb{E}(T) \) that requires knowing \(P(X_k = j) \), the probability it takes \(j \) time steps between consumption of the \(k \)th and \((k-1) \)th pieces of food. In what follows, we demonstrate how to explicitly compute this probability mass function in the case of a diffusive forager. In the next subsection, we study the case of a forager that purely jumps.

When \(p_j = 0 \), the forager moves by diffusion to carve out a food desert, a simply connected region without any food. As before, we label the sites of the desert so that site 1 is where the forager begins after consuming the \((k-1) \)th piece of food, and the other desert boundary is site \(k - 1 \). Following [19,20], we can determine the probability mass function of \(X_k \).

Let \(u_{\ell,j} \) be the probability that it takes exactly \(j \) steps to first hit site 0 from site \(\ell \). Then we have the following recursion relation:
\[u_{\ell,j+1} = \frac{1}{2} u_{\ell-1,j} + \frac{1}{2} u_{\ell+1,j}, \quad u_{0,0} = 1, \quad u_{j,0} = u_{0,j} = u_{k,j} = 0, \quad \forall j > 0. \]
We then define the generating function
\[U_t(v) = \sum_{j=0}^{\infty} u_{t,j} v^j \]
and multiply Eq. (10) by \(v^{j+1} \), so that by summing over \(j \) we obtain
\[U_t(v) = \frac{v}{2} U_{t-1}(v) + \frac{v}{2} U_{t+1}(v). \]
\[U_0(v) = 1, \quad U_t(v) = 0. \]
The boundary conditions arise from the fact that the probability of hitting site 0 is \(u_{0,0} = 1 \) if starting there, but \(u_{k,0} = 0 \) if starting at the opposite food site. Considering solutions to Eq. (11) of the form \(\lambda(v) \), we obtain the characteristic equation
\[\lambda(v) = \frac{v}{2} + \frac{v}{2} \lambda^2(v). \]
This quadratic equation has two roots:
\[\lambda_{\pm}(v) = \frac{1 \pm \sqrt{1 - v^2}}{v}, \]
assuming \(0 < v < 1 \). Each root is a particular solution to Eq. (11). It follows that there are some functions \(A(v), B(v) \) so the general solution has the form
\[U_t(v) = A(v)\lambda_{+}^t(v) + B(v)\lambda_{-}^t(v). \]
We can apply the boundary conditions \(A(v) + B(v) = 1 \) and \(A(v)\lambda_{+}^t(v) + B(v)\lambda_{-}^t(v) = 0 \) from Eq. (11) to determine \(A(v) \) and \(B(v) \). Finally, noting that by their definition \(\lambda_{+}(v)\lambda_{-}(v) = 1 \), we have the explicit formula
\[U_t(v) = \frac{\lambda_{+}^t(v) - \lambda_{-}^t(v)}{\lambda_{+}^t(v) - \lambda_{-}^t(v)}. \]
To determine \(u_{t,j} \), we will decompose \(U_t(v) \) with partial fractions. To start, we make the change of variables \(v = \sec \phi \). Applying this to Eqs. (12) and (14), we find
\[\lambda_{\pm}(v) = \cos \phi \pm i \sin \phi, \quad \sin(k - \ell)\phi = \sin(k \phi). \]
The denominator of \(U_t(v) \) is zero for \(\phi_m = \frac{\ell \pi}{k}, m = 0, \ldots, k \), which correspond to \(v_m = \sec \phi_m \). Furthermore, since the degree of the numerator exceeds the degree of the denominator by at most 1, \(U_t(v) \) has a partial fraction decomposition with the form
\[\frac{\sin(k - \ell)\phi}{\sin(k \phi)} = Av + B + \frac{\rho_1}{v_1 - v} + \cdots + \frac{\rho_{k-1}}{v_{k-1} - v}. \]
To determine the value of \(\rho_{m} \), we multiply both sides by \(v_m - v \), then take \(v \to v_m \) (and \(\phi \to \phi_m \)):
\[\rho_m = \frac{\sin(k \phi_m) \sin \frac{\ell \pi}{k}}{k \cos^2 \frac{\ell \pi}{k}}. \]
By decomposing each fraction of Eq. (15) into a geometric series, we find that the coefficient of \(v^j \) (which is \(u_{t,j} \)) is given by
\[\sum_{m=1}^{k-1} \rho_m v^j = \frac{1}{k} \sum_{m=1}^{k-1} \cos^{-1} \left(\frac{\pi m}{k} \right) \sin \left(\frac{\ell \pi m}{k} \right) \sin \left(\frac{\pi m}{k} \right). \]
We are interested in two possibilities, associated with the site the forager hits next, \(h_k \in [0, k] \). Either, the forager can start at site 1 and hit site 0 (\(h_k = 0 \), corresponding to \(u_{1,j} \)), or the forager can start at site 1 and hit site \(k \) (\(h_k = k \)), which by symmetry is identical to the forager starting at site \(k - 1 \) and hitting site 0 (corresponding to \(u_{k-1,j} \)). The probability it takes \(j \) steps from consuming the \((k-1)\)th to the \(k \)th food site is then the sum over the joint probabilities \(\mathbb{P}(X_k = j, h_k) \). Thus, we have the following distribution for \(X_k \):
\[\mathbb{P}(X_k = j) = \sum_{h_k=0,k} \mathbb{P}(X_k = j, h_k) = u_{1,j} + u_{k-1,j}. \]
By decomposing each fraction of Eq. (15) into a geometric series, we find that the coefficient of \(v^j \) (which is \(u_{t,j} \)) is given by
\[\sum_{m=1}^{k-1} \rho_m v^j = \frac{1}{k} \sum_{m=1}^{k-1} \cos^{-1} \left(\frac{\pi m}{k} \right) \sin \left(\frac{\ell \pi m}{k} \right) \sin \left(\frac{\pi m}{k} \right). \]
By decomposing each fraction of Eq. (15) into a geometric series, we find that the coefficient of \(v^j \) (which is \(u_{t,j} \)) is given by
\[\sum_{m=1}^{k-1} \rho_m v^j = \frac{1}{k} \sum_{m=1}^{k-1} \cos^{-1} \left(\frac{\pi m}{k} \right) \sin \left(\frac{\ell \pi m}{k} \right) \sin \left(\frac{\pi m}{k} \right). \]
drops as we change \(s = 1 \) to \(s = 2 \) since in the case of pure diffusion (and \(s = 1 \)) the forager will live at least two time steps, whereas the pure jumper may not. As soon as \(s = 2 \), this effect becomes negligible. Furthermore, this drop in the ratio becomes less severe for larger values of \(n \) since the jumper will almost always live at least two time steps. In Fig. 3(d), we display the ratio as a surface plot along both the \(s \) and \(n \) axes. Increasing \(s \) clearly expands the region (outlined) of \(n \) values, for which diffusion is a better strategy. Note that for very small values of \(n (n \leq 5) \) the cover time for diffusion is less than the cover time for jumping, leading to an advantage of jumping over diffusion at those parameter values. When \(s \) is large relative to \(n \), the diffusive forager benefits from a larger cover time, so for these small values of \(n \), it is consistently more beneficial to jump rather than diffuse. On the other hand, when \(s \) is small compared to \(n \), it is better to jump since this will decrease the likelihood of starving before much of the environment’s food has been consumed.

This concludes our analysis in the case of pure diffusion \((p_j = 0) \) or pure jumping \((p_j = 1) \). We now turn to two simpler instantiations of the jump-diffusion model of the starving forager: one that considers a very small environment \((n = 4) \) and another that considers replacing diffusion with waiting. Both of these models exhibit the same nonmonotonicity of the lifetime \(T \) with respect to \(p_j \), and admit some explicit analysis.

V. TRACTABLE MODELS AND APPROXIMATIONS OF JUMP DIFFUSION

Given our insights from the extreme cases \(p_j \in \{0, 1\} \), we now consider the full hybrid model, where the forager can both jump and diffuse. We have seen that when \(s \) is large it is more advantageous to diffuse rather than jump. To obtain explicit expressions of this result, we will consider two simplifications. First, for a sufficiently small system (small \(n \) and \(s \)), the forager lifetime can be explicitly determined either by combinatorial methods or by analyzing the probability transition matrix for the system. Second, we will consider a model that replaces diffusion with waiting. This altered model still yields qualitatively similar results to the jump-diffusion model, lending credence to our theory that diffusion acts as a way to prevent premature resource depletion. Both of these models demonstrate that it is most beneficial for the forager to use a mixture of jumping and diffusing (or waiting), specifically that \(T(n, s, p_j) \) has an interior maximum on \(p_j \in [0, 1] \). Furthermore, in the case of the jump-wait model, we will see that the larger \(s \) is relative to \(n \), the smaller the optimal value of \(p_j \) becomes, consistent with our results for the jump-diffusion model.

A. Small system

For a system of small enough size, the lifetime of the forager can be analytically determined, either by enumerating all possible outcomes or by analyzing an associated discrete-time Markov chain. Here, we consider a lattice with \(n = 4 \) sites, and a starvation time of \(s = 2 \). The combination of food and forager states can be described as a 13 state Markov chain [Fig. 4(a)]. State 1 corresponds to time step 1, in which the starting site’s food has been eaten. State 13 corresponds to the cemetery state, in which the forager has starved. Most of the remaining intermediate states are identical to at least one other state, when considering rotations, so there are only six elementary “live” states plus the cemetery state. Note that the forager can transition from most state geometries to death, by landing on a site without food more than \(s = 2 \) times in a row. The nonzero entries of the associated transition matrix \(Q \) corresponding to the probabilities to transition from state \(i \) to \(j \) are given in Appendix A.

To calculate the forager lifetime, we compute the mean absorption time into the 13th state (the cemetery state) as a passage time problem for Markov chains [21]. Let us denote by \(v \) the vector of all zeros save the first entry which is one. Let \(1 \) be a vector of all ones. Finally, let \(\bar{Q} \) be the submatrix of the preceding probability transition matrix excluding the cemetery state. The expected forager lifetime is then given by

\[
T(4, 2, p_j) = 1^T (I - \bar{Q})^{-1} v.
\]

We can also determine the expected forager lifetime \(T(4, 2, p_j) \) by enumerating outcomes directly (see Appendix B), yielding the following polynomial:

\[
T(4, 2, p_j) = -\frac{3}{512} p_j^6 + \frac{3}{256} p_j^4 + \frac{15}{256} p_j^2 + \frac{11}{128} p_j^3 - \frac{39}{64} p_j + \frac{25}{32} + \frac{35}{8},
\]

which can be maximized numerically [Fig. 4(b)]. With either method of computation, the maximal forager lifetime is \(T_{\text{max}} \approx 4.612 \) at \(p_j \approx 0.598 \), demonstrating it is optimal for the forager to both jump and diffuse in this simple case. Examining Fig. 4(a), we expect that the forager lifetime is lengthened by allowing the system to dwell in the intermediate states preceding the bottom cemetery state. This is the same intuition as in the large system: the optimal forager balances a reduction in their probability of starving before eating all the food with a reduction in the rate at which food is consumed.

FIG. 4. Jump-diffusion model of foraging for small environment size and survival time \((n = 4, s = 2) \). (a) Enumeration of food and forager geometries for \(n = 4 \) and \(s = 2 \) systems. The forager is always in the left (bold) site after a rotation of the system. The arrows denote admissible transitions between geometries. Note that since \(s = 2 \), every geometry can return to itself once. (b) Expected forager lifetime \(T \) computed explicitly as a function of \(p_j \) [Eq. (17)] has an interior maximum (black dot).
The conditional expectation and cumulative distributions for a geometric random variable can be computed in the standard way, giving the forager lifetime from Eq. (9):

\[\mathbb{E}(T) = s + \sum_{k=1}^{n-1} \left\{ \left(\frac{p_j(n - (k - 1))}{n} \right)^{s-1} \left(\frac{p_j n - (k - 1)}{n} \right) \right\} \]

Taking a large s limit of this expression, we obtain

\[\mathbb{E}(T) \approx s + \frac{n}{p_j} \sum_{k=1}^{n-1} \frac{1}{k} \]

which is exactly the approximation (1) for the mean cover time plus the starvation time s. The cover time is equal to that from the case of pure jumping, Eq. (5), scaled by \(\frac{1}{p_j} \). This demonstrates that for sufficiently large s, the smaller the value of \(p_j \), the longer the expected forager lifetime.

By examining Fig. 5(a), we see that the jump-wait model shares important characteristics with the jump-diffusion model. The forager lifetime is nonmonotonic in \(p_j \) and the optimal value of \(p_j \) decreases as s increases. Additionally, the optimal \(p_j \) decreases as a function of s, but increases as a function of n [Fig. 5(b)]. Similar to the optimal \(p_j \) curves for the jump-diffusion model, the curves have sections of relatively rapid change for intermediate values of s. Thus, our findings for the jump-wait model again suggest that a starving forager can maximize their lifetime by balancing a decrease in the rate of food consumption (by lowering \(p_j \)) with an increase probability of surviving until most of the food is consumed (by increasing \(p_j \)).

VI. JUMP-PENALTY MODELS

Up to this point, we have considered a model in which jumps and diffusive movements both take a single time step. However, foragers exploring distant food patches typically require more time for these excursions [22]. Thus, we consider the effects of introducing a cost function associated with the jumps. Specifically, we consider two different cost functions: (i) a constant penalty, where each jump takes c time steps, and (ii) a distance-based penalty function where each jump takes \(cd \) time steps for a distance d. During the jump, the forager cannot consume any food, and in the simplest version of this extended model, it may starve midjump if the jump cost is large enough. Thus, we also consider a model in which the forager only makes jumps if it will not starve midjump. In certain cases, models in which jumps are penalized have longer survival times, due to the inclusion of large epochs in which the agent is traveling and not exhausting the finite food supply.

A. Constant penalty

We begin by considering a constant penalty function. Any time the forager jumps, it takes \(c \in \mathbb{N} \) time steps to do so. This provides a benefit to the forager by limiting premature resource depletions, but every jump the forager makes brings it much closer to starvation. Despite these additional risks, it is more beneficial for the forager to jump than to diffuse for \(c > 1 \) [Figs. 6(a) and 6(c)]. Thus, the added risk incurred by decreasing the number of jumps needed to starve the forager is outweighed by the slowing of food depletion. However, a larger c does not necessarily correspond to a greater lifetime. The forager lives longer with \(c = \frac{1}{2} \) than for \(c = s \) [Fig. 6(e)]. This is because for \(c = s \), any time the forager makes a jump to an empty site, it is guaranteed to starve, whereas with
c = \frac{c}{q}, if the forager lands on an empty site, it can jump once more, substantially reducing its odds of starving.

In the case of pure jumping \((p_j = 1) \) we can calculate an explicit formula for the forager’s lifetime as long as \(c \) evenly divides \(s \), following along similar lines to Sec. IV. Let \(s = cq/2 \) for \(c, q \in \mathbb{N} \). Let us define the geometric random variable \(X_k \) so that

\[
P(X_k = j) = \left(\frac{k-1}{n} \right)^{j-1} \left(\frac{n-(k-1)}{n} \right).
\]

The equation for the lifetime is fairly similar to Eq. (9) with some modifications. Now, interfeeding times are given by \(cX_k \) rather than \(X_k \). Thus, the cumulative distribution of interfeeding times is computed by summing over Eq. (21):

\[
F_k(s) = \Pr(\text{c} \cdot X_k \leq s) = \sum_{j=1}^{q} P(X_k = j), \quad F_{n+1}(s) = 0,
\]

where \(q = s/c \) as \(s \in \mathbb{N} \) assumed. It follows that if \(F_k(s) \) is the probability the forager survives long enough to consume the \(k \)th piece of food after consuming the \((k-1) \)th piece of food, then the probability the forager eats exactly \(k \) pieces of food is

\[
Pr(k^* = k) = (1 - F_{k+1}(s)) \prod_{j=1}^{k} (F_j(s)).
\]

Finally, we calculate the conditional expectation, noting that \(\mathbb{E}(cX_k \mid cX_k \leq s) = c \mathbb{E}(X_k \mid cX_k \leq q) \). Replacing terms in Eq. (9) as such, and calculating the terms explicitly, using Eqs. (21)–(23), we have the following result:

\[
T(n, s, p_j = 1, c) = s + c \sum_{k=1}^{n-1} \left(\frac{k+1}{n} \right)^q \prod_{j=1}^{k} \left[1 - \left(\frac{j}{n} \right)^q \right]
\]

\[
\times \sum_{i=1}^{k} \left[\frac{n}{n-1} + q + \frac{q}{(i/n)^{n-1}} \right].
\]

Indeed, the theoretical curves generated from \(T(n, s, p_j = 1, c) \) match precisely with the results from numerical simulations in Fig. 6(e) when \(p_j = 1 \).

We can also consider an alteration to this model where the forager will not jump if it can die midjump. If the forager has \(s_{\text{current}} \) steps left until starvation, then if \(s_{\text{current}} < c \), the forager will strictly diffuse until it finds another piece of food or starves. If \(s_{\text{current}} \geq c \), the forager will jump with probability \(p_j \) and diffuse with probability \(1 - p_j \), exactly as before. This addition does not affect the optimal value of \(p_j \) [Figs. 6(b), 6(d), 6(f)]. For \(c = 1 \), the inability to die does not matter since as long as the forager is alive, \(s_{\text{current}} > 1 = c \). Furthermore, for \(c > 1 \), the addition of not being able to take a fatal jump does not make jumping any less favorable, so the optimal \(p_j \) continues to be 1.

B. Distance-based penalty

We now consider a penalty function for the jump that depends on the distance traveled \(d \). If we enumerate our sites on the periodic lattice so that site \(i \) is adjacent to sites \(i \pm 1, \) for \(i = 2, \ldots, n \), and so site 1 and site \(n \) are adjacent, then the distance between sites \(x \) and \(y \) is \(d(x, y) = \min(|x-y|, n-|x-y|) \). The number of time steps for a jump from site \(x \) to site \(y \) is then given by \(c \cdot d(x, y) \). Note that for \(c \) large enough, the average lifetime is a monotone decreasing function of the jump penalty [Fig. 7(a)]. From Fig. 7(c), we see that for small values of \(s \), it is better to solely diffuse, regardless of \(c \). If \(s \) is small compared to the average jump penalty \((\approx c \cdot n/4)\), the forager will likely starve midjump, possibly even on the first jump. However, for \(s \) sufficiently large compared to the average jump penalty, the benefits of slower food consumption become apparent. As in the case of constant jump penalties, the perils of dying midjump are outweighed by the slowed rate of food depletion. At this point, the optimal strategy flips, and it is optimal to purely jump, which results in more rapid growth of the optimal survival time \(T \) as a function of \(s \) [Fig. 7(e)]. However, this never occurs for \(c = \frac{c}{q}, s \) since the forager has a very small probability of surviving a jump, so it is always better to diffuse.

We can calculate the lifetime of the forager in the case where \(p_j = 1 \) and \(c = s \) explicitly. When \(c = s \), the forager
OPTIMIZING A JUMP-DIFFUSION MODEL OF A … PHYSICAL REVIEW E 98, 052406 (2018)

FIG. 7. Jump-diffusion model of foraging with distance based penalty cd where the forager can \{(a), (c), (e)\} and cannot \{(b), (d), (f)\} starve during a jump. (a), (b) The expected lifetime of a forager as a function of p_j with $s = 40$. Means are computed with 10^6 numerical simulations per point. (c), (d) The optimal value of p_j as a function of s. Maxima are computed using golden-section search [16] with 10^7 simulations per point. (e), (f) The expected lifetime of a forager moving with the optimal p_j. Means are computed using 10^6 numerical simulations per point. $n = 40$ and blue, red, yellow, and purple correspond to $c(s) = 1, 2, s/2, s$.

It is clear from Fig. 7(c) that it is always better to diffuse for such large values of the penalty scaling c.

We can also consider a modification to the model where the forager will only execute a jump if it does not starve midjump. In models discussed prior to this one, the forager jumps by selecting a uniformly randomly distributed site on the full domain to jump to [Fig. 1(a)]. In the modified model we consider now, a jumping forager restricts the space of possible next site locations to the set $V = \{y : cd(x, y) \leq s_{\text{current}}\}$, where $d(x, y)$ is the distance between the current x and next possible y site. This restriction prevents the forager from dying midjump. If $V = \{x\}$, then the forager will only diffuse until it consumes another piece of food, or it starves. The inability to die midjump substantially alters optimal strategy [Figs. 7(b) and 7(d)]. For small values of s, it is now optimal to strictly jump for $c = 1, 2$ since the forager cannot make a jump that it will not survive. Thus, jumping outperforms diffusion for even smaller s. Even more altered is the optimal strategy for $c = s$. The forager is only permitted to move to neighboring sites, which will typically have a probability $\frac{1}{2}$ of containing food, as a desert is carved out in the forager’s wake. Now that the forager survives a jump with probability no less than $\frac{1}{2}$ instead of $\frac{1}{n-1}$, it is always optimal to jump. Finally, for $c = \frac{s}{2}$, the optimal values of p_j look qualitatively similar to the optimal values of p_j in the original model [Fig. 2(b)]. Lifetimes are longer when c is relatively small as compared to s [Fig. 7(f)]. However, once s becomes large enough that the forager can comfortably reach the entire domain, the optimal strategy for $c = 2$ leads to longer lifetimes than $c = 1$.

We can again calculate the forager lifetime in the case of pure jumping with $c = s$. The forager is guaranteed to survive at least the first jump. Every subsequent jump is survived with probability $\frac{1}{2}$ if it jumps to the adjacent site with food. Otherwise, it will starve upon reaching the empty adjacent site. Thus, the probability that the forager lives ck time steps is $\frac{1}{2}^k$ for $1 < k < n - 1$. To survive sn steps, the forager needs to survive the first jump with probability 1, and $n - 2$ subsequent jumps each with probability $\frac{1}{2}$. The expected forager lifetime is

$$T(n, s, p_j = 1, c = s) = s \sum_{k=2}^{n-1} \frac{k}{2^{k-1}} + \frac{sn}{2^{n-2}} = s(3 - 2^{2-n}),$$

which matches the points generated from numerical simulations in Fig. 7(f).

VII. DISCUSSION

We have extended the recently developed starving forager model [7] to account for the possibility of long-range motion via jumping. The combination of these two modes of movement is related to Lévy-type motion often found in the dynamics of motile organisms’ foraging strategies [12]. By analyzing cover times, we have shown that jumping consumes food more rapidly than diffusion. This provides an explanation for why a mixture of jumping and diffusion is optimal: excessive jumping leads to rapid food depletion, excessive diffusion leads to earlier starvation of the forager who gets stuck in food “deserts.” In a sense, the forager optimally balances exploration (via jumping) and exploitation (via diffusion).
when using a mixture of these modes of movement. This explanation is further validated by the qualitative similarities of the jump-diffusion and jump-wait models. In either model, making \(s \) larger or \(n \) smaller lead to situations in which the forager maximizes their lifetime by diffusing more, while the converse corresponds to more jumping being optimal.

The nonmonotonicity of the forager’s lifetime in \(p_j \) breaks down when considering a model with time-penalized jumping. For constant time penalties, foragers obtain the longest lifetime by practicing pure jumping. The advantage formerly gained by diffusing, the slowing of food consumption, is now accomplished via the time penalties: no food is consumed while the forager is in the midst of a jump. When jumps are penalized as a function of their distance, pure diffusion becomes optimal, as most jumps will result in sudden death. However, if foragers enact a strategy of not jumping if it causes them to die, the best strategy is then for foragers to make long-distance jumps unless they will die midjump, in which case they diffuse. This more sophisticated strategy recovers an exploration and exploitation tradeoff that depends on the the forager’s nearness to starvation.

Our model of a starving forager with a mixture of movement modes suggests several other possible extensions. Throughout this work, jumping has represented movement with equal probability to any lattice site. However, a forager executing a jump may more often select a site that is further away, to avoid revisiting empty sites. They may also be less likely to make extremely large jumps. This would suggest a model where the jump process is associated with a nonuniform distribution of jump distances. Our extension to a model that considers distance-penalized jumping has partially incorporated such a strategy by only allowing jumps below a certain distance, when the forager wishes to avoid starvation. However, we could also consider strategies whereby the forager only takes jumps above a certain size, to try and promote movement out of food deserts.

Our work has also considered a periodic one-dimensional lattice environment. The behavior of the forager in higher dimensions is still open, and it would be interesting to see how the forager lifetime depends on domain size and geometry in higher dimensions (e.g., plane, torus, or sphere). Another relevant extension would be for the forager to retain some information about its previous actions. For example, \(p_j \) could increase, as the number of steps without food increases.

This would provide a strategy in which the forager only executes long range movement if they are starving, which will probably limit the rate at which food is consumed and increase the overall lifetime \(T \). Our model could also incorporate greed (or antigreed) as a parameter \([8]\). As shown in previous work, the lifetime of foragers increases in one-dimensional environments if their diffusion is biased away from food. This finding mirrors our own conclusion, that foragers maximize their lifetime by balancing a reduction in the probability of early starvation with the conservation of resources.

ACKNOWLEDGMENTS

N.K. was supported by EXCREEMS-QED: Directions in Data Discovery in Undergraduate Education (NSF Grant No. DMS-1407340). Z.P.K was supported by an NSF Grant (DMS-1615377) and an NSF/NIH CRCNS Grant (RO1MH115557).

APPENDIX A: TRANSITION MATRIX FOR SMALL SYSTEM

We define the states of the small system with \(n = 4 \) sites and survival time \(s = 2 \) according to the relative location of the forager and the arrangement of food sites remaining. This numbers 13 distinct states, with a transition matrix \(Q \) for the update of the state vector \(S_{t+1} = Q^t S_t \) where \(Q_{1,2} = Q_{1,3} = Q_{2,3} = Q_{2,13} = Q_{9,10} = Q_{9,11} = Q_{10,11} = p_r, Q_{1,5} = Q_{2,5} = Q_{9,8} = 2 - p_r, Q_{3,4} = Q_{4,13} = Q_{7,8} = p_r, Q_{3,9} = Q_{4,9} = Q_{7,10} = Q_{7,11} = Q_{8,11} = 2 - p_r, Q_{5,6} = Q_{5,7} = 0, Q_{6,13} = 1 / 2, Q_{8,13} = 2 p_r / 4, Q_{10,13} = 1 / 4 p_r, Q_{11,12} = Q_{12,13} = Q_{13,11} = 1 \). Note that the 13th state is the absorbing cemetery state.

APPENDIX B: CALCULATING \(T(4,2, p_j) \)

With a four site geometry, the forager has two types of movement. It can either move to the opposite site or remain at the current site both with probability \(p_r = 1 / 4 \) or it can move to a specific adjacent site with probability \(p_+ = 2 - p_r / 4 \). For brevity, we denote \(\mathbb{P}(T(4,2,p_j) = i) \) as \(p_i \), and enumerate all possible paths

\[
p_2 = p_r^2, \quad p_3 = \frac{p_r}{2} + 4 p_r^3, \quad p_4 = p_r p_3 + 2(p_r^2 + p_r p_3)(2p_r^2 + 3p_r - 4p_r^2) + (2p_r p_3)(2p_r^2 + 6p_r - p_r + p_r^2),
\]

\[
p_5 = p_r(2(p_r^2 + p_r p_3)(2p_r^2 + 3p_r - 4p_r^2) + (2p_r p_3)(2p_r^2 + 6p_r - p_r + p_r^2)) + (1/2)p_r(2p_r^2 + 3p_r - 4p_r^2) + 4p_r^3 + p_r(2p_r^2 + 6p_r - p_r + p_r^2),
\]

\[
p_6 = 2(p_r^2 + p_r p_3)(3p_r - p_r + 2p_r^2 + 2p_r^2 + p_r^2) + p_4(2p_r^2 + p_r^2 + p_r p_3) + p_r(3p_r^2 + 3p_r - 4p_r^2) + (1/2)p_r(2p_r^2 + 3p_r - 4p_r^2) + 4p_r^3 + p_r(2p_r^2 + 6p_r - p_r + p_r^2).
\]

\[
p_7 = (3/2)p_r p_3 + 4p_r^3 p_3 + p_r^2 + (2p_r^2 + p_r^2) + p_r^2(2p_r^2 + p_r^2 + p_r^2) + (2p_r^2 + p_r^2 + p_r^2 + p_r^2) + p_r^2 + \frac{p_r}{2} (3p_r - p_r + 2p_r^2 + 2p_r^2 + p_r^2).
\]

\[
p_8 = \frac{p_r}{4}(2p_r^2 + p_r^2 + p_r^2 + (2p_r^2 + p_r^2)) + (3/2)p_r^2 p_r + 4p_r^3 p_r + (2p_r^2 + p_r^2).
\]

We have \(\mathbb{E}(T(4,2,p_j)) = \sum_{i=2}^{\infty} i p_i \) which yields Eq. (17).