
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2013 Society for Industrial and Applied Mathematics
Vol. 12, No. 1, pp. 61–94

Wandering Bumps in Stochastic Neural Fields∗

Zachary P. Kilpatrick† and Bard Ermentrout‡

Abstract. We study the effects of noise on stationary pulse solutions (bumps) in spatially extended neural
fields. The dynamics of a neural field is described by an integrodifferential equation whose integral
term characterizes synaptic interactions between neurons in different spatial locations of the network.
Translationally symmetric neural fields support a continuum of stationary bump solutions, which
may be centered at any spatial location. Random fluctuations are introduced by modeling the system
as a spatially extended Langevin equation whose noise term we take to be additive. For nonzero
noise, bumps are shown to wander about the domain in a purely diffusive way. We can approximate
the associated diffusion coefficient using a small noise expansion. Upon breaking the (continuous)
translation symmetry of the system using spatially heterogeneous inputs or synapses, bumps in the
stochastic neural field can become temporarily pinned to a finite number of locations in the network.
As a result, the effective diffusion of the bump is reduced, in comparison to the homogeneous case.
As the modulation frequency of this heterogeneity increases, the effective diffusion of bumps in the
network approaches that of the network with spatially homogeneous weights.
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1. Introduction. Spatially localized patterns of persistent neural activity (bumps) are
well-studied phenomena thought to subserve a variety of processes in the brain [77]. Working
(short term) memory tasks are the best known examples of brain functions that may exploit the
fact that bumps are localized in feature or physical space [38, 16]. For example, in oculomotor
delayed-response tasks, monkeys preserve knowledge of a visual cue location using prefrontal
cortical neurons with elevated activity that is correspondingly tuned to the cue location for
the duration of the delay [36, 35]. There has been a great deal of discussion concerning the
relative role of various classes of prefrontal cortical neurons in maintaining persistent activity
[38]. One strongly supported claim is that slow recurrent excitation is the operant synaptic
mechanism for preserving this localized activity during the retention period [76].

Experimentalists have suggested that prefrontal cortical circuitry consisting of local re-
current excitation and lateral inhibition may underlie the formation of the observed tuning of
neurons to particular cue locations [38]. Networks with such synaptic architecture have long
been studied as a theoretical framework for neural pattern formation, with seminal studies
of spatially extended neural fields carried out by Wilson and Cowan [79] and Amari [1]. A

∗Received by the editors May 5, 2012; accepted for publication (in revised form) by B. Sandstede October 9,
2012; published electronically January 17, 2013.

http://www.siam.org/journals/siads/12-1/87710.html
†Department of Mathematics, University of Houston, Houston, TX (zpkilpat@math.uh.edu). This author was

supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship (DMS-1004422).
‡Department of Mathematics, University of Pittsburgh, Pittsburgh, PA (bard@pitt.edu). This author is supported

by an NSF grant (DMS-0817131).

61

D
ow

nl
oa

de
d 

01
/2

2/
13

 to
 1

30
.4

9.
19

8.
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/siads/12-1/87710.html
mailto:zpkilpat@math.uh.edu
mailto:bard@pitt.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

62 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

distinct advantage of such networks is that they display bistability, where stable spatially lo-
calized bumps can coexist with a spatially homogeneous “off” state. Another common feature
of these models is that they tend to be (continuously) translationally symmetric, since they
are spatially continuous dynamical systems whose symmetry is preserved under reflections
and arbitrary translations [27, 9]. Stationary localized bump solutions arising in these models
have been used as theoretical descriptions of tuning to visual input [4, 10], head direction [82],
and working memory [14]. These studies demonstrate that neural field models are a useful
tool for understanding the dynamical mechanisms necessary to sustain the neural substrates
of a variety of sensory and motor processes.

Since stationary bumps are an idealized description of encoding location in networks rep-
resenting feature space, many neural field studies have examined more deeply how model mod-
ifications affect the dynamics of bump solutions [17, 9]. Many studies have also probed the
effects of persistent inputs on the dynamics of neural fields with feedback inhibition [1, 5, 42].
For sufficiently strong inhibition, networks can generate spontaneous traveling waves, so ac-
tivity fails to lock to stationary [5, 33, 24, 28] or traveling [5, 34, 46] inputs. This can lead to
breathing instabilities where the activity pattern oscillates regularly [33, 34]. Axonal delays
can also substantially alter the dynamics of bumps in models with lateral inhibition, leading to
multibumps [19], oscillatory bumps [69], and antipulses [50]. Multibump solutions can also be
generated by introducing synaptic connectivity that is oscillatory in space [56, 55]. Aside from
the connectivity function, the form of the firing rate function, which converts local synaptic
inputs to an output firing rate, can also affect the shape and stability of stationary bumps
[39, 75]. Many studies of bumps have also explored the effect of auxiliary negative feedback
variables like spike frequency adaptation [64, 21, 28] or synaptic depression [81, 45]. Substan-
tially strong negative feedback can generate a drift instability, where the bump propagates as
a traveling pulse [54, 64, 21, 81, 45, 28], or a breathing instability, where the edges of the bump
oscillate [65, 21, 22]. Recently, it was shown that an auxiliary synaptic facilitation variable
can serve to curtail the tendency of bumps in neural fields with heterogeneous connectivity
to wander [44]. Thus, there is a veritable wealth of dynamic instabilities of bumps that have
been examined in deterministic neural fields.

Beyond these studies, there have been several analyses of spiking neuron models of sta-
tionary bumps [14, 16, 52]. Spiking models have the advantage of capturing finer timescale
dynamics—for example, spike time synchrony—than those of which neural fields are capable.
Another major difference is that spiking models are often chaotic, leading to dynamics that
can appear random. This is much more akin to the environment of networks of neurons in
the brain, seething with fluctuations. As a result, a basic behavior that has been revealed in
numerical simulations of bumps in spiking networks is wandering of the bump’s mean position
[14, 16, 52]. There has been very limited investigation of such dynamics in neural field equa-
tions [14, 44]. Nonetheless, in both spiking models and neural fields with noise, the variance
of the bump’s position scales linearly with time, suggesting its position as a function of time
behaves as a purely diffusive process [14, 16, 67, 15]. This is due in part to these systems
often being translationally symmetric [16, 52, 12]. While this symmetry allows bumps to be
initially nucleated at any point in the network, the inherent marginal stability means bumps
are never firmly pinned to any particular location over time [14, 16, 52]. Thus, a bump’s
position is sensitive to noise and perturbations of the evolution equations of the underlyingD
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WANDERING BUMPS IN STOCHASTIC NEURAL FIELDS 63

dynamical system, whose phase space contains a line attractor.
The wandering of bumps in noisy models of working memory corresponds well with ex-

isting data concerning the dependence of recall error on delay time [78, 66]. In spite of the
relatively reliable correspondence between the elevation of neural activity and the cue loca-
tion in prefrontal cortical networks [38], there is inevitably some error made in reporting the
original cue location [78]. Interestingly, the amplitude of this error scales linearly in time [66],
suggesting that it may be generated by some underlying diffusive process. Thus, improving
the accuracy of stored memories in a network requires reducing the effects of this diffusion as
much as possible. This invites the question of how networks for working memory may exploit
dynamics that are close to line attractors to improve memory recall accuracy. Some compu-
tational studies have suggested that relaxing the translation symmetry of line attractors by
introducing multiple discrete attractors may make dynamics more resilient [71, 49, 12]. How-
ever, others have viewed spatial heterogeneity in networks as a detriment to working memory
that must be overcome [67, 44]. Therefore, to make the theory of bump attractors for working
memory more robust, we must consider the effects of noise and network heterogeneity and
any new phenomena they bring.

We propose performing an in-depth analysis of the diffusion of stationary bump solutions
in neural field equations with noise. In doing so, we wish to understand how parameters of
the model affect the degradation of the bump’s initial position. Since oculomotor delayed-
response tasks usually require recalling the location of an object on a circle, this suggests
using a neural field model whose spatial domain is finite and periodic [5, 14, 10, 75]. Thus, to
accompany our analysis of stochastic neural fields, we review and extend some of the results
for bump existence and stability in section 2 for deterministic ring model [72, 4, 10]

∂u(x, t)

∂t
= −u(x, t) +

∫ π

−π
w(x, y)f(u(y, t))dy + I(x),(1.1)

where u(x, t) is the total synaptic input to spatial location x ∈ [−π, π] at time t. The term I(x)
represents an external, time-independent, spatially varying input. The integral term represents
synaptic feedback from the entirety of the network so that the kernel w(x, y) encodes the
strength of connections from y to x. In many studies of the ring model, w(x, y) = w̄(x − y),
so the network is spatially homogeneous [5, 14, 40, 10, 75, 46], making (1.1) continuously
translation symmetric. The simplest possible spatially structured kernel of this type is the
pure cosine weight kernel

w(x, y) = w̄(x− y) = cos(x− y).(1.2)

Neural fields with spatially homogeneous synaptic weights are known to have spatially struc-
tured solutions that are continuously translationally invariant, lying on a line attractor [1, 4,
71, 17, 9]. We also study the effect of periodically heterogeneous synaptic connections, where

w(x, y) = (1 + σw1(ny))w̄(x− y),(1.3)

and w1 is a 2π-periodic function, which provides spatially heterogeneous, yet periodic, synaptic
modulation whose frequency is set by the n ∈ N. As a specific example, we will analyze (1.1)D
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64 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

using an idealized version of (1.3) where

w(x, y) = (1 + σ cos(ny)) cos(x− y).(1.4)

Such symmetry breaks in the synaptic landscape of a network could originate from Hebbian
plasticity reinforcing regions that have received more input during, for example, working
memory training [25]. Periodic spatial heterogeneities in the weight functions of neural fields
have been shown to alter the propagation of traveling fronts [7, 18] and pulses [47]. We will
study how periodic heterogeneities affect the stability and evolution of bumps in the presence
of noise.

The nonlinearity f is a firing rate function which converts synaptic inputs u to a resulting
fraction of active neurons, between zero and one by definition. In line with experimental
observations, this is often taken to be a sigmoidal function [79, 17, 9]

f(u) =
1

1 + e−γ(u−θ)
,(1.5)

where γ is the gain and θ is the threshold. We can perform much of our analysis for a
general firing rate function f , such as the sigmoid (1.5). One particular idealization that
eases mathematical analysis considers the infinite gain γ → ∞ limit, so that (1.5) becomes a
Heaviside step function [1, 17, 9]:

f(u) = H(u− θ) =

{
0 : u < θ,
1 : u ≥ θ.

(1.6)

The Heaviside firing rate function (1.6) allows us to explicitly calculate many quantities of
interest in our study.

As mentioned, the deterministic neural field equation (1.1) has been studied extensively
as a model of neural pattern formation [5, 27, 14, 10, 75]. The main interest of this paper
is to consider effects of external fluctuations on stationary bump solutions of (1.1). For the
analysis in this paper, we will consider purely additive noise, which has been included in
several previous stochastic neural field studies [52, 6, 53, 43, 30, 74, 11]. Thus, in section 3,
we analyze the following Langevin equation that describes a noisy neural field:

dU(x, t) =
[
−U(x, t) +

∫ π

−π
w(x, y)f(U(y, t))dy + I(x)

]
dt+ ε1/2dW (x, t),(1.7)

where U(x, t) tracks the sum of synaptic inputs at position x ∈ (−π, π) at time t. The term
dW (x, t) is the increment of a spatially dependent Wiener process such that

〈dW (x, t)〉 = 0, 〈dW (x, t)dW (y, s)〉 = C(x− y)δ(t − s)dtds,(1.8)

so that ε determines the noise amplitude, which is weak (ε � 1). Spatial correlations of the
noise are described by the function C(x−y), which is symmetric and depends on the distance
between two spatial locations in the network. Recently, some authors have introduced the
idea of casting stochastic neural field theory in terms of a neural master equation [13, 8]. In
this case, a deterministic neural field is recovered in the limit N → ∞, where N measures theD

ow
nl

oa
de

d 
01

/2
2/

13
 to

 1
30

.4
9.

19
8.

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WANDERING BUMPS IN STOCHASTIC NEURAL FIELDS 65

system size of each local population. For large but finiteN , one can truncate a Kramers–Moyal
expansion of the master equation to systematically derive a Langevin neural field equation
[11], such as (1.7). Furthermore, using stochastic analysis, it is possible to derive neural field
models from microscopic models of networks of spiking models, but these are non-Markovian
and thus difficult to analyze [30].

It is worth noting that we are considering the Langevin equation (1.7) in the Ito sense.
For the purposes of this paper, there will not be any major distinctions between this and
the Stratonovich sense. Major differences would begin to appear if the noise term in (1.7)
were multiplicative, rather than purely additive [3, 11], due to the fact that the integral of
Stratonovich calculus is defined differently than that of Ito calculus (see section 3.3 of [68]
for more details). We will not pursue proofs of existence and uniqueness of solutions in this
work. In [74], existence and uniqueness of solutions are shown using a contraction argument
on an integral form of a discrete version of (1.7). Thus, it may be possible to use a similar
method for the analysis of existence and uniqueness in the continuum equation (1.7), but this
is outside the scope of the present paper.

The paper is organized as follows. First, in section 2, we present results concerning the
existence and stability of bumps in the deterministic neural field equation (1.1). For the
spatially homogeneous system (w(x, y) = w̄(x − y)) in the absence of inputs (I(x) ≡ 0), the
linear stability of translating perturbations has an associated zero eigenvalue. This continuous
translation invariance is broken by considering a weak external input (I(x) 
≡ 0) or synaptic
heterogeneity (w(x, y) 
= w̄(x−y)). In section 3, the consequences of this bifurcation structure
are considered in the presence of noise. Using a perturbative approximation, we predict that
bumps wander as a purely diffusive process in the homogeneous network without inputs. In
the presence of inputs, bumps are linearly stable to translations, so we find that their position
evolves as a mean-reverting stochastic process in the presence of noise, rather than a purely
diffusive one. On exponentially long time scales, we expect that bumps can escape from the
position to which they are pinned to move to the vicinity of another discrete attractor of the
deterministic system. Similarly, in the synaptically heterogeneous network, we predict that
bumps are still pinned to a finite number of discrete attractors in the stochastic system (1.7),
so their position evolves as a mean-reverting process. Even though bumps can escape from
these pinned positions, homogenization theory reveals that they ultimately wander with a
smaller effective diffusion coefficient than in the spatially homogeneous network. In section 4,
we study the predictions made by our perturbation approximations and make some additional
observations by numerically simulating (1.7) in a variety of contexts.

2. Bumps in the deterministic neural field. To begin, we study stationary bump solutions
in the deterministic system (1.1). As opposed to the method of construction of Amari [1],
we need not presume a Heaviside firing rate function (1.6) to derive explicit bump solutions.
We exploit the fact that even-symmetric, 2π-periodic weight functions can be written as
the sum of cosines, which are separable through trigonometric identities. Thus, existence
and stability problems can be reduced to root-finding problems or linear algebraic systems
[27, 40, 75]. Since there are several previous studies of existence and stability of bumps in
the deterministic network (1.1), we relegate analysis of the spatially homogeneous network
(w(x, y) = w̄(x − y)) to the appendix. Derivations for the input-driven and heterogeneousD
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66 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

system employ similar methods, so we simply state these subsequently. Our analysis shows
the existence of stationary bump solutions by explicitly constructing them. For proofs of the
existence and uniqueness of stationary bumps in a variety of neural field models, see [48, 31].

2.1. Spatially homogeneous network. Once we assume w(x, y) = w̄(x − y), it can be
shown (see Appendix A) that an even symmetric stationary bump solution takes the form

U(x) =
N∑
k=0

Ak cos(kx),(2.1)

where N is the highest order Fourier mode in the decomposition of w̄(x). In the case of a
purely cosine weight function (1.2) and Heaviside firing rate (1.6), we can write A1 = A and
Ak = 0 for k 
= 1, so there are up to two solutions of the form

U(x) = A cos x =
(√

1 + θ ±√
1− θ

)
cos x,(2.2)

and it can be shown that the wide solution (+) is marginally stable and the narrow solution
(−) is unstable, forming a separatrix between the wide bump and the rest state U(x) = 0.
Due to the underlying translation invariance of the network with w(x, y) = w̄(x−y), the wide
bump is marginally stable to translating perturbations (see Appendix A). We explore this
fact in the presence of noise in section 3, showing that noise causes the bump to purely diffuse.
However, by introducing small heterogeneities into the network (1.1) such as an external input
or spatially heterogeneous kernel w̄, this degeneracy can be broken so that bumps are pinned
to a few discrete positions on the ring x ∈ [−π, π]. For (2.2), as θ is increased through unity,
the two branches annihilate in a saddle-node bifurcation. We probe the effects of noise on
bumps in the vicinity of this bifurcation in section 4, showing that bump extinction can occur.

2.2. Stabilizing bumps with inputs. Several studies of the ring model (1.1) have consid-
ered it to be an idealized model for the visual processing of oriented inputs [40, 5, 10, 75].
Breaking the underlying translation invariance by introducing a nonzero input I(x) to the
network (1.1) stabilizes stationary bump solutions to translating perturbations [33, 75]. In
particular, we study bumps that arise in the case of the n-modal cosine input

I(x) = I0 cos(nx).(2.3)

Using arguments along the lines of the input-free case in Appendix A, we can derive the form
for bumps centered at x = 0 as

U(x) = A cos x+ I0 cos(nx),(2.4)

so self-consistency of the solution (2.4) yields an implicit equation for the amplitude:

A =

∫ π

−π
cos yf(A cos y + I0 cos(ny))dy.(2.5)

To demonstrate this analysis, we consider the case of a Heaviside firing rate function (1.6). It
is straightforward to evaluate the integral (2.5) under the assumption that I0 is small enoughD
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Figure 1. Input-locked bumps in the deterministic neural field (1.1) with input (2.3). (a) The bump half-
width a for a unimodal (n = 1) and bimodal (n = 2) input calculated using (2.7) and (2.9), demonstrating
the dependence of the stable (black) and overlapping unstable (grey) branches on the input strength I0. (b)
The stable (black) and unstable (grey) bump solutions in the case of a bimodal stimulus (dashed) of strength
I0 = 0.4. Threshold is fixed at θ = 0.5.

that U(x) > θ for |x| < a and U(x) < θ for |x| > a. Essentially, we need to guard against
multibump solutions arising [56, 55, 47], as this would complicate our analysis. In light of this,
we restrict our study to small values of n and I0. Assuming this is the case, we can compute
the amplitude A in terms of the bump width and then prescribe the threshold equation for
self-consistency:

U(±a) = sin 2a+ I0 cosna = θ.(2.6)

In the special case n = 1, our equation for the bump half-width (2.6) becomes

(2 sin a+ I0) cos a = θ.(2.7)

We demonstrate the dependence of the bump half-width a upon the input strength I0 in
Figure 1(a). The implicit equation for the n = 2 case is more interesting:

sin 2a+ I0 cos 2a = θ.(2.8)

Equation (2.8) is explicitly solvable for the half-width a in terms of parameters θ and I0, using
trigonometric identities, to find

a = tan−1

[
1±

√
1− θ2 + I20
I0 + θ

]
,(2.9)

where we restrict the range of tan−1 to yield a ∈ [0, π]. We demonstrate the dependence of
the half-width a on the input strength I0 in Figure 1(a). In addition, we show how the profile
is altered by a bimodal input in Figure 1(b). Now we turn to analyzing how inputs alter the
stability of stationary bumps in the network.

External inputs have previously been shown to produce bumps that are linearly stable
to translating perturbations, even though the input-free system is marginally stable to suchD
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perturbations [5, 10, 33, 75]. To illustrate this, we show linear stability results for the case of
a cosine weight function (1.2). Following reasoning similar to that of the input-free case (see
Appendix A), the eigenvalue associated with odd perturbations to the bump can be computed
as

λo = −nI0
A

I(sinx sin(nx)),(2.10)

where I(r(x)) is given by (A.14). We are mainly interested in the fact that infinitesimal
changes in I0 can alter the linear stability of the bump with respect to these perturbations,
since λo → 0 in the limit I0 → 0. To employ the linear stability theory we have developed,
we study the case of a Heaviside firing rate function (1.6). In this case, we know A = 2 sin a
and we can compute the integrals so that the eigenvalue formula (2.10) reduces to

λo = − nI0 sin(na)

2 sin2 a+ I0n sin(na)
.(2.11)

Studying specific cases will help us understand how the input changes the stability of the
bump (2.4). In particular, if we start with the n = 1 case, we have

λo = − I0
2 sin a+ I0

< 0,(2.12)

since a ∈ [0, π] by definition. Thus, an arbitrarily weak input will pin the bump (2.4) to the
position x = 0 so that it is linearly stable to odd perturbations. Moving to the n = 2 case,
the odd eigenvalue will be

λo = − I0 sin(2a)

sin2 a+ I0 sin(2a)
,(2.13)

so that λ− < 0 for sure when a ∈ [0, π/2]. In our analysis of the stochastic network (1.7) with
input (2.3) found in section 3, the stabilization of odd perturbations to the bump allows it to
remain pinned to a position, determined by the bump’s original center. This contrasts with
the input-free system (I(x) ≡ 0), in which the bump diffuses freely in the presence of noise.

2.3. Discrete attractors due to synaptic heterogeneity. Synaptic connectivity that is
patchy and periodic has been identified in anatomical studies of prefrontal cortex [57] and
visual cortex [2] using fluorescent tracers. Motivated by these findings, several mathematical
analyses of stationary bumps in neural fields have employed synaptic connectivity that is
decaying and oscillatory [56, 55] but still translationally invariant. Such synaptic weights
can lead to multiple bump solutions, where several disjoint subdomains of the network are
active. On the other hand, some studies have examined the effects that synaptic weight
heterogeneities have upon the propagation of traveling waves [7, 47, 18], showing they can
slow traveling waves or even cause propagation failure. In light of this, we study the effects
of periodically heterogeneous synaptic weight functions on the stability of bump attractors in
the network (1.1). As we show, the set of bump solutions has a bifurcation structure that is
a chain of saddle-node pairs rather than a line attractor.D
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Figure 2. A finite number (2n) of bump locations in the network (1.1) having heterogeneous synaptic
connectivity (1.4) with modulation frequency n. (a) A plot of several bump center locations along x ∈ (−π, π]
for various values of n have an alternating pattern of locations with a stable bump (blue filled) and only unstable
bumps (red circles). This creates a dynamic landscape of alternating stable nodes and saddles in space. (b)
The associated bumps determined by implicit equation (2.17) when n = 3. Stable bumps with amplitude A+

(2.15) centered at x = 0,± 2π
3

(blue solid). The unstable bump with amplitude A− (2.15) centered at x = π,±π
3

(red dashed). There are six other unstable bumps (not shown) that accompany each displayed bump. Other
parameters are θ = 0.5 and σ = 0.2. The firing rate function is Heaviside (1.6).

We first show that the network (1.1) with a modified weight kernel (1.3) supports station-
ary bump solutions. There are 2n locations x = mπ/n (m ∈ {−n, . . . , n−1}) at which bumps
can reside, rather than a continuum (centered at x ∈ [−π, π]), as in the network with a trans-
lationally symmetric kernel like (1.2). To start, we construct two different classes of bump
solutions—those centered at x = 2mπ/n and those centered at x = (2m+ 1)π/n. Stationary
solutions u(x, t) = U(x) of (1.1) in the case of periodic heterogeneous weight kernel (1.3) are

U(x) =

∫ π

−π
(1 + σw1(ny))w̄(x− y)f(U(y))dy.(2.14)

Following our previous methods, we can use (2.14) along with the weight function (1.4) to
find the amplitudes A± of bumps centered at x = 0 (A+) and x = π/n (A−) as

A± =

∫ π

−π
cos x(1±σ cos(nx))f(U(x))dx.(2.15)

We demonstrate how the number and stability of bumps depend on n by plotting the bump
centers on the domain x ∈ [−π, π] for various values of n in Figure 2(a). As n is increased,
the x = 0 bump reverses its stability at particular values of n. This result will be computed
in our analysis of linear stability.

For a more illustrative analysis, we study the case of a Heaviside firing rate function (1.6).
Under this assumption, we can compute bump solutions by requiring U(x) > θ for |x| < a and
U(x) < θ for |x| > a, so we can compute the bump amplitudes A± (2.15), which differ only
in the sign of σ. First, we analyze the special case n = 1, so we integrate (2.15) and invoke
the threshold condition U(±a) = θ to generate an implicit equation for the bump half-widthD
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70 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

Figure 3. Bumps in the ring network (1.1) using heterogeneous synaptic connectivity (1.4) with modulation
frequency n = 1. (a) A plot of the bump half-width a as it depends on amplitude of heterogeneity amplitude σ.
A wide bump centered at x = π (red dashed) separates the wide stable bump at x = 0 (blue solid) from itself on
the periodic domain. A narrow bump at x = 0 (grey solid) separates the stable bump from homogeneous “off”
state. (b) The profile of each bump for σ = 0.2. The threshold parameter is θ = 0.5. The firing rate function
is Heaviside (1.6).

a given by

θ = sin 2a± σ

[
a cos a+

sin a+ sin(3a)

4

]
.(2.16)

Per our general analysis of the symmetry of bump solutions, we expect there to be only one
peak location for each sign of σ (x = 0 and x = π), since the period of w1 in this case is
2π, the length of the domain. However, as in the case of the homogeneous weight function,
there can be two half-widths a at each location. As we can compute using linear stability, a
maximum of one bump at each position of these will be linearly stable. This is demonstrated
in Figure 3.

In the case that n > 1, we can integrate (2.15) and require the threshold crossing conditions
U(±a) = θ to implicitly specify the bump half-width with the equation

θ = sin(2a)± σ

2

[
sin((n− 2)a)

n− 1
+

2n sin(na)

n2 − 1
+

sin((n + 2)a)

n+ 1

]
.(2.17)

Since cosx is a unimodal function, its sole maximum will occur at x = 0 (x = π/n), when
A+ > 0 (A− > 0). Therefore, we do not expect the appearance of multibump solutions in this
context. We would expect this only if the heterogeneity in (1.4) were in the x variable. We
now proceed to study the linear stability of the bump solutions specified by (2.16) and (2.17).

We now study the stability of bumps in the network (1.1) with heterogeneous synaptic
weights. As we observed in our existence analysis, switching the sign of σ will lead to the two
classes of bumps changing places. Therefore, we study only the stability of bumps centered
at x = 0, as simply flipping the sign of σ will provide us with stability of the complementary
bump. To compute the eigenvalue associated with odd perturbations of the bump in network
(1.1) with the weight function (1.4), we follow reasoning similar to that of the homogeneousD
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WANDERING BUMPS IN STOCHASTIC NEURAL FIELDS 71

Figure 4. Eigenvalue λo associated with odd perturbations of the bump centered at x = 0 given by (2.14)
with amplitude A+ specified in (2.15). (a) The eigenvalue λ− as a function of heterogeneity amplitude σ becomes
negative, indicating linear stability, when n = 1 and n = 2, but becomes positive, indicating linear instability,
when n = 4. (b) The eigenvalue λo as a function of synaptic modulation frequency n as determined by the
formulae (2.19) for n = 1 and (2.20) for n > 1. The heterogeneity amplitude is fixed σ = 0.2. The threshold
parameter θ = 0.5.

case (see Appendix A) to find

λo = −1 +

∫ π

−π
sin2 x(1 + σ cos(nx))f ′(U(x))dx.(2.18)

In the case of a Heaviside firing rate function (1.6), we can compute eigenvalues, starting
with the special case n = 1. By evaluating the integral term, the eigenvalue associated with
odd perturbations is given as

λo = −1 +
2 sin a+ 2σ sin a cos a

2 sin a+ σa+ 2σ sin a cos a
= − σa

2 sin a+ σa+ σ sin 2a
< 0,(2.19)

since a > 0. Thus, we can be certain that the bump is linearly stable to shift perturbations
when n = 1 and σ > 0. In a complementary way, bumps in the network where σ < 0 will
be linearly unstable to shift perturbations when n = 1. For n > 1, the eigenvalue associated
with odd perturbations will be

λo =
σn[n sin a cos(na)− cos a sin(na)]

(n2 − 1) sin a+ σ[n cos a sin(na)− sin a cos(na)]
,(2.20)

which will, in general, not be zero. We plot the eigenvalue λo as a function of σ and of n in
Figure 4. As we have mentioned, the eigenvalue λo oscillates as a function of n so that the
bump at x = 0 reverses its stability. This simply means that we would expect the bump at
x = π/n to be stable in this case, rather than the bump at x = 0.

3. Diffusion of bumps in stochastic neural fields. We now study the effects of additive
noise on bumps in the network (1.7). Previous studies of traveling fronts in reaction-diffusion
equations and neural fields have found that noise can cause fronts to wander diffusively [3, 63,
70, 6, 11]. Analyzing (1.7) reveals that noise leads to dynamics whose mean is given by a bump
with a position that wanders diffusively. Our analysis allows us to approximate the diffusion
coefficient of the bump, estimating the error a network may make in a working memory task
that relies on the position of the bump center [78, 66, 14, 15].D
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72 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

3.1. Pure diffusion of bumps in a homogeneous network. We begin by studying approx-
imate solutions to the Langevin equation (1.7) with a spatially homogeneous weight function
w(x, y) = w̄(x − y). We are primarily interested in how the bump’s position changes. Wan-
dering of bumps was first observed numerically in modeling studies of working memory that
employed rate [14] and spiking models [16]. These authors observed that such pure diffusion
was due to the potential landscape of the deterministic dynamical system being a line at-
tractor [14, 12]. We show that we can use a linear expansion to approximate the influence
of spatially correlated noise on the position of bumps in a neural field. The bump’s motion
can be approximated as pure diffusion, whose associated coefficient we can derive from our
asymptotic analysis.

To start, we assume that the additive noise in (1.7) generates two phenomena that occur
on disparate time scales. Diffusion of the bump from its original position occurs on long
timescales, and fluctuations in the bump profile occur on short timescales [60, 3, 11]. Thus,
we express the solution U of (1.7) as the sum of a fixed bump profile U displaced by Δ(t) from
its mean position x, and higher order time-dependent fluctuations ε1/2Φ+ εΦ1 + ε3/2Φ2 + · · ·
in the profile of the bump

U(x, t) = U(x−Δ(t)) + ε1/2Φ(x−Δ(t), t) + · · · ,(3.1)

so Δ(t) is a stochastic variable indicating the displacement of the bump U . To a linear ap-
proximation, the stochastic variable Δ(t) undergoes pure diffusion with associated coefficient
D(ε) = O(ε), as we show. By substituting (3.1) into (1.7) and taking averages, we find that
U still takes the form (2.1), as computed in Appendix A. Proceeding to next order, we find
Δ(t) = O(ε1/2) and

dΦ(x, t) = LΦ(x, t) + ε−1/2U ′(x)dΔ(t) + dW (x, t),(3.2)

where L is the non–self-adjoint linear operator

Lp(x) = −p(x) +
∫ π

−π
w̄(x− y)f ′(U(y))p(y)dy(3.3)

for any function p(x) ∈ L2[−π, π]. We can ensure that a bounded solution to (3.2) exists by
requiring that the inhomogeneous part be orthogonal to all elements of the nullspace of the
adjoint operator L∗. The adjoint is defined with respect to the L2 inner product∫ π

−π
[Lp(x)] q(x)dx =

∫ π

−π
p(x) [L∗q(x)] dx,

where p(x), q(x) ∈ L2[−π, π]. Thus,

L∗q(x) = −q(x) + f ′(U(x))

∫ π

−π
w̄(x− y)q(y)dy.(3.4)

There is a single function ϕ(x) spanning the one-dimensional nullspace of L∗, which we can
compute explicitly for a general firing rate function f . Thus, we impose solvability of (3.2) by
taking the inner product of both sides of the equation with respect to ϕ(x) yielding∫ π

−π
ϕ(x)

[
U ′(x)dΔ(t) + ε1/2dW (x, t)

]
dx = 0.(3.5)
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WANDERING BUMPS IN STOCHASTIC NEURAL FIELDS 73

Isolating dΔ(t), we find that Δ(t) satisfies the stochastic differential equation (SDE)

dΔ(t) = −ε1/2

∫ π

−π
ϕ(x)dW (x, t)dx∫ π

−π
ϕ(x)U ′(x)dx

.(3.6)

With the SDE (3.6) in hand, we can compute the effective diffusivity of the bump to a linear
approximation. First, note that the mean position of the bump averaged over realizations
does not change in time (〈Δ(t)〉 = 0) since the additive noise is white in time (〈W (x, t)〉 = 0).
Computing the variance of the stochastic variable Δ(t), we find it evolves according to pure
diffusion since

〈Δ(t)2〉 = ε

∫ π
−π

∫ π
−π ϕ(x)ϕ(y)〈W (x, t)W (y, t)〉dydx[∫ π

−π ϕ(x)U
′(x)dx

]2 t,

〈Δ(t)2〉 = D(ε)t,(3.7)

and using the definition of W (x, t) in (1.8) yields

D(ε) = ε

∫ π
−π

∫ π
−π ϕ(x)ϕ(y)C(x − y)dydx[∫ π

−π ϕ(x)U
′(x)dx

]2 .(3.8)

Therefore, we can calculate the effective diffusion for a bump in the network (1.7) with a
homogeneous weight function w(x, y) = w̄(x − y). To calculate the diffusion coefficient D(ε)
for specific cases, we need to compute the constituent functions U ′(x) and ϕ(x). It is straight-
forward to calculate the form of these constituent functions for a general homogeneous weight
kernel. First, differentiating (2.1), we have

U ′(x) = −
N∑
k=1

kAk sin(kx).(3.9)

Thus, upon applying (A.2) in the adjoint equation (3.4), we can write

ϕ(x) = f ′(U(x))

[
N∑
k=0

Ck cos(kx) +

N∑
l=1

Sl sin(lx)

]
,(3.10)

where

Ck = wk

∫ π

−π
cos(kx)ϕ(x)dx, Sl = wl

∫ π

−π
sin(lx)ϕ(x)dx(3.11)

for k = 0, . . . , N and l = 1, . . . , N . Thus, we could solve for ϕ(x) by determining its coeffi-
cients, using techniques for linear algebraic systems.D
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74 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

For simplicity, in the subsequent analysis, we employ the cosine weight kernel (1.2). First,
we compute the spatial derivative of the bump profile in this case,

U ′(x) = −A sinx,(3.12)

where A is defined by (2.2). To find ϕ(x), we write (3.10) using (1.2), so

ϕ(x) = Cf ′(U(x)) cos x+ Sf ′(U(x)) sin x,(3.13)

where we set C1 = C and S1 = S. Requiring self-consistency of (3.13) with the coefficient
equations (3.11) and applying the identities (A.16), (A.17), and (A.18), we find

ϕ(x) = f ′(U(x)) sin x,(3.14)

up to the scaling S. Thus, for a general sigmoid (1.5), we can use our formula for the spatial
derivative (3.12) along with (3.14) to compute the term in the denominator of the diffusion
coefficient (3.8) given∫ π

−π
ϕ(x)U ′(x)dx = −A

∫ π

−π
sin2 xf ′(U(x))dx = −A,(3.15)

applying (A.16). Thus, the effective diffusion coefficient is given:

D(ε) =
ε

A2

∫ π

−π

∫ π

−π
sinx sin yf ′(U(x))f ′(U(y))C(x− y)dydx.(3.16)

To determine the diffusion coefficient (3.16), we must specify correlation function C(x−y).
Two limits, spatially homogeneous and spatially uncorrelated noise, will help us understand
how the spatial profile of the noise affects diffusion. In the limit of spatially homogeneous
correlations (C(x − y) ≡ C0), the neural field specified by (1.7) is driven by a spatially
homogeneous Wiener process dW0(t). In this case, the bump will not diffuse at all since
(3.16) simplifies to

D(ε) =
εC0

A2

[∫ π

−π
sinxf ′(U(x))dx

]2
= 0,(3.17)

since f ′(U(x)) is even. Therefore, by widening the spatial correlation length of external noise,
the diffusion of the bump is limited. Only the width of the bump will fluctuate in this case,
which is not tracked by our first order approximation. In the limit of no spatial correlations
(C(x − y) → δ(x − y)), every spatial point receives noise from an identically distributed
independent Wiener process.1 In this case, we can simplify (3.16) to find

D(ε) =
ε

A2

∫ π

−π
sin2 x

[
f ′(U(x))

]2
dx,(3.18)

which is nonzero for ε > 0.

1One important fact to note is that if we attempt to numerically simulate (1.7) with spatially uncorrelated
noise on a spatial mesh of width Δx, a nonzero correlation length Δx arises from the discretization [3, 9].D
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3.2. Bumps locking to inputs. Now, we study how well the network (1.7) locks to a
stationary stimulus in the presence of additive noise. In the context of networks that encode
working memories, an external input could be interpreted as feedback projections from an-
other participating layer of neurons that may mirror the storage of (1.7). As shown in the
deterministic network, the n-modal input (2.3) turns the potential landscape of the network
from a line attractor (with continuous translation symmetry) to a chain of multiple attractors,
such that the network now has dihedral Dn rather than circular O(2) symmetry. As we will
show, inputs can pin bumps in place so they do not wander freely. In particular, we find that
the stochastic variable describing bump location can be approximated with a mean-reverting
(Ornstein–Uhlenbeck) process on moderate timescales. In section 4, we show that on very
long timescales, large deviations occur where the bump can escape from the vicinity of the
stimulus peak at which it originally resided.

Our analysis proceeds similarly to that of bumps evolving in the input free network (I(x) ≡
0). We substitute the expansion (3.1) into (1.7), and, taking averages, we find the leading
order deterministic equation (1.1), giving us the input-driven bump solution (2.4). Proceeding
to the next order, we find Δ(t) = O(ε1/2) and

dΦ(x, t) = LΦ(x, t)dt+ ε−1/2U ′(x)dΔ(t) + dW (x, t) + ε−1/2I ′(x)Δ(t)dt,(3.19)

where L is the non–self-adjoint operator (3.3). Notice that the last term on the right-hand
side of (3.19) arises due to the input. Since U and Φ are functions of x−Δ(t), we have made
the approximation I(x) = I(x − Δ(t) + Δ(t)) ≈ I(x − Δ(t)) + I ′(x − Δ(t))Δ(t). Now, we
can ensure that a bounded solution exists by requiring the inhomogeneous part of (3.19) to
be orthogonal to the nullspace ϕ(x) of the adjoint operator L∗ defined by (3.4). Taking the
L2 inner product of both sides of (3.19) with ϕ(x) then provides a solvability condition that
we can rewrite to find that Δ(t) satisfies the Ornstein–Uhlenbeck-type SDE

dΔ(t) + κΔ(t)dt = dW(t),(3.20)

where

κ =

∫ π
−π ϕ(x)I

′(x)dx∫ π
−π ϕ(x)U

′(x)dx
, W(t) = −ε1/2

∫ π
−π ϕ(x)W (x, t)dx∫ π
−π ϕ(x)U

′(x)dx
.(3.21)

The white noise term W(t) has zero mean and the same diffusion coefficient as we computed
in the input-free case, so 〈dW(t)dW(t)〉 = D(ε)dt, where D(ε) is given by (3.8). The mean
and variance of the Ornstein–Uhlenbeck process (3.20) can be computed using standard tech-
niques [37],

〈Δ(t)〉 = 0, 〈Δ(t)2〉 − 〈Δ(t)〉2 =
D(ε)

2κ

[
1− e−2κt

]
,(3.22)

assuming Δ(t) starts at a stable fixed point. Thus, as opposed to the case of the freely diffusing
bump, whose position’s variance scales linearly with time as (3.7), the stimulus-pinned bump’s
variance saturates at D(ε)/2κ in the large t limit, according to (3.22). Variance saturation of
bump attractors in networks with inputs has been demonstrated previously in simulations of
spiking networks [80]. Here, we have analytically demonstrated the mechanism by which this
can occur in a neural field.D
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3.3. Bumps pinned by synaptic heterogeneity. Now, we explore the effect synaptic het-
erogeneities have on the diffusion of bumps. Noise causes bumps to wander freely in the
translationally symmetric network, so the memory of the initial condition deteriorates over
time. However, previous studies of bumps in spiking networks with some spatially dependent
heterogeneity in model parameters have shown that the bump will become pinned to a few
discrete positions in the network [82, 67]. Here, we study a periodic heterogeneity in the
synaptic weight w(x, y), as in section 2, which allows us to predict the most likely position
for bumps. Interestingly, as the frequency of this heterogeneity is increased, so too does the
effective diffusion of the bump.

To analyze the effect that noise has upon bump solutions, we can make a small noise
assumption and perform an asymptotic expansion as we did for the homogeneous network.
Due to spatial heterogeneities, noise causes the center of the bump to move as a mean-
reverting stochastic process on short timescales, rather than as a purely diffusive process.
Synaptic heterogeneities, however subtle, can trap neural activity in basins of attraction whose
widths are defined by the period of the heterogeneity (1.3). We start by applying the same
perturbation expansion (3.1) as before, substituting it into (1.7), and studying the hierarchy of
equations generated by expanding in powers of ε1/2. To leading order, we find the deterministic
equation (2.14) for the mean bump profile U(x). To next order, we find that Δ(t) = O(ε1/2)
and

dΦ(x, t) = LΦ(x, t)dt+ ε−1/2U ′(x)dΔ(t) + dW (x, t) + ε−1/2B(x)Δ(t)dt,(3.23)

where L is the non–self-adjoint linear operator (3.3), and

B(x) = σn

∫ π

−π
w′
1(ny)w̄(x− y)f(U(y))dy.(3.24)

The last term on the right-hand side of (3.23) is generated by integrating the heterogeneous
contribution from the weight function (1.3) by parts and linearizing in Δ(t). Since B(x) scales
with n, this approximation will be valid only for small enough n values. Thus, we consider
only the effect of low modulation frequencies n in this subsection. Now, we can ensure that a
bounded solution to (3.23) exists by requiring the inhomogeneous part to be orthogonal to the
nullspace ϕ(x) of the adjoint operator L∗ defined by (3.4). Thus, we find that Δ(t) satisfies the
Ornstein–Uhlenbeck process (3.20), as in the input-driven case, but here the mean-reversion
rate is

κ =

∫ π
−π ϕ(x)B(x)dx∫ π
−π ϕ(x)U

′(x)dx
,(3.25)

and the noise process W(t) is given by (3.21). Here the bump is pinned by internal bias
generated by the heterogeneous contribution of the weight kernel w1(ny).

3.4. Reduced effective diffusion due to synaptic heterogeneity. We also consider a per-
turbative approximation that takes into account the nonlinearity of the synaptic heterogeneity
(1.3), rather than linearizing it to yield the Ornstein–Uhlenbeck approximation (3.20). To do
so, we note that, as n becomes large, the contribution made by the heterogeneous part ofD
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WANDERING BUMPS IN STOCHASTIC NEURAL FIELDS 77

(1.3) becomes small. Thus, it is not necessary to perform an expansion of this portion in
Δ(t) in order to truncate the integral term in (1.7). In fact, doing so would cause ever worse
approximation, due to the slope of the linearization (3.24) becoming steeper and steeper, as
it scales with n. This is related to the fact that as n increases, the bump begins to escape
from the vicinity of individual discrete attractors more often (see Figure 10). However, even
for weak heterogeneities, escape rates are low enough such that the movement of the bump
away from its initial condition can occur more slowly than in the homogeneous case.

Carrying out a small-noise expansion, we find that we can derive a nonlinear SDE (see
Appendix B) that describes the evolution of the position Δ(t) of the bump in the network
(1.7) with periodically heterogeneous synaptic weight

dΔ(t) +K(nΔ)dt = dW(t),(3.26)

whereK(x) is a 2π-periodic function, given by formula (B.4) in Appendix B, depending on the
heterogenous part w1 of the weight function (1.3). Therefore, we have reduced the problem of
a bump wandering in a neural field with periodic synaptic microstructure to that of a particle
diffusing in a periodic potential. This is a well-studied problem for which it is possible to derive
an effective diffusion coefficient [68]. To do so, we must derive the profile of the associated
periodic potential well V (x) governing the dynamics (see Appendix B for the formula for the
well (B.5)). With the 2π/n-periodic potential well V (x) in hand, we can derive the effective
diffusion coefficient

Deff = lim
t→∞

〈Δ(t)2〉 − 〈Δ(t)〉2
t

(3.27)

of the stochastic process defined by (3.26). As the definition of Deff (3.27) suggests, the
approximation is valid in the limit of large time. However, we do find that it works quite well
for reasonably short times, too. This is contingent upon the modulation frequency n being
substantially large. As many authors have found, this approximation arises from the fact that
the density of trajectories tends asymptotically to [58, 59]

Pas(Δ, t) = P0(Δ)
exp[−Δ2/4Deff t]√

4πDeff t
,(3.28)

where P0 refers to the stationary (2π/n-periodic) solution of (3.26). This function is re-
sponsible for the microstructure of the density, whereas the Gaussian is responsible for its
macrostructure. Usually, this structure is numerically extracted by evolving the Fokker–
Planck formalism of the Langevin equation (3.26), so the approximation (3.28) can be made
as an ansatz. In this case, we can approximate using the Lifson–Jackson formula [58, 32, 68]

Deff =
D(ε)(2π/n)2∫ 2π/n

0

∫ 2π/n
0 exp

[
2(V (x)−V (y))

D(ε)

]
dydx

,(3.29)

where we have used the diffusion coefficient D(ε) of the white noise source and the 2π/n-
periodicity of the potential well V (x). As we will show, the heterogeneity introduced in the
synaptic weight (1.3) tends to decrease the effective diffusion coefficient. In other words, weD
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78 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

usually find that Deff < D(ε). Thus, in some sense, having a chain of discrete attractors
appears to provide better memory of the initial condition than a line attractor. Of course the
trade-off is that only a finite number of initial conditions, specifically n, can be represented
in our network (1.7) with the weight (1.3) with modulation frequency n.

4. Numerical simulations. In this section, we study specific examples for the asymptotic
formulae we derived in section 3. Doing so, we can compare the results of averaging over a
large number of numerical simulations of (1.7) to our small-noise expansion approximations.
In general, we find reasonably good agreement. Simulating (1.7) also allows us to observe
phenomena which we did not capture in our asymptotic approximation. In particular, we
study rare events that can occur on exponentially long timescales and cannot be captured by
regular perturbative expansions.

4.1. Pure diffusion in the homogeneous network. Now, to compare our asymptotic
analysis to numerical simulations of the homogeneous network, we study the effect of a cosine
spatial correlation function

C(x− y) = π cos(x− y),(4.1)

so the formula for the diffusion coefficient (3.16) becomes

D(ε) =
επ

A2

[(∫ π

−π
sin2 xf ′(U(x))dx

)2

+

(∫ π

−π
sinx cos xf ′(U(x))dx

)2
]
=
επ

A2
,(4.2)

where we have applied the identities (A.2), (A.16), and (A.18). In the case of a Heaviside
firing rate function (1.6), we can use the explicit expression (A.8) for the amplitude of the
stable bump to write (4.2) simply in terms of the noise amplitude ε and network threshold θ
as

D(ε) =
επ

2 + 2
√
1− θ2

.(4.3)

Thus, we have an asymptotic approximation for the effective diffusion coefficient D(ε) of a
stable bump (2.2) in the ring network (1.7) driven by additive noise. We compare (4.3) to
diffusion coefficients computed from numerical simulations in Figure 5. As predicted by our
theory, averaging across numerical realization the Langevin equation (1.7) shows that the
variance of the bump’s position scales linearly in time.

4.2. Extinction of bumps near a saddle-node. In general, there are few analyses that
approximate the waiting times of large deviations in spatially extended systems with noise
[29, 73]. Recently, the approach of calculating the minimum energy of the potential landscape
of such systems has been used as a means of approximating the path of least action, along
which a rare event is most likely to occur [26]. Here, we show an example of a large deviation
in the stochastic neural field (1.7) where the dynamics escapes from the basin of attraction of
the stationary bump solution (2.1).

We find that noise can cause trajectories of U(x, t) to cross through a separatrix of the
deterministic system (1.1). This unstable manifold separates stable bump solutions from theD
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WANDERING BUMPS IN STOCHASTIC NEURAL FIELDS 79

Figure 5. Wandering of bumps due to noise with cosine correlation function (4.1) in ring model (1.7) with
Heaviside firing rate function (1.6) and cosine weight kernel (1.2). (a) A single realization of neural activity
U(x, t) driven by additive noise with amplitude ε = 0.001, using stable stationary bump (2.2) as initial condition.
The superimposed line tracks the center position (peak) of bump. Threshold θ = 0.5. (b) The bump wanders
more for higher amplitude noise ε = 0.01. (c) The variance 〈Δ(t)2〉 of the bump’s center position Δ(t) computed
across 1000 realizations (red dashed) scales linearly with time, as predicted by theory (blue solid). Diffusion
coefficient D(ε) is computed using (4.3). The parameters are θ = 0.5 and ε = 0.01. (d) The dependence of
the diffusion coefficient on the network threshold θ for ε = 0.001 and ε = 0.01 is computed using asymptotic
approximation (4.3) (blue line) and is computed numerically (red circles) across 1000 realizations run for 50
time units. Numerical simulations of (1.7) are performed using Euler–Maruyama with a trapezoidal rule for
the integral with the discretization Δx = 0.01 and Δt = 0.01.

homogeneous “off” state. In Figure 6(a), we show the results of simulations where we take
a Heaviside firing rate function (1.6) and the threshold θ = 0.95, so the system is operating
near the saddle-node bifurcation of the deterministic system at θSN = 1 (see (A.25)), and
additive noise causes the bump to temporarily wander and then extinguish. Relating this to
oculomotor delayed-response tasks, such an event would cause major error in the recall of a cue
location. In Figure 6(b), we show the mean time to extinction Textinct depends exponentially
on the distance of the system to the saddle-node bifurcation, as described by the function
b exp(γ|θ − θSN |). While we do not have a derivation of this formula per se, it stands to
reason that the dynamics escapes some potential well whose height can be characterized by
the distance |θ− θSN |. Thus, a Kramer’s escape rate calculation could give the desired result
[37]. We will leave such analysis to future studies.D
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80 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

Figure 6. Extinction of bumps in the network (1.7) with Heaviside firing rate function (1.6) and additive
noise with cosine spatial correlations (4.1). (a) A single numerical simulation of (1.7) with threshold θ =
0.95 and noise amplitude ε = 0.01, where noise causes bump extinction at t ≈ 65. (b) A plot of numerical
approximations (red circles) to the mean bump extinction time Textinct across 1000 realizations, given by when
the bump’s peak crosses below threshold θ. This is fit to the exponential function b exp(γ|θ − θSN |) of the
distance to the saddle-node at θ = θSN using least squares (blue line). Specifically, b ≈ 10 and γ ≈ 33. The
noise amplitude is ε = 0.01. The numerical scheme is the same as that in Figure 5.

4.3. Bumps locking to inputs. In the case of a Heaviside firing rate function (1.6), cosine
synaptic weight (1.2), and cosine input (2.3), we have an approximation of the diffusion
coefficient D(ε) of the white noise W(t) given by the formula (4.3), and the mean-reversion
rate will be given by

κ =
nI0 sin(na)

2 sin2 a+ nI0 sin(na)
.(4.4)

Not surprisingly, up to a scaling factor, this is the same as the eigenvalue (2.11) associated
with linear stability of odd perturbations to the bump in the deterministic system. With the
formula for κ in hand, we can approximate the variance of the stochastic process Δ(t) by the
formula (3.22). We compare this theory to an average across realizations in Figure 7 for the
cases n = 1 and n = 2, showing that it captures the saturating nature of the variance.

4.4. Long-time switching between input-generated attractors. On substantially long
waiting times, we would not necessarily expect Δ(t) to stay close to a fixed point of the
deterministic system (1.1) generated by an external input (2.3), even though we have made this
assumption in our perturbation analysis. The bump will eventually escape to a neighboring
fixed point (see Figure 8(a)). Analogous to this, studies of mutually inhibitory neural networks
have shown that including additive noise can cause transitions between two winner-take-all
states of a network [61]. To our knowledge, this is the first study to examine such phenomena in
the context of a spatially extended neural field equation. However, there have been studies of
the switching times between wave propagation directions in a neural field with local adaptation
that employed numerically derived forms of an effective potential [54, 53].

We find that additive noise causes trajectories of U(x, t) to cross through a separatrix of
the deterministic system. Similar to our study of extinction in the input-free network, this
separatrix is an unstable bump. Rather than separating a stable bump from a homogeneousD
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WANDERING BUMPS IN STOCHASTIC NEURAL FIELDS 81

Figure 7. Bumps pinned by stationary inputs (2.3) in the stochastic neural field (1.7) with cosine correlated
noise (4.1). (a) Numerical simulation for unimodal inputs (n = 1). The bump stays in the vicinity of the stable
fixed point at x = 0. (b) The variance of the bump’s position is computed across 1000 realizations (red dashed)
saturates, rather than growing linearly. The theoretical curve (blue solid), given by the Ornstein–Uhlenbeck
calculation (3.22) with (4.4), compares nicely. (c) A numerical simulation for bimodal inputs (n = 2). The
bump is initiated and stays in the vicinity of the fixed point at x = 0, although there is another equilibrium at
x = π. (d) The variance of the bump’s position for n = 2. Other parameters are θ = 0.5 and ε = 0.01.

Figure 8. Escape of a pinned bump solution from the vicinity of one stable equilibrium to another. (a)
Numerical simulation of the stochastic neural field (1.7) in the case I(x) = I0 cos 2x. After a waiting time,
the bump hops from x ≈ 0 to x ≈ π, the two stable fixed points of the underlying deterministic system. (b)
Mean waiting time to a switch as a function of the strength of the input I0 to the network as computed using
numerical simulations (red circles). This is fit using least squares to an exponential b exp(γI0) (blue solid),
where b = 750 and γ = 30. Other parameters are θ = 0.5 and ε = 0.01.D
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82 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

“off” state, here it separates two stable bumps, centered at x = 0 and x = π. In Figure 8(a),
we show one such transition. In this case, our approximation using an Ornstein–Uhlenbeck
process (3.20) will clearly break down, since the bump is now attracted to a completely
different stable state. In Figure 8(b), we show that the mean time until a switch Tswitch

depends exponentially on the strength of the input I0, given b exp(γI0). Essentially, we are
controlling the depth of a bistable potential well in which the dynamics of the bump’s position
will evolve. The stronger the input, the deeper the well will be. As in the case of bump
extinction, we might expect that a Kramer escape rate calculation could give us such a result
[68, 37]. However, we will leave such calculations to future studies of rare events in neural
fields.

4.5. Pinning of bumps by synaptic heterogeneity. Now to compare our asymptotic anal-
ysis of the synaptic heterogeneity case to numerical simulations, we specify a Heaviside firing
rate function (1.6), cosine (1.2) for w̄ and w1, and cosine spatial noise correlations (4.1). Here,
the diffusion coefficient D(ε) is given by the formula (4.3). In addition, we restrict our mod-
ulation frequency to be greater than unity, n > 1. Then the function B(x), which leads to
pinning, can be computed using the formula (3.14) for ϕ(x) and substituted into our formula
for the mean reversion rate, so

κ =
σn[cos a sin(na)− n sin a cos(na)]

(n2 − 1) sin a± σ[n cos a sin(na)− sin a cos(na)]
,(4.5)

which, not surprisingly, is simply the eigenvalue λ− associated with odd perturbations (2.20),
up to a sign switch. The sign of the σ portion of the denominator is ambiguous because
we must select the stable bump, which could have either A+ or A− as its amplitude. Using
these specific formulae, we can compute the variance of the Ornstein–Uhlenbeck process (3.20)
with the formula (3.22). We show an example of this in Figure 9 for n = 2 and n = 3. In
particular, we observe that the variance of the bump, computed by averaging across many
realizations of (1.7), saturates after a substantial amount of time. However, as the number of
attractors n is increased, the Ornstein–Uhlenbeck approximation (3.20) does not do as well
at approximating the variance, since the bump can begin to escape from the starting pinned
location to a neighboring one.

4.6. Reduced effective diffusion due to synaptic heterogeneity. Now, we compare the
asymptotic approximation of Deff (3.29) to numerical simulations. We thus consider the
case of a Heaviside firing rate function (1.6), cosine (1.2) for w̄ and w1, and cosine spatial
correlations (4.1). In this case, the diffusion coefficient D(ε) is given by the formula (4.3).
After some calculations (see Appendix B), we find that the formula (3.29) for the effective
diffusion coefficient yields

Deff =
D(ε)

[I0(2V(n)/D(ε))]2
,(4.6)

where I0(x) is the modified Bessel function of the zeroth kind. As shown in Appendix B,
limn→∞Deff = D(ε). Previous studies of traveling waves in periodically modulated neural
fields have also found that wavespeed tends to that of the homogeneous network in the limit ofD
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Figure 9. Pinning of bumps in the network (1.7) with synaptic weight (1.4) for low frequency n synaptic
heterogeneity. (a) Numerical simulation of (1.7) using synaptic weight (1.4) for n = 2, σ = 0.1, and ε = 0.01
shows that the bump remains pinned to the stable attractor at x = 0. (b) The variance of the bump’s position
plotted against time computed numerically (red dashed) across 1000 realizations saturates after a moderate
amount of time when n = 2, as predicted by the Ornstein–Uhlenbeck approximation (3.20) (blue solid). (c)
Numerical simulation for n = 3, σ = 0.1, and ε = 0.01 shows that the bump remains pinned to the stable
location at x = 0. (d) The variance of the bump’s position plotted against time computed numerically (red
dashed) does not match the prediction of the Ornstein–Uhlenbeck approximation (blue solid) quite as well for
long times. The threshold parameter is θ = 0.5.

high frequency modulation [7, 47, 18]. Using the formula (4.6) along with the definition (B.9),
we approximate the diffusion of a bump in a network with synaptic modulation frequency
n = 8 in Figure 10(b). Notice that the linear approximation of the variance’s scaling with
time matches averages over realizations fairly well. Thus, the variance no longer saturates
in time, as in the case of low frequency modulation n. As evidenced by our plots of the
probability density P (Δ, t), in Figure 10(c), the stochastic process Δ(t) behaves diffusively
with microperiodic modulation, as suggested by the asymptotic formula (3.28). Finally, we
compare our theoretical effective diffusion (4.6) across a span of modulation frequencies n to
that approximated using numerical simulations in Figure 10(d). We find reasonable agreement.
In particular, we see that synaptic heterogeneity substantially reduces the effective diffusion
of the bump for lower values of n. We plan to pursue this result much more deeply in future
studies.
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84 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

Figure 10. The effective diffusion is reduced in a network with high frequency modulation in synaptic
weights. (a) A single numerical simulation of (1.7) with synaptic weight (1.4) in the case n = 8 where the bump
frequently moves between locations of stable attractors (cyan) of the deterministic system. (b) The variance of
the bump’s position scales linearly with time, rather than saturating as in the case of lower frequency modulation
of synaptic weights. (c) The probability density P (Δ, t) of the bump position computed across 5000 realizations
evaluated at time t = 400 reveals microperiodic structure of diffusion. Vertical lines (cyan) indicate the location
of the n = 8 attractors. (d) Asymptotic approximation of effective diffusion Deff (blue line) computed using
theory (4.6) as compared with that computed using numerical simulations (red dashed dot). For small values of
n, effective diffusion is considerably reduced as compared to diffusion (4.3) in the homogeneous system (black
line). Other parameters are θ = 0.5, σ = 0.1, and ε = 0.01.

5. Discussion. We have analyzed the effects of external noise on stationary bumps in
spatially extended neural field equations. In a network with spatially homogeneous synaptic
weights, we found that noise causes bumps to wander about the spatial domain according to
a purely diffusive process. We can asymptotically approximate the diffusion coefficient of this
process using a small-noise expansion, which assumes that the profile of the activity variable is
still a bump to first order. Following this analysis, we study the effects of breaking the trans-
lation symmetry of the spatially homogeneous network in two ways, using external inputs and
using spatially heterogeneous synaptic weights. Effectively, this alters the dynamic landscape
of the network from a line attractor to a chain of discrete attractors. External inputs with
multiple peaks serve to pin the bump to one of multiple discrete attractors of the network, so
that the bump’s position evolves as a mean-reverting process. Periodic synaptic heterogeneity
also leads to pinning at low modulation frequencies. At high modulation frequencies, the
bump can escape from being pinned to a single location in the network, leading to effectiveD
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diffusion in the limit of long time. We can approximate this effective diffusion using methods
for studying a particle diffusing in a periodic potential.

We see the main contribution of this work as introducing the notion of reliability, in the
presence of noise, to stationary bumps in neural fields. The specific location of a bump in
a neural field carries important information about the stimulus that formed it [1, 14, 56].
Noise can degrade this memory, so it is very useful to understand how the architecture and
parameters of a neural field model affect how easily this deterioration takes place. This has
specific applications in the realm of oculomotor delayed-response tasks in prefrontal cortex,
where it is clear there are networks of neurons that can encode visuospatial location during the
retention period of such tasks [35, 38, 12]. Since our work shows that breaking the translation
symmetry of neural fields can serve to decrease noise-induced diffusion of bumps, it is worth
pursuing how well this improves the overall memory process. The advantage of a network
that is a line attractor is that, in the absence of noise, it can represent a continuum of initial
conditions. Since all of these positions are marginally stable, noise easily degrades memory
of the initial condition due to diffusion along the line attractor. On the other hand, when
symmetry is broken so a network behaves as a chain of discrete attractors, there is a trade-off
between initial representation errors versus long term robustness to noise. Interestingly, we
also found that increasing the spatial correlation length of the noise can serve to decrease the
resulting diffusion of the bump. Therefore, working memory networks may better maintain a
bump’s initial condition by spatially averaging incoming external noise.

Neural fields are known to generate a variety of spatially structured solutions other than
bumps, such as traveling waves [79, 1, 5, 7, 23], stationary periodic patterns [42, 24, 69], and
spiral waves [41, 51, 9]. It would be interesting to study more about how these structures
are affected by external noise. It seems that the form of the spatially structured solution
markedly contributes to the the way in which noise affects its form and position. Neural fields
that support spatially periodic patterns can have the onset of the associated Turing instability
shifted by the inclusion of spatially structured noise [43]. In recent work on traveling fronts
in stochastic neural fields, it was found that the bifurcation structure of the neural field
determined the characteristic scaling of front location variance with time [11]. In particular,
pulled fronts have subdiffusive variance scaling, as opposed to diffusive variance scaling of a
front in a bistable system. We plan to study the effects of noise on bumps in planar neural fields
[62]. In this case, the spatial correlations of the noise will be in two dimensions. Therefore,
dimensional bias in the synaptic weight or noise correlations could lead to asymmetric diffusion
of the bump in the plane. In addition, it is possible that this analysis could be extended to a
two component system, such as a model with local adaptation that generates traveling pulses
[64]. If there is a separation of timescales between the activity and adaptation, variable,
fast-slow analysis might be paired with the small-noise expansion (3.1) to derive the effective
variance in position of the traveling pulse. Finally, it would be quite interesting to study the
effects of noise on spiral waves in neural fields [41, 51]. Doing so may provide us with some
experimentally verifiable measure of whether long-time deviations of the spiral center arise
from deterministic meandering or noise.

Appendix A. Bumps in the homogeneous network. In this appendix, we review the
analysis of existence and stability of bumps in a ring model with an even symmetric, spatiallyD
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86 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

homogeneous weight function [27, 40, 75] so that w(x, y) = w̄(x − y). Upon assuming a
stationary solution u(x, t) = U(x), the scalar equation (1.1) requires that it satisfy the integral
equation

U(x) =

∫ π

−π
w̄(x− y)f(U(y))dy,(A.1)

which we can interpret by expanding the even, 2π-periodic, spatially homogeneous weight
function

w̄(x− y) =

N∑
k=0

wk cos(k(x− y)) =

N∑
k=0

wk[cos(kx) cos(ky) + sin(kx) sin(ky)],(A.2)

where N is the maximal mode of the weight function, so that (A.1) becomes

U(x) =

N∑
k=0

Ak cos(kx) +

N∑
l=1

Bk sin(kx),(A.3)

where

Ak = wk

∫ π

−π
cos(kx)f(U(x))dx, Bl = wl

∫ π

−π
sin(lx)f(U(x))dx(A.4)

for k = 0, . . . , N and l = 1, . . . , N . We look specifically for even stationary bump solutions,
as is often done in analyses of localized solutions in neural fields [1, 17, 75, 9]. Thus, Bl = 0
for all l, so

U(x) =
N∑
k=0

Ak cos(kx),

and we can solve for the coefficients Ak by requiring self-consistency of the solution U(x) =∑N
k=0Ak cos(kx) such that (A.4) becomes

Ak =

∫ π

−π
cos(kx)f

(
N∑
k=0

Ak cos(kx)

)
dx, k = 0, . . . , N.(A.5)

For a general sigmoidal firing rate function (1.5), one could determine the coefficients Ak using
a numerical root finding method [75].

For a Heaviside firing rate function (1.6) and cosine weight function (1.2), we can solve
exactly for the bump amplitude A1 = A. Equation (2.1) shows that U(x) is unimodal and
symmetric, since Ak = 0 for k 
= 1, so it will cross above and below θ at locations x = −a
and x = a, respectively. This provides us with the threshold conditions U(±a) = θ for (2.1),
which can be written equivalently as

a = cos−1 θ

A
.(A.6)
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Thus, we know that U(x) > θ for x ∈ (− cos−1(θ/A), cos−1(θ/A)), so the k = 1 self-consistency
condition (A.5) becomes

A = 2

∫ cos−1 θ/A

0
cos xdx = 2 sin

(
cos−1 θ

A

)
= 2

√
1− θ2

A2
.(A.7)

Solving (A.7) for the scaling factor of the bump U = A cos x gives

A =
√
1 + θ ±√

1− θ,(A.8)

which generates the formula (2.2). Applying (A.6), half-widths a can be easily computed:

a± = cos−1

(√
1 + θ ∓√

1− θ

2

)
.(A.9)

The network with a cosine weight kernel (1.2) is translationally symmetric, so that we could
construct a bump solution centered at any position x ∈ [−π, π]. This would simply lead to
a system of two equations for A and B associated with (A.3), but the width of such a bump
would be the same as that of (2.1). We can also show this by calculating the linear stability
of bumps in the network (1.1), revealing marginal stability of a shift perturbation.

Linear stability of bumps (2.1) can be computed by analyzing the evolution of small,
smooth, separable perturbations such that u(x, t) = U(x)+ψ(x)eλt for |ψ(x)| � 1. Substitut-
ing this expansion into the evolution equation (1.1), Taylor expanding, applying (A.1), and
studying the first order equation yields [10, 20, 75]

(λ+ 1)ψ(x) =

∫ π

−π
w̄(x− y)f ′(U(y))ψ(y)dy.(A.10)

Applying the expansion (A.2), we can write

(λ+ 1)ψ(x) =

N∑
k=0

Ak cos(kx) +

N∑
l=1

Bl sin(lx),(A.11)

where

Ak = wk

∫ π

−π
cos(kx)f ′(U(x))ψ(x)dx, Bl = wl

∫ π

−π
sin(lx)f ′(U(x))ψ(x)dx(A.12)

for k = 0, . . . , N and l = 1, . . . , N . Thus, we reduce the infinite dimensional equation (A.10)
to a (2N) × (2N) linear spectral problem (A.11). Such a technique was recently shown for a
general class of weight functions in [75].

To demonstrate this analysis further, we proceed with the case of a unimodal cosine weight
function (1.2), so A1 = A, B1 = B, and Ak = Bk = 0 for k 
= 1. Upon substituting the form
of ψ(x) given by (A.11) into the system of equations (A.12), we have

(λ+ 1)

( A
B
)

=

( I(cos2 x) I(cosx sinx)
I(cos x sinx) I(sin2 x)

)( A
B
)
,(A.13)

D
ow

nl
oa

de
d 

01
/2

2/
13

 to
 1

30
.4

9.
19

8.
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

88 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

where

I(r(x)) =
∫ π

−π
r(x)f ′(U(x))dx.(A.14)

First, note that the essential spectrum is λ = −1 and thus does not contribute to any insta-
bilities. Upon integrating (A.5) by parts, we see

A =

∫ π

−π
cos xf(A cos x)dx = A

∫ π

−π
sin2 xf ′(A cos x)dx.(A.15)

Therefore, as long as A 
= 0, the equality (A.15) tells us

I(sin2 x) =
∫ π

−π
sin2 xf ′(U(x))dx = 1.(A.16)

Using this identity (A.16) and the fact that (A.14) is linear, we can then compute

I(cos2 x) = I(1− sin2 x) = I(1)− I(sin2 x) = I(1)− 1.(A.17)

Finally, we can use integration by parts to show

I(cos x sinx) =
∫ π

−π
cos x sinxf ′(U(x))dx = −

∫ π

−π
sinxf(U(x))dx = 0,(A.18)

since U(x) is even. Using the identities (A.16), (A.17), and (A.18), it is straightforward to
compute the eigenvalues that determine the stability of the bump (2.1). We do so by finding
the roots of the associated characteristic equation

λ2 + (2− I(1))λ = 0,(A.19)

which reveals the zero eigenvalue λo = 0, associated with the constant B, defined in (A.12),
which means it reveals the linear stability of bumps in response to odd (shifting) perturbations.
The fact that λo is zero arises due to the underlying translation symmetry of (1.1) when w(x, y)
is the cosine weight function (1.2). In addition, the stability of the bump (2.1) is determined
by the sign of the other eigenvalue

λe = 2

∫ π

0
f ′(U(x))dx− 2,(A.20)

associated with A, defined by (A.12), and thus even (expanding or contracting) perturbations
of the bump.

In the limit of infinite gain γ → ∞, f becomes the Heaviside (1.6), and

f ′(U(x)) =
dH(U(x))

dU
=
δ(x− a)

|U ′(a)| +
δ(x+ a)

|U ′(a)| ,(A.21)

in the sense of distributions, so (A.20) will be

λe = −2 +
2

|U ′(a)|(A.22)
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for the bump (2.2) of half-width a. Identifying threshold θ values at which (A.22) crosses zero
will give the location of a saddle-node bifurcation [1, 20, 33]. Equation (A.22) allows us to
compute eigenvalues exactly for the wide and narrow bumps since (A.9) gives the half-widths
and the spatial derivative at the edges

|U ′(a±)| =
(√

1 + θ ±√
1− θ

)√1±√
1− θ2

2
.(A.23)

Substituting the expression (A.23) into (A.22) yields

λe = λ± = −2 +
2
√
2

(
√
1 + θ ±√

1− θ)
√

1±√
1− θ2

,(A.24)

the nonzero eigenvalue associated with the wide (+) and narrow (−) bumps. To identify the
threshold θ where the two pulses annihilate in a saddle-node bifurcation, we look for where
λ± = 0. Imposing this requirement on (A.24) means

(√
1 + θ ±√

1− θ
)√

1±
√

1− θ2 =
√
2.(A.25)

It can be shown that (A.25) is equivalent to finding zeros of the quartic θ4 + 2θ2 − 3, whose
real solutions are θ = ±1. Thus, as θ is increased from zero, the stable wide and unstable
narrow bump branches will coalesce in a saddle-node bifurcation at θ = 1.

Appendix B. Reduced effective diffusion due to synaptic heterogeneity. In this ap-
pendix, we derive the effective diffusion coefficient for a bump in a stochastic neural field
with periodically heterogeneous synaptic connectivity. We begin by performing the expansion
(3.1), substituting it into (1.7), and studying the O(ε1/2) equation

dΦ(x, t) = LΦ(x, t)dt+ ε−1/2U ′(x)dΔ(t) + dW (x, t) + ε−1/2B(x,Δ(t))dt,(B.1)

where L is the non–self-adjoint linear operator (3.3), and

B(x,Δ) = σ

∫ π

−π
[w1(n(y +Δ))− w1(ny)]w̄(x−Δ− y)f(U(y))dy,(B.2)

which we will show to be small below. To derive the function B(x,Δ), we have performed the
change of variables∫ π

−π
w(x, y)f(U(y −Δ))dy =

∫ π

−π
(1 + σw1(ny))w̄(x−Δ− y)f(U(y))dy

+ σ

∫ π

−π
(w1(n(y +Δ))− w1(ny))w̄(x−Δ− y)f(U(y))dy,

in order to make the cancellation

U(x−Δ) =

∫ π

−π
(1 + σw1(ny))w̄(x−Δ− y)f(U(y))dy.
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90 ZACHARY P. KILPATRICK AND BARD ERMENTROUT

Since w1(ny) is a 2π/n-periodic function, we can also assume that B(x,Δ) will be 2π/n-
periodic in Δ. To justify the retention of the term B(x,Δ) in the O(ε1/2), we note that upon
integrating (B.2) by parts, we have

B(x,Δ) =
σ

n

∫ π

−π
Wd(ny)

d

dy
[w̄(x−Δ− y)f(U(y))] dy = O(1/n),

which will be small for large n, and we have defined

Wd(x) =

∫ x

−π
[w1(y +Δ)−w1(y)] dy.

Note also that since we require Δ(t) = O(ε1/2) for our approximation, we can truncate a
Taylor expansion of w̄(x− y −Δ) so that we define

B(x,Δ) = σ

∫ π

−π
[w1(n(y +Δ))− w1(ny)] w̄(x− y)f(U(y))dy.(B.3)

Now, we can ensure that a bounded solution to (B.1) exists by requiring the inhomogeneous
part to be orthogonal to the nullspace ϕ(x) of the adjoint operator L∗ defined by (3.4). Doing
so, we find that Δ(t) satisfies the nonlinear SDE (3.26), where

K(nΔ) =

∫ π
−π ϕ(x)B(x,Δ)dx∫ π
−π ϕ(x)U

′(x)dx
(B.4)

is a 2π/n-periodic function since B(x,Δ) is 2π/n-periodic in Δ. The white noise term W(t)
is given by (3.21), so it has zero mean and the same diffusion coefficient as we computed in
the input-free case, so 〈dW(t)dW(t)〉 = D(ε)dt, where D(ε) is given by (3.8). Therefore, to
find the periodic potential well V (x) associated with the nonlinear SDE (3.26), we simply
integrate the nonlinear function (B.4), which yields

V (Δ) =

∫ Δ

−π
K(nη)dη =

∫ π
−π ϕ(x)

∫ Δ
−π B(x, η)dηdx∫ π

−π ϕ(x)U
′(x)dx

.(B.5)

To compute the effective diffusion coefficient (3.29) for the specific case of a Heaviside
firing rate (1.6), cosine weight (1.2), and cosine correlation (4.1), we start with the function
B(x,Δ) (B.3), which is 2π/n-periodic in the Δ argument

B(x,Δ) = σ

[
2(cos(nΔ)− 1)(n cos a sin(na)− sin a cos(na))

n2 − 1

]
cos x

+ σ

[
2 sin(nΔ)(n sin a cos(na)− cos a sin(na))

n2 − 1

]
sinx.(B.6)

Now, with the formula (B.6) in hand, along with ϕ(x) and A±, we can compute the nonlinear
function K(nΔ) using (B.4). Note that the cosine portion of (B.6) vanishes upon integration
to yield

K(nΔ) =

[
2σ(n sin a cos(na)− cos a sin(na))

(n2 − 1) sin a± σ[n cos a sin(na)− sin a cos(na)]

]
sin(nΔ),(B.7)
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where we select the + or − in the denominator of (B.7), depending on whether the bump
centered at x = 0 is stable or not. Now, in order to compute our effective diffusion coefficient
Deff (3.29), we must integrate the function K(nΔ) to yield the potential function governing
the dynamics of (3.26). This gives us the potential function

V (Δ) = −V(n) cos(nΔ),(B.8)

where the amplitude (or half-height) of each well is

V(n) = 2σ(n sin a cos(na)− cos a sin(na))

n(n2 − 1) sin a± σn[n cos a sin(na)− sin a cos(na)]
.(B.9)

Now, finally, we use the standard formula for the effective diffusion coefficient of a particle in
a periodic potential well (3.29). With our particular cosine potential well (B.8), the integrals
in (3.29) can be computed and are equal to one another:

∫ 2π/n

0
exp

[
2V (x)

D(ε)

]
dx =

∫ 2π/n

0
exp

[
−2V (x)

D(ε)

]
dx

=

∫ 2π/n

0
exp

[
2V(n)
D(ε)

cos(nx)

]
dx =

2π

n
I0
(
2V(n)
D(ε)

)
,

where I0(x) is the modified Bessel function of the zeroth kind. Thus, we find the formula
(3.29) for the effective diffusion coefficient yields the formula (4.6). We can also note that
in the limit of high frequency modulations (n → ∞) the formula (4.6) tends to the diffusion
coefficient of the homogeneous network since

lim
n→∞V(n) = lim

n→∞
2σ(n sin a cos(na)− cos a sin(na))

n(n2 − 1) sin a± σn[n cos a sin(na)− sin a cos(na)]
= 0

so that we find the limit of (4.6) to be

lim
n→∞Deff = lim

n→∞
D(ε)

[I0(2V(n)/D(ε))]2
=
D(ε)

I0(0)
= D(ε).
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