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Binocular Rivalry in a Competitive Neural Network with Synaptic Depression∗

Zachary P. Kilpatrick† and Paul C. Bressloff‡

Abstract. We study binocular rivalry in a competitive neural network with synaptic depression. In particular,
we consider two coupled hypercolums within primary visual cortex (V1), representing orientation
selective cells responding to either left or right eye inputs. Coupling between hypercolumns is
dominated by inhibition, especially for neurons with dissimilar orientation preferences. Within hy-
percolumns, recurrent connectivity is excitatory for similar orientations and inhibitory for different
orientations. All synaptic connections are modifiable by local synaptic depression. When the hy-
percolumns are driven by orthogonal oriented stimuli, it is possible to induce oscillations that are
representative of binocular rivalry. We first analyze the occurrence of oscillations in a space-clamped
version of the model using a fast-slow analysis, taking advantage of the fact that depression evolves
much slower than population activity. We then analyze the onset of oscillations in the full spatially
extended system by carrying out a piecewise smooth stability analysis of single (winner-take-all) and
double (fusion) bumps within the network. Although our stability analysis takes into account only
instabilities associated with real eigenvalues, it identifies points of instability that are consistent with
what is found numerically. In particular, we show that, in regions of parameter space where double
bumps are unstable and no single bumps exist, binocular rivalry can arise as a slow alternation
between either population supporting a bump.
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1. Introduction. Binocular rivalry concerns the phenomenon whereby perception switches
back and forth between different images presented to either eye. Due to the supposed link
to activity in the lateral geniculate nucleus (LGN) and the visual cortex, binocular rivalry
continues to be an excellent way to obtain information about the human visual system [28, 59].
Psychophysical experiments are noninvasive and can provide a great deal of data about the
response of the visual system to different characteristics of binocular stimuli. Currently,
there are several open problems in binocular rivalry including the relationship between the
type of stimuli and resulting perception, the neural sites encoding perception, and the neural
connections that facilitate competition of stimuli.

Although binocular rivalry has been studied for hundreds of years, only recently have
experimentalists clarified some of its specific statistical properties [7]. In 1965, Levelt proposed
four characteristics of binocular rivalry which he had ascertained empirically: (i) increasing
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the contrast of the stimulus in one eye increases the predominance of the stimulus in that
eye; (ii) increasing the contrast in one eye does not affect average dominance time of that eye;
(iii) increasing contrast in one eye increases the rivalry alternation rate; and (iv) increasing
the contrast in both eyes increases the rivalry alternation rate [45]. Propositions (i), (iii), and
(iv) together imply that when the contrast of a stimulus to one eye is increased, the length
of time the other eye’s stimulus spends in dominance will decrease. Following Levelt’s study
other independent experiments have verified this observation that the modulated stimulus
will spend less time being suppressed [24, 46]. Bossink and colleagues used an apparatus and
paradigm similar to that of Levelt and found that proposition (ii) did not hold for various
types of stimuli [9]. A recent study also found that proposition (ii) holds only for a certain
range of stimulus contrasts [10]. Interestingly, this is the proposition that is often contradicted
by the results of various modeling studies of binocular rivalry that use reciprocal inhibition
[41, 39, 25].

Recent psychophysical experiments have revealed properties additional to those supported
by Levelt’s work. First, it appears that the switching from one percept to the next occurs
stochastically. Independent studies have verified that there is little or no correlation between
one dominance time and the next [42, 10]. With this in mind, the relationships determined by
Levelt can be considered the average perception of the subject over many trials. Also, there is
a long standing theory that attention to a particular stimulus can prolong the dominance time
of the attended stimulus [29]. Experimental evidence suggests that this correlation may hold
true when the subject practices repeatedly [38, 17]. However, the nonattended stimulus will
eventually appear in the observer’s perception, no matter how strongly attention is focused
on the other. The fact that attention can bias the outcomes of binocular rivalry suggests that
higher level visual areas may play a modulatory role in the phenomenon [66]. Attention may
increase the apparent contrast of the attended stimulus or simply boost the activity of one of
two competing neural populations [17]. In addition, experiments have verified that the “tilt
aftereffect” is still observed when vertical and tilted lines are rivalrous stimuli [64]; the tilt
aftereffect is the phenomenon by which staring at a slightly tilted line will make a vertical
line appear to be tilted in the opposite direction if viewed immediately after. Since the neural
substrate of this phenomenon is known to reside in primary visual cortex (V1), this suggests
that binocular rivalry can involve V1 [34]. Thus, without even recording activity signals from
the brain, a great deal about the neural site of binocular rivalry can be learned from subjects
reporting their perceptual responses to stimuli.

Several different methods of recording neural activity in subjects during binocular rivalry
have also been employed in an effort to isolate the specific sites of its encoding. In monkeys,
single electrode recordings have been employed to track electrical activity during binocular
rivalry tasks [7]. Evidence has been found in the V1, V2, and V4 regions of visual cortex
of an elevation in some cells’ firing rates that corresponds well with the monkey’s reported
perception of a stimulus [44]. Thus, it appears that several areas of visual cortex may be
involved. However, single unit recordings have yet to reveal changes in the firing rate of LGN
neurons that correspond to the perceptual changes of binocular rivalry [43]. In humans, less
invasive techniques such as scalp recording and functional magnetic resonance imaging (fMRI)
have helped to localize brain regions whose activity reflects the experience of binocular rivalry.
Visually evoked potentials measured on the scalp during a binocular rivalry task reveal that
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potential waveforms associated with each stimulus possess a timecourse very closely linked to
the subject’s perceptual observation [13]. A number of fMRI studies have verified that there
are changes in the blood oxygen level dependent (BOLD) signals in V1 that correspond to
the perceived switching in stimulus dominance [51, 59, 40]. In addition, recent work has used
fMRI of the BOLD signal to find correspondence between the activity in LGN and a human
subject’s percepts during binocular rivalry [28]. However, this may be due to functionally
specific feedback connections from V1 to LGN that are possibly imposing activity fluctuations
up the visual stream [33]. All of these results point to a number of possibilities as to the central
visual area encoding binocular rivalry [7]. Some theories even propose that there may be a
hierarchy of visual areas involved so that there is a competition between either eye’s input as
well as differing patterns [66, 60].

Since we will focus here on modeling binocular rivalry in V1, it is useful to describe some
essential features of the functional architecture of V1. First, each neuron in V1 has a particular
patch of the visual scene to which it responds, known as its classical receptive field [31, 32].
Stimuli outside a neuron’s receptive field do not directly affect its activity. Second, most
neurons in V1 respond preferentially to stimuli of a particular eye, right or left, which assigns
their ocular dominance [31, 8, 48]. It has been suggested that neurons with different ocular
dominance (one right and one left) may inhibit one another if they have nearby receptive fields
[35]. As signals are relayed to higher areas of visual cortex, these two pathways are combined
to process more complex stimuli. Third, most neurons in V1 are tuned to respond maximally
when a stimulus of a particular orientation is in their receptive field [31, 16, 8]. This is known
as a neuron’s orientation preference, and the neuron will not be directly affected if a stimulus
is sufficiently different from its preferred orientation. Finally, there is a great deal of evidence
which suggests that, for a discrete patch of visual space, there exists a corresponding collection
of neurons spanning the entire spectrum of orientation preferences that are packed together as
a unit in V1, known as a hypercolumn [32, 61, 26]. Despite recent studies that have called into
question the reality of the hypercolumn as a structure [30], there is certainly a periodic map of
feature preferences in V1 that can be modeled quite cleanly with the idea of the hypercolumn
[11]. Using multielectrode and optical imaging techniques, periodicity in orientation preference
has been shown across V1 where each period corresponds to a coarse location in retinotopic
space [32, 8]. Within this hypercolumn, neurons with sufficiently similar orientations will
excite each other, and those with sufficiently different orientations will inhibit each other,
which serves to sharpen a particular neuron’s orientation preference [26, 5, 23]. Anatomical
evidence suggests that interhypercolumn connections excite similar orientations [55, 3]. The
functional relationship between stimulus feature preferences and synaptic connections within
V1 suggests that V1 is a likely substrate of many simple examples of binocular rivalry such
as those involving sinusoidal grating stimuli.

As a basic model example of binocular rivalry in V1, suppose that a horizontally oriented
grating is presented to the left eye and a vertically oriented grating is presented to the right
eye. This triggers rivalry due to the combination of orientation specific and ocular dominant
cross-inhibition in V1 [5, 55, 7]. During left eye stimulus dominance, it is proposed that a
group of the left eye neurons that respond to horizontal orientations are firing persistently,
while right eye neurons are suppressed by cross-inhibitory connections. Of course, there may
still be some low rate firing of the right eye neurons, but it will be less than the firing rate of
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Figure 1. Primary visual cortex (V1) response to rival grating stimuli consisting of a vertical (horizontal)
grating presented to the right (left) eye. A snapshot in time is shown where the vertical orientation preference
neurons fire persistently (polka dots) in the right OD column, while the horizontal orientation preference neurons
in the left OD column are quiescent, even though they are receiving input. Vertically preferring neurons in the
right OD column firing at a high rate project inhibition (white diamonds) to the horizontally preferring neurons
in the left OD column to keep them from firing. In a winner-take-all (WTA) scenario, the plot would remain
unchanged as time evolves, but in a binocular rivalry situation, a slow adaptive process would eventually cause
the left OD column’s horizontal orientation preference neurons to switch from suppressed to dominant.

the left eye, horizontally tuned neurons [7]. Following this, some slow adaptive process causes
a switch so that right eye, vertical orientation neurons fire persistently, suppressing the left
eye neurons (see Figure 1). The cycle of left eye neural dominance along with right eye neural
suppression followed by right eye neural dominance along with left eye neural suppression can
continue indefinitely. This basic model of reciprocal inhibition paired with a slow adaptive
process has often been used to phenomenologically model the neural substrate of binocular
rivalry [24, 65, 54, 39, 58, 52]. In this paper, we extend these ideas by analyzing binocular
rivalry in a spatially extended coupled hypercolumn model of V1 driven by oriented grating
stimuli. While other types of stimuli may employ higher areas of visual cortex as neural
substrates of binocular rivalry [66, 60], the precise connection between neural activity and
more complex images such as a face or a house are not as well understood [7].

It remains an open question as to which slow adaptive process is most responsible for
the eventual switching of one stimulus dominance to the other [52]. The mechanism of spike
frequency adaptation has been suggested, since it can curtail excitatory activity in a single
neuron [67, 39]. Spike frequency adaptation is the process by which a hyperpolarizing current
is switched on due to a build-up of a certain ion, like calcium, within the cell due to repet-
itive firing [56]. The maximal firing rate of a neuron is lowered as a result. In the case of
binocular rivalry, this may cause the dominant population to eventually drop its firing rate so
that cross-inhibition suppressing the other population is then low enough for the suppressed
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populations to rekindle its firing rate into dominance. Since the recently released population is
not adapted, it can then remain in dominance and suppress the other population for a period
of time roughly equal to the time constant of spike frequency adaptation [67, 39, 47]. Another
proposed switching mechanism is that the inhibitory synapses from one eye’s neurons to the
other’s undergo synaptic depression.1 This is the process by which synaptic resources such
as neurotransmitters, vesicles, and scaffolding proteins are exhausted due to their continuous
use [63, 15]. If inhibitory synapses remain repeatedly active, due to one eye’s neurons sup-
pressing the other’s, eventually most of those synapses’ resources will be used up, the effect
of inhibition will be weakened, and the suppressed population will escape [39, 52].

Previous modeling efforts have been helpful in determining the neural dynamics that may
result from a specific slow adaptive process acting to produce rivalry. Some models employ
heuristic forms that are unconcerned with the specific adaptive process leading to rivalrous
switching, but they have been useful in delving deeper into the statistical properties of rival-
rous oscillations [41, 25]. Other spiking neuron and firing rate models have employed more
specific physiological forms for the slow adaptive process that leads to rivalrous switching
[67, 39, 58, 66, 49, 52, 20, 53, 47]. In most cases a firing rate model appears sufficient to capture
the elevation in spiking associated with the dominant stimulus. The dynamics of oscillations
in such reciprocally inhibitory networks are often divided into two main categories—“escape”
and “release” [65, 54, 52]. Escape is the occurrence of a suppressed neural population kin-
dling activity above some threshold, which then allows it to dominate the population that was
suppressing it. This should be contrasted with release, wherein a dominant neural population
intrinsically reduces its activity below some threshold so that the suppressed population can
be freed. One property that has been observed across all theoretical models of binocular ri-
valry is that increasing the stimulus strength to both populations leads to a decrease (increase)
in dominance times when oscillations occur via escape (release). Levelt proposition (iv) thus
suggests that rivalrous oscillations in a network model should arise via an escape mechanism
[45, 24, 9, 46, 14]. Laing and Chow [39] studied a reduced firing rate model of binocular rivalry
using spike frequency adaptation and depression individually or together. (Such a model was
derived from a more detailed, spatially extended spiking neuron model.) They found many
paradigms where dominance times depended nonmonotonically on the strength of input. This
indicates a mixture of escape and release mechanisms at work in their model, depending on the
stimulus strength range. Taylor, Cottrell, and Kristan studied a simpler model where depres-
sion is the only slow adaptive process for switching and the firing rate function is Heaviside
[58]. They found, exclusively, that increasing stimulus strength decreased dominance time, in-
dicating an escape mechanism. More recently, Shpiro et al. have systematically compared the
form of rivalrous oscillations in a variety of firing rate models with spike frequency adaptation
and/or synaptic depression [52, 53]. One common relationship they found across most models
was that when the strength of both stimulus inputs was low, if binocular rivalry existed, it
was through a release mechanism, whereas at higher stimulus strengths, binocular rivalrous
oscillations usually appeared via an escape mechanism. These authors also explored the role

1More precisely, synaptic depression tends to be associated only with excitatory synapses, so that in our
simplified model depressing inhibitory connections would have to be mediated by excitatory connections inner-
vating local interneurons, for example.
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of noise in accounting for dominance time statistics. Finally, Curtu et al. have carried out a
rigorous mathematical analysis of the adaptation-based switching mechanism in a reciprocal
inhibitory model with slow adaptation [20].

In this paper, we extend previous modeling studies by analyzing binocular rivalry in V1
using a spatially extended firing rate model with depressing synapses. In particular, we con-
sider a competitive neural network model of binocular rivalry in which a pair of hypercolumns
for the left and right eyes, respectively, are coupled together with depressing local and cross-
inhibitory synapses [5, 11]; see Figure 1. Laing and Chow [39] considered a coupled hyper-
column model similar to ours which includes both adaptation and depression in a network of
spiking neurons. However, they carried out a rigorous analysis only on a reduced rate-based
system with adaptation. Rivalry effects in a spatially extended model with spike frequency
adaptation have also been examined in a prior study by Loxley and Robinson [47], in which ri-
valrous stimuli are presented to a single one-dimensional network. While there has been some
previous work studying synaptic depression as the sole mechanism for rivalry [58, 52], none
has studied the onset of rivalrous oscillations by analyzing bifurcations of stationary bump
solutions in a spatially extended system. In our model, we take the firing rate function to be
a Heaviside, since this allows for analytical tractability. However, we also investigate numeri-
cally to what extent our results persist when the firing rate function is taken to be a smooth
sigmoid. The choice of a Heaviside is also motivated by the result found in [58], namely, that
a depressing network with a Heaviside firing rate supports only escape rivalry mechanisms,
which has more biological support [45, 46]. A Heaviside firing rate function also leads to in-
teresting dynamical phenomena, due to the resultant piecewise-smooth nature of the system.
It could be argued that the dynamics of networks with Heaviside nonlinearities are unrealistic
from a neurophysiological perspective. However, many studies of neuronal networks involving
the high-gain limit of the sigmoid function, including Amari’s [2], have proven useful in devel-
oping analytic relationships between parameters and the behaviors of standing and traveling
wave solutions (see [19] for review). Moreover, it is possible to extend results obtained in
networks with Heaviside nonlinearities to those with sigmoidal nonlinearities, using singular
perturbation methods [50] or fixed point theorems [22]. One final point regarding Heaviside
nonlinearities is that nongeneric behavior witnessed in this case may indicate that dynamical
behavior observed in a corresponding network with sigmoid firing rate functions may be sin-
gular in the high-gain limit. Specifically, we have previously found that the range in which
linear stability analysis is valid for standing bumps in networks with nonlinear adaptation
becomes vanishingly small as the sigmoid gain is taken to infinity [12, 37].

The structure of the paper is as follows. We introduce the model in section 2 and analyze
a space clamped version of the model in section 3. Similar to a previous study with both
adaptation and depression [39], we derive explicit formulae for the relation between dominance
times and the parameters of the model. Thus, we are able to compare the results of our model
with the Levelt propositions given above. In particular, we show that in our model rivalrous
oscillations occur exclusively via an escape mechanism resulting in dominance times that are
consistent with Levelt proposition (iv). We also study the effects of additive noise on the
statistics of dominance times and show that the latter is more consistent with experimental
data when the depression variables rather than the activity variables are noise-driven. In
section 4, we analyze binocular rivalry in the full spatially extended model by considering
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dynamical instabilities of stationary bump solutions. We consider the existence of both winner-
take-all (WTA) solutions, represented by a single bump of activity persisting in a single
population, and solutions where both populations support persistent bumps. We then analyze
the linear stability of these solutions by taking into account the piecewise-smooth nature of the
neural field equations arising from the use of a Heaviside firing rate function. As in previous
studies [12, 37], it is necessary to keep track of the sign of perturbations of the bump boundary
in order to characterize instabilities accurately. Finally, in section 5 we simulate the spatially
extended system using a numerical approximation scheme and compare it with the results of
our stability analysis.

2. Coupled hypercolumn model. We consider a neuronal network subdivided into two
distinct populations (hypercolumns), one responding to the left eye and the other to the right
eye; see Figure 1. (A similar network architecture was considered by Laing and Chow [39].)
Each eye’s local and cross-population synapses experience synaptic depression [63, 62]. This
is an extension of recent work, which has considered synaptic depression in a single population
[12, 37]. Thus, the network in the most general form is described by the system of equations

τ
∂uL(θ, t)

∂t
= −uL(θ, t) + wl ∗ (qLf(uL)) + wc ∗ (qRf(uR)) + IL(θ),(2.1a)

τ
∂uR(θ, t)

∂t
= −uR(θ, t) + wl ∗ (qRf(uR)) + wc ∗ (qLf(uL)) + IR(θ),(2.1b)

∂qj(θ, t)

∂t
=

1− qj(θ, t)

α
− βqj(θ, t)f(uj(θ, t)), j = L,R,(2.1c)

where

wm ∗ (qjf(uj)) =
∫ π/2

−π/2
wm(θ, θ′)qj(θ′, t)f(uj(θ′, t))dθ′, j = L,R, m = l, c.

Equations (2.1a) and (2.1b) describe the evolution of the synaptic current or drive uL(θ, t)
and uR(θ, t) of neurons with orientation preference θ ∈ [−π/2, π/2] responding either to left
(L) or right (R) eye inputs Ij(θ), j = L,R. The nonlinear function f represents the mean
firing rate of a local population and is usually taken to be a smooth, bounded, monotonic
function such as a sigmoid [68, 50, 22]

f(u) =
1

1 + e−η(u−κ)
,(2.2)

with gain η and threshold κ. However, in order to explicitly compute solutions of interest,
it will be convenient to consider the high-gain limit η → ∞ of (2.2) such that f becomes a
Heaviside function [2, 50, 18, 19, 27, 36]:

f(u) = Θ(u− κ) =

{
0 if u < κ,
1 if u > κ.

(2.3)

The strength of connections between neurons within a single eye’s population (local) and
from one population to another (cross) are specified by the weight functions wl(θ, θ

′) and
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wc(θ, θ
′), respectively. A typical weight distribution within the hypercolumn or “ring” model

is a harmonic function dependent on the difference in orientations [5, 11, 69]. Thus, for our
studies of simple grating based binocular rivalry, we will employ the functions

wm(θ, θ′) = wm(θ − θ′) = wm
0 + wm

2 cos(2(θ − θ′)), m = l, c,(2.4)

where wm
0 is the mean strength of connectivity and wm

2 is the orientation specific strength.
The harmonic function cos(2(θ − θ′)) of orientation preference difference is well matched to
experimental studies of synaptic interaction of nearby neurons based on their orientation pref-
erence [23]. Depressing synapses are incorporated into the model in the form of a presynaptic
scaling factor qj(θ, t) evolving according to (2.1c). The factor qj(θ, t) can be interpreted as a
measure of available presynaptic resources, which are depleted at a rate βqf [62, 57, 4] and
are recovered on a timescale specified by the constant α. Specifically, we will study the effect
of slow short-term synaptic depression (experimentally shown to recover over 5–10s [63, 15]).
Slow short-term synaptic depression has been implicated as a mechanism for contrast adap-
tation in V1 due to its comparable recovery timescale of 5–10s [63]. Thus, there is evidence
for participation of this slower depression in processes of V1 in addition to faster short-term
synaptic depression, which recovers on timescales of roughly 200–800ms [1, 63]. Finally, we
fix the temporal scale of the network by setting τ = 1. The membrane time constant is
typically around 10ms, while the range of synaptic connections and specifically the size of a
hypercolumn within the visual cortex is on the order of 1mm.

3. Oscillations in the space-clamped system. In this section we analyze oscillations in
a space-clamped (θ-independent) version of our model. That is, we take the inputs IL and IR
from both eyes to be homogeneous in the variable θ. While stimuli used in binocular rivalry
experiments often have a preferred orientation to either eye, it is indeed possible to evoke the
rivalry percept without such a specification [6]. Taking the weight functions to be given by
the simple sum of harmonics (2.4) and specifying that solutions be homogeneous in θ, the
system (2.1) becomes

u̇L(t) = −uL(t) + w̄lqL(t)f(uL(t)) + w̄cqR(t)f(uR(t)) + IL,

u̇R(t) = −uR(t) + w̄lqR(t)f(uR(t)) + w̄cqL(t)f(uL(t)) + IR,(3.1)

q̇j(t) = (1− qj(t))/α − βqj(t)f(uj(t)), j = L,R,

where

w̄m =

∫ π/2

−π/2
wm(θ′)dθ′, m = l, c,(3.2)

denotes the average strength of connectivity for either weight function. We will prescribe
that w̄c < 0 so the cross connections are “inhibition-dominated,” as this has been a suggested
mechanism of binocular rivalry [35]. An extensive numerical study of equilibria of a system
similar to (3.1) has been carried out when f is sigmoidal [52]. Thus, for the majority of this
section, we will proceed analytically by examining the behavior of the system (3.1) in the case
that f is the Heaviside function (2.3). In this case, we can compute any equilibria explicitly.
Moreover, a fast-slow analysis can be used to determine the residence times spent with either
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the left or right eye being dominant. In addition, we explore the effects that include additive
noise in the equations for the activity variables uL,R as well as the depression variables qL,R. It
has been shown that including noise in reciprocally inhibitory networks with slow adaptation
can lead to oscillation dominance times with gamma distribution statistics, as witnessed in
psychophysical experiments of binocular rivalry [46, 52, 49]. Finally, we briefly study the
equilibria and oscillations of the space-clamped system in the case of a smooth sigmoid firing
rate function. We do not develop extensive analytical expressions relating parameters to steady
states and switching times as in the Heaviside case, but we are able to study numerically how
the steepness of the sigmoid affects the underlying dynamics.

3.1. Equilibria of network with Heaviside firing rate. We will follow reasoning similar to
that of Laing and Chow [39], who used Heaviside functions to analyze binocular rivalry in a
coupled hypercolumn model with spike frequency adaptation rather than synaptic depression.
The dynamics of the system (3.1) can be characterized in terms of some simple parametric
inequalities, specifying whether the system oscillates or settles into a steady state. A similar
analysis was carried out by Taylor, Cottrell, and Kristan in a version of the network (3.1)
without any local connections and a fixed synaptic depression strength [58]. Here, we will
study the effect that including a local connectivity term w̄l has upon the network dynamics.
Of course, we are interested in the parameter regimes in which the system oscillates, since this
is indicative of binocular rivalry. In these parameter regimes, we will compare the model with
experimentally determined relations of input strength to dominance times [45, 9]. We also
extend the work of [58] by examining dominance time dependence upon synaptic depression
strength β and time constant α.

There are several different possible steady states, whose existence mainly depends on the
strength of the input to either population. First, the off state given by (uL, uR, qL, qR) =
(IL, IR, 1, 1) occurs when IL, IR < κ, which implies that the input is not strong enough to
activate either population. Second, the both-on or fusion state

uj =
w̄l + w̄c

1 + αβ
+ Ij , qj =

1

1 + αβ
, j = L,R,(3.3)

occurs when IL, IR > κ−(w̄l+w̄c)/(1+αβ). This case is more likely for very strong depression
(β large), since cross-inhibition will be weak, or when the local connections are strong and
excitation-dominated. The third type of equilibrium is the winner-take-all (WTA), where one
population dominates the other. For example, if the left eye population is dominant, then

uL = w̄l
1 + αβ

+ IL, uR = w̄c
1 + αβ

+ IR,

qL = 1
1 + αβ

, qR = 1,

(3.4)

which can be transformed to the right eye dominant case by interchanging L and R. For the
steady state (3.4) to exist, we require

IL > κ− w̄l

1 + αβ
, IR < κ− w̄c

1 + αβ
.
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Figure 2. Equilibria of the left population uL as a function of the input amplitude IL = IR to both
populations. Solid lines represent stable states, whereas circles represent maximum and minimum of rivalrous
oscillations. (Left) For no local connections, w̄l = 0, we find a bistable region, where rivalry coexists with a
stable fusion state. Lower fixed point is the suppressed population of the WTA solution left of the black square
and a fusion state to the right. (Right) When local connections are nonzero, w̄l = 0.4, there are regions of
off/WTA bistability, WTA/fusion bistability, and fusion/rivalry bistability. Other parameters are κ = 0.05,
α = 500, β = 0.01, and w̄c = −1.

This will occur in the presence of weak depression (β small) and strong cross-inhibition such
that depression cannot exhaust the dominant hold one population has on the other.

The local stability of each equilibrium can be determined by calculating the general Jaco-
bian for the system (3.1) in the case that f(u) ≡ Θ(u− κ) and uL, uR �= κ:

J (uL, uR, qL, qR) =

⎛
⎜⎜⎝

−1 0 w̄lΘ(uL − κ) w̄cΘ(uR − κ)
0 −1 w̄cΘ(uL − κ) w̄lΘ(uR − κ)
0 0 −(α−1 + βΘ(uL − κ)) 0
0 0 0 −(α−1 + βΘ(uR − κ))

⎞
⎟⎟⎠ .

(3.5)

It is straightforward to show that the eigenvalues of this Jacobian for a general equilibrium
(excluding cases where uL = κ or uR = κ) are

λ = −1, −(α−1 + βΘ(uL − κ)), −(α−1 + βΘ(uR − κ)),(3.6)

which are all negative, regardless of the values uL and uR. Therefore, all steady states of
the system (3.1) are stable. It follows that a limit cycle corresponding to a binocular rivalry
state cannot arise from the destabilization of an equilibrium via a standard Hopf bifurcation.
Indeed, we find that a limit cycle corresponding to an oscillating rivalrous state surrounds
a stable fusion state, as illustrated in Figure 2. It can be seen that as the amplitude of the
inputs IL = IR is varied, the system (3.1) exhibits bistability between fusion/rivalry states,
between off/WTA states, and between WTA/fusion states (when w̄l �= 0). Such bistability
has seldom been observed in other models of binocular rivalry. We point out here that these
two bistable regimes were not observed in the study of the network (3.1) by Taylor, Cottrell,
and Kristan due to their setting w̄l = 0. In [52], it was shown that Wilson’s model [66] of
binocular rivalry supports a WTA/rivalry bistable state. Their bifurcation analysis of the
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Laing and Chow model did not exhibit bistability, perhaps owing to the fact that it included
no recurrent excitation. Since the occurrence of oscillations cannot be studied using standard
bifurcation theory, we will follow Laing and Chow [39] by assuming that we are in a regime
where oscillations exist and characterize the dominance times by exploiting the separation in
timescales between synaptic depression and neural activity, that is, α � 1.

In order to appropriately study rivalry in the space-clamped system (3.1), it is important
to understand the mechanism that will generate switching between one population dominating
and then the other. As we have discussed, reciprocally inhibitory networks support oscillations
resulting from two main types of mechanism—escape and release [65, 54, 20]. The competitive
network with synaptic depression (3.1) that we study supports oscillations generated by escape
only when the firing rate function is Heaviside, assuming the activity terms uL,R act much
quicker than the depression terms qL,R. This should be clear in the case w̄l = 0, but we wish
to show this as well in the case w̄l > 0. We argue the network does not support release by
a contradiction argument in the case where IL = IR (this easily extends to the case where
IL �= IR). In oscillations generated by either escape or release, when the left population
dominates,

uL ≈ w̄lqL + IL > κ and uR ≈ w̄cqL + IR < κ,

where we assume uL and uR relax to a slow manifold quite quickly. During oscillations gen-
erated by release, we expect a switch in dominance to occur by uL dropping below threshold,
allowing the release of uR. At this point,

w̄lqL + IL = κ =⇒ IL = κ− w̄lqL,

implying IL < κ since w̄l > 0. Thus, IR = IL < κ as well, but for uR to now spring above
threshold, we must have IR > κ, which is a contradiction. Thus, the system (3.1) will not
support oscillations generated by a release mechanism in the case of a Heaviside firing rate and
slow depression dynamics. Based on this result, and previous work, it seems that firing rate
models of binocular rivalry must employ either spike frequency adaptation or a sigmoidal firing
rate function with synaptic depression to generate oscillations through a release mechanism
[20]. Thus, we have extended the results of [58] to show there is a broader class of competitive
neural network models with synaptic depression that does not support release. In light of
this, we perform our analysis of the relationship of dominance times to parameter under the
assumption that the oscillation is generated by an escape mechanism.

Suppose that the system has settled onto a limit cycle as plotted in Figure 3 and that it is
at the point where uL has just escaped suppression by uR. Since both uL and uR equilibrate
quickly compared with qL and qR, it follows that

uL(t) = w̄lqL(t) + IL, uR(t) = w̄cqL(t) + IR.(3.7)

We can also solve explicitly for qL(t) and qR(t) using the equations

q̇L = (1− qL)/α − βqL, q̇R = (1− qR)/α.(3.8)
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Figure 3. Oscillatory solutions of the space-clamped system (3.1) for a Heaviside activation function (2.3).
(Left) Plot against time of the activities uL (solid black) and uR (dashed black) with the depression variables
qL (solid grey) and qR (dashed grey) when inputs are the same to both populations so that IL = IR = 0.24.
This leads to an oscillation wherein the dominance times (TL = TR ≈ 210) are equivalent for each percept.
(Right) Plot against time of the activities uL, uR and depression variables qL, qR when inputs are different so
that IL = 0.30 and IR = 0.24. This leads to an oscillation wherein the dominance times (TL ≈ 170, TR ≈ 105)
are different for each percept. Other parameters are w̄l = 0, w̄c = −1, κ = 0.05, α = 500, and β = 0.01.

Assuming the initial conditions qL(0) = qsL and qR(0) = qdR, we have

qL(t) =
1

1 + αβ
+

(
qsL − 1

1 + αβ

)
e−(1+αβ)t/α,(3.9)

qR(t) = 1− (1− qdR)e
−t/α(3.10)

for t ∈ (0, TL), where TL is the dominance time of the left eye. Therefore, when the left eye
population is suppressing the right eye population, the dynamics of the input currents are
explicitly

uL(t) = w̄l

(
1

1 + αβ
+

(
qsL − 1

1 + αβ

)
e−(1+αβ)t/α

)
+ IL,(3.11)

uR(t) = w̄c

(
1

1 + αβ
+

(
qsL − 1

1 + αβ

)
e−(1+αβ)t/α

)
+ IR.(3.12)

At the time t = TL, the synaptic drive uR will escape from uL’s dominance by reaching
threshold, that is, uR(TL) = κ. This generates the equation

κ = w̄c

(
1

1 + αβ
+

(
qsL − 1

1 + αβ

)
e−(1+αβ)TL/α

)
+ IR.(3.13)

Note that although uL(TL) > κ, uL will drop below threshold much more rapidly than the
timescale of the qj’s due to cross-inhibition. Hence, we can make the approximation T ∗

L ≈ TL,
where uL(T

∗
L) = κ.

In the next phase of the oscillation

uL(t) = w̄cqR(t) + IL, uR(t) = w̄lqR(t) + IR,(3.14)
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with

q̇L = (1− qL)/α, q̇R = (1− qR)/α− βqR.(3.15)

Assuming the new set of initial conditions qL(TL) = qdL and qR(TL) = qsR, we now have

qL(t) = 1− (1− qdL)e
(TL−t)/α,(3.16)

qR(t) =
1

1 + αβ
+

(
qsR − 1

1 + αβ

)
e(1+αβ)(TL−t)/α(3.17)

for t ∈ (TL, TL + TR), where TR is the dominance time of the right eye. Therefore, when the
right eye population is suppressing the left eye population, the dynamics of the input currents
are approximately described by

uL(t) = w̄c

(
1

1 + αβ
+

(
qsR − 1

1 + αβ

)
e(1+αβ)(TL−t)/α

)
+ IL,(3.18)

uR(t) = w̄l

(
1

1 + αβ
+

(
qsR − 1

1 + αβ

)
e(1+αβ)(TL−t)/α

)
+ IR.(3.19)

Finally, at t = TL+TR, uL will escape from uR’s dominance such that uL(TL+TR) = κ. This
generates the equation

κ = w̄c

(
1

1 + αβ

(
qsR − 1

1 + αβ

)
e−(1+αβ)TR/α

)
+ IL.(3.20)

At this point, uR > κ, but uR will rapidly drop below threshold so that uR(T
∗
R) = κ with

T ∗
R ≈ TR.

Using (3.9), (3.10), (3.16), and (3.17), we have four equations for the four unknown initial
conditions of the depression variables:

qsL = 1− (1− qdL)e
−TR/α,(3.21)

qsR = 1− (1− qdR)e
−TL/α,(3.22)

qdL =
1

1 + αβ
+

(
qsL − 1

1 + αβ

)
e−(1+αβ)TL/α,(3.23)

qdR =
1

1 + αβ
+

(
qsR − 1

1 + αβ

)
e−(1+αβ)TR/α.(3.24)

We can solve these explicitly for qsL and qsR in terms of the parameters α, β and the dominance
times TL, TR as

qsL =

(
1− e−TR/α +

1

1 + αβ

(
1− e−(1+αβ)TL/α

)
e−TR/α

)
(
1− e−(1+αβ)TL/αe−TR/α

) ,(3.25)

qsR =

(
1− e−TL/α +

1

1 + αβ

(
1− e−(1+αβ)TR/α

)
e−TL/α

)
(
1− e−(1+αβ)TR/αe−TL/α

) .(3.26)
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Substituting (3.25) and (3.26) into (3.13) and (3.20) then gives

κ = w̄c

(
1

1 + αβ
+

((
1− e−TR/α +

1

1 + αβ

(
1− e−(1+αβ)TL/α

)
e−TR/α

)

×
(
1− e−(1+αβ)TL/αe−TR/α

)−1 − 1

1 + αβ

)
e−(1+αβ)TL/α

)
+ IR,(3.27)

κ = w̄c

(
1

1 + αβ
+

((
1− e−TL/α +

1

1 + αβ

(
1− e−(1+αβ)TR/α

)
e−TL/α

)

×
(
1− e−(1+αβ)TR/αe−TL/α

)−1 − 1

1 + αβ

)
e−(1+αβ)TR/α

)
+ IL.(3.28)

A numerical root finding algorithm can be used to solve for the dominance times TL and TR

in terms of the parameters α, β, κ, w̄c and the input strengths IL and IR. We show examples
of the dependence of these dominance times on a common drive strength to both populations
IL = IR = IB and a modulation of input IL, while keeping IR constant in Figure 4. Taylor,
Cottrell, and Kristan only studied the effect changing input strengths has on dominance
times in the case IL = IR = IB [58]. Recall that Levelt proposition (iv) states increasing
contrast (stimulus strength) to both eyes increases alternation rate, which is corroborated by
TL = TR = TB being a decreasing function of IB in Figure 4(a). Also, both propositions (i)
and (iii) are in agreement with Figure 4(b), since increasing IL leads to lower values of both
TL and TR and the ratio TL/(TL + TR) increases as well. However, the Levelt proposition (ii)
states increasing input to one eye does not change that eye’s average dominance, but we find
in Figure 4(b) that TL decreases slightly. Indeed, previous experiments have produced results
at odds with proposition (ii), finding that the statement may depend on specific contrast
ranges of stimuli [9]. Comparing this with Laing and Chow’s analysis of a firing rate model
with depression and adaptation, we see qualitative similarity with dominance times being a
decreasing function of input strength for symmetric and asymmetric inputs [39]. We find
that this relation holds for IL > IR as well. Interestingly, as our analytical results indicate,
the dominance times do not depend at all on the strength of local connections w̄l, which
we verified numerically as well. In [52], it was also shown that recurrent connections are
not needed at all in order to produce the competition dynamics of rivalry in a network with
synaptic depression. We extend [58] by also allowing synaptic depression strength β and time
constant α to vary as shown in Figure 5. When α is fixed, and β is varied, we find dominance
times decrease as depression strength increases in Figure 5(left). Thus, stronger depression
leads to quicker switching between dominant populations, as one might expect. When β is
fixed and α is varied, we find that dominance times decrease as the depression time constant
is increased in Figure 5(right). This arises from the fact that the timescale of recovery from
depression is set by α, but the timescale of depression activation is set by the parameter β.

3.2. Noise-generated oscillations. Recordings from the brain and reports by subjects
during binocular rivalry tasks show dominance time statistics that may be fit to a gamma
distribution [46]. In addition, statistical analysis of such data shows little correlation between
one dominance time and the next [41, 42, 46]. This suggests that the switching between one
eye’s dominance and the next may be largely driven by a stochastic process. Some previous
models have accounted for this by presuming that the input arriving at the network encoding
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Figure 4. Dominance times calculated from (3.27) and (3.28) plotted against input amplitude. (a) Effect
of changing the amplitude of both inputs IL = IR = I on the dominance times of both percepts. In this
case, dominance times are identical. (b) Effect of changing input to left eye (IL) on dominance times of left
population uL (dashed curve) and right population (solid curve) when IR = 0.24. Other parameters are as in
Figure 3.
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Figure 5. Dominance times calculated from (3.27) and (3.28) plotted against (left) synaptic depression
strength β and (right) time constant α. Parameter values are κ = 0.05, IL = IR = 0.25, w̄c = −1, α = 500,
and β = 0.01 unless otherwise stated.

rivalry is stochastic, so the noise is extrinsic [41, 25]. Recent modeling efforts have examined
and compared the effects of dominance switching due to an additive noise term in the activity
variable of a firing rate model versus a deterministic slow-adapting variable [49, 52]. Laing
and Chow’s spiking neuron model of binocular rivalry contained no stochastic process, but
statistics of resulting dominance times in the model appeared noisy due to the aperiodicity
of the high-dimensional system’s trajectories [39]. We follow up on firing rate studies with
additive noise by comparing the effects of including a noise term in the activity variables of
our system and the depression variable on dominance times.

To account for the random behavior in the model, we employ the following equation for
independent input noise to each variable [52]:

ṅj(t) = −nj(t)

ν
+ γ

√
2/νμ(t), j = L,R,(3.29)
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where μ(t) is white noise with zero mean and unit variance. Thus, the trajectory nj(t) will
follow an Ornstein–Uhlenbeck process with standard deviation γ and timescale ν. We apply
this noise to either the two activity variables uL,R or the two depression variables qL,R. When
we include this term as additive noise to only the activity variables, uL,R, we replace each of
their deterministic governing equations in (3.1) with

u̇j(t) = −uj(t) + w̄lqj(t)Θ(uj(t)− κ) + w̄cqk(t)Θ(uk(t)− κ) + Ij(t) + nj(t),

j = L,R and j �= k.(3.30)

This mimics the input drive to both neural populations being noisy. In addition, we examine
the effect of including an additive noise term in the depression variables, qL,R, by employing
the following equation for their dynamics in place of their original deterministic equation in
(3.1):

q̇j(t) = (1− qj(t))/α − βqj(t)Θ(uj(t)− κ) + nj(t), j = L,R.(3.31)

We also impose the conditions qj(t) ∈ [0, 1] for all t and j = L,R, which ensures that each
synaptic strength retains its proper sign and that the variables qj(t) cannot act to impose
dynamic facilitation. To numerically simulate the stochastic system modified by either (3.30)
or (3.31), we employ the Euler–Maruyama method.

We summarize the results of including additive noise in the deterministic system (3.1)
by plotting distributions of dominance times along with the data series’ autocorrelations.
In parameter ranges where the deterministic version of the system would support only a
WTA solution, we found that additive noise in either the activity or depression variables was
sufficient to generate stochastic oscillations in the system. Following simulations of (3.1) along
with either (3.30) or (3.31) for a sufficiently long period, we compute the lengths of time of
all dominance durations. Population j is dominant if uj > uk (j �= k). The autocorrelation
coefficient is then also calculated for this series of dominance times for various lags. In Figure
6 we compare the effects of additive noise on the activity versus the depression variables.
When additive noise is included in activity variables uL,R, we find that this can generate
a peak in the dominance duration distribution at T ≈ 200 (2 seconds) with a long tail at
higher dominance times. However, there is a sharp peak in distributions near T = 0 as
well. This arises from activity falling below threshold and then being kicked back above by
additive noise prior to its relaxation to a suppressed state. We do not find this same behavior
when additive noise is included in the depression variables qL,R (see Figure 6(right)). In fact,
there is a peak in the dominance duration distribution at T ≈ 200 and an even longer tail
at higher dominance times. Yet, there is no peak in dominance times close to T = 0. This
is perhaps due to additional temporal filtering occurring due to the longer time constant α
of the depression variables. Thus, the distribution generated here could be more feasibly
fit to a gamma distribution as in previous experimental and modeling studies of binocular
rivalry [46, 39, 49, 52]. In Figure 7, we plot the autocorrelation statistics of the time series of
dominance durations used to construct the histograms in Figure 6. We do find correlations for
nonzero lag in dominance times of the network with noise in the activity variables. However,
there is little to no correlation for nonzero lag in the dominance times of the network with
noise in the depression variables. When the neural activity variables are noise driven, there is
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Figure 6. Distribution of dominance durations for stochastic variations of the deterministic system (3.1).
(Left) Additive noise is included in the activity variables uL,R by replacing the equations for them with (3.30).
Exponentially filtered white noise has variance γ = 0.11. Note that the distribution has a peak around T = 200.
(Right) Additive noise is included in the depression variables qL,R by replacing the equations for them with
(3.31). Exponentially filtered white noise has variance γ = 0.01. In both panels, the system was simulated for
5× 106 time units. Other parameters are κ = 0.05, w̄l = 0.04, w̄c = −1, α = 500, β = 0.01, and ν = 50.
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Figure 7. Autocorrelations for the time series of dominance durations shown in Figure 6 when (left) noise
is added to activity variables uL,R and (right) noise is added to depression variables qL,R.

still reliable memory in the system due to the presence of the wholly deterministic depression
variables. The interplay between noise driven oscillations versus oscillations generated by slow
adaptive variables in competitive neural networks is an ongoing area of research [41, 25, 49].

3.3. Equilibria of network with smooth sigmoid firing rate. One potential question
regarding the study of system (3.1) with a Heaviside firing rate function regards just how
representative are its dynamics of firing rate models with a smooth sigmoidal firing rate
function (2.2). We probe this question now by using numerical methods to characterize the
bifurcation structure of the network for finite gain η. A previous study in [52] of a similar
competitive neural network with depression and a smooth sigmoid firing rate found that in
addition to an off, WTA, fusion, and escape rivalry state, the network could support release
rivalry for low levels of input. By release rivalry, we mean that oscillations are generated
by a release mechanism where the dominant population falls below threshold prior to the
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suppressed population rising above threshold (see Figure 8(left), for example). This generates
dominance times in rivalry that increase as the strength of input is increased, which is in
fact contrary to the general results of experimental recordings and psychophysical data of
binocular rivalry [45, 9, 46]. In [52], the effect that the strength of inputs and depression had
upon the stability of steady states was examined, but the effect of varying the strength of the
gain of the firing rate function was not. To follow up on this previous study, we examine the
role that the gain of the firing rate function has upon the dynamics of the competitive neural
network with synaptic depression (3.1).
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Figure 8. Oscillatory solutions of the space-clamped system (3.1) for a smooth sigmoid activation function
(2.2). (Left) Plot against time of the activities uL (solid black) and uR (dashed black) where switching during
oscillations is induced by a release mechanism. Here, the strengths of the inputs are IL = IR = 0.1 and the gain
of the sigmoid is η = 15. (Right) Plot against time of the activities uL, uR where switching during oscillations
is induced by an escape mechanism. Here, the strengths of inputs are IL = IR = 0.25 and the gain of the
sigmoid is η = 65. Other parameters are w̄l = 0.4, w̄c = −1, κ = 0.05, α = 500, and β = 0.01. The horizontal
dashed line represents the value of the threshold κ.

First, we find that system (3.1) in the case of a smooth sigmoid firing rate function
supports both a rivalry and escape mechanism for generating oscillations. In Figure 8(left),
we plot a numerical simulation of the system (3.1), which occurs for sufficiently weak input
and gain. Notice that the dominant population’s activity falls below threshold prior to the
suppressed population’s rising above threshold. The opposite is true in Figure 8(right), where
escape rivalrous oscillations are shown. This occurs for sufficiently large input and gain. Next,
in Figure 9 we summarize the two possible bifurcation scenarios when gain η is the varied
parameter. As shown in Figure 9(left), for weak input (IL = IR = 0.1), we find that when
the gain is weak, only a stable off state exists. However, as the gain is increased, a limit cycle
arises through a supercritical Hopf bifurcation, which is the onset of rivalry through a release
mechanism. At sufficiently high gain (η ≈ 30), the limit cycle vanishes and only a WTA
solution exists. This behavior persists as η → ∞. Therefore, for a sufficiently large gain, the
behavior of system (3.1) with a smooth sigmoid firing rate (2.2) is quite similar to that when
it has a Heaviside firing rate (2.3). In Figure 9(right), we show that for strong input, the
system possesses only a fusion state for low gain, but at a critical higher gain (η ≈ 60), we
find that there is an escape rivalry/fusion bistable state, which is the same general structure
the network has as η → ∞. Thus, the bistable state is a generic behavior of system (3.1), so
there must be a separatrix between the fusion and rivalry states.
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Figure 9. Equilibria of the left population uL as a function of the gain η of the smooth sigmoid activation
function (2.2). Solid lines represent stable states, dashed lines represent unstable states, and circles represent
maximum and minimum of rivalrous oscillations. (Left) For lower input IL = IR = 0.1 to both populations,
increasing the gain leads to a destabilization of the off state through a supercritical Hopf bifurcation. The
resultant limit cycle is generated through a release mechanism as shown in Figure 8(left). Eventually, this limit
cycle vanishes for high gain (η ≈ 30) and WTA equilibria remain as η → ∞. (Right) For higher input to both
populations IL = IR = 0.25 a fusion state exists for all levels of gain, but a limit cycle generated by an escape
mechanism (see Figure 8(right)) arises for high gain (η ≈ 60). This rivalry/fusion bistable state remains as
η → ∞. Other parameters are κ = 0.05, α = 500, β = 0.01, w̄l = 0.4, and w̄c = −1.

4. Oscillations in the coupled hypercolumn model. Let us now return to the full spatially
extended coupled hypercolumn model (2.1). In a previous study, we showed that stable
stationary bumps of activity can exist in a scalar neural field model with lateral inhibition for
sufficiently weak synaptic depression [12, 37]. Additionally, it has been shown that a single
ring (or hypercolumn) model with synaptic depression can support stable stationary bumps
as well as a rotating bumps [69]. We extend these results here by considering two coupled
rings (hypercolumns) with synaptic depression driven by stimuli with different orientations.
A related study based on networks with spike frequency adaptation is considered elsewhere
[47]. We consider the system (2.1) in the case of the Heaviside firing rate function (2.3) and
inputs IL(θ) and IR(θ) given by functions peaked at a specific orientation, which are meant
to represent stationary grating stimuli [6, 66]. For concreteness, we take

IL(θ) = I0L cosp(θ − π/4), IR(θ) = I0R cosp(θ + π/4),(4.1)

where π/4 and −π/4 are the stimulus orientations and p is an even integer power that deter-
mines the sharpness of the inputs with respect to orientation. (We set p = 6.) The particular
choice of stimulus orientations simplifies our calculations, since the associated neural field
equations are reflection symmetric. That is, they are equivariant with respect to the transfor-
mation L → R and θ → −θ. As a further simplification, we also take the left and right input
strengths to be the same: I0L = I0R = I0. Note, however, that our analysis can be extended to
take into account more general stimulus orientations and asymmetric input strengths I0L �= I0R.
Finally, we take both the local and cross-populations’ weight functions wl, wc to be the har-
monic weight function (2.4). Our analysis then proceeds by studying the existence and linear
stability of nontrivial stationary solutions corresponding to either single bump or double bump
solutions. A stationary solution (uL, uR, qL, qR) = (UL(θ), UR(θ), QL(θ), QR(θ)) of equations
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(2.1) satisfies the system of equations (for f(u) ≡ Θ(u− κ))

UL(θ) = wl ∗ (QLΘ(UL − κ)) +wc ∗ (QRΘ(UR − κ)) + IL(θ),

UR(θ) = wl ∗ (QRΘ(UR − κ)) + wc ∗ (QLΘ(UL − κ)) + IR(θ),(4.2)

Qj(θ) = 1− αβΘ(Uj(θ)− κ)

1 + αβΘ(Uj(θ)− κ)
, j = L,R.

Introduce the excited or superthreshold regions R[Uj] = {θ|Uj(θ) > κ} of the left (j = L)
and right (j = R) populations. These will vary depending on whether we study a single
or double bump. A single bump solution is equivalent to a WTA scenario where only a
single hypercolumn contains superthreshold bump activity—for example, R[UL] = (θ1, θ2)
and R[UR] = ∅. On the other hand, in the case of a double bump solution both hypercolumns
exhibit superthreshold bump activity. Exploiting the reflection symmetry, this means that
R[UL] = (θ1, θ2) and R[UR] = (−θ1,−θ2).

4.1. Existence of single bumps. For a single bump or WTA solution, only one neural
activity variable will have an associated nonempty excited region, so we pick the left population
such thatR[UL] = (θ1, θ2), whereas the right population UR will always remain below threshold
so that R[UR] = ∅. Threshold crossing points are then defined as UL(θ1) = UL(θ2) = κ. We
could just as easily have picked the right population due to the reflection symmetry of the
network. As we have prescribed, the system (4.2) becomes

UL(θ) =

∫ θ2

θ1

wl(θ − θ′)QL(θ
′)dθ′ + IL(θ),(4.3)

UR(θ) =

∫ θ2

θ1

wc(θ − θ′)QL(θ
′)dθ′ + IR(θ),(4.4)

Qj(θ) = 1− αβΘ(Uj(θ)− κ)

1 + αβΘ(Uj(θ)− κ)
, j = L,R.(4.5)

Substituting (4.5) into (4.3) and (4.4) yields

UL(θ) =
1

1 + αβ

∫ θ2

θ1

wl(θ − θ′)dθ′ + IL(θ),(4.6)

UR(θ) =
1

1 + αβ

∫ θ2

θ1

wc(θ − θ′)dθ′ + IR(θ).(4.7)

Plugging in the sum of harmonics weight function (2.4) for wl and wc, we analytically calculate
the single bump solution

UL(θ) =
1

1 + αβ

[
wl
0(θ2 − θ1) +

wl
2

2
(sin(2(θ − θ1))− sin(2(θ − θ2)))

]
+ IL(θ),(4.8)

UR(θ) =
1

1 + αβ

[
wc
0(θ2 − θ1) +

wc
2

2
(sin(2(θ − θ1))− sin(2(θ − θ2)))

]
+ IR(θ).(4.9)
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Figure 10. Single bumps in coupled hypercolumns. (Left) Plots relating single bump width Δθ to the
amplitude of input I0 for different values of κ using (4.10) and constrained by inequality (4.12). For sufficiently
large inputs I0 and fixed threshold κ bumps do not exist, since the subthreshold condition (4.12) is no longer
satisfied. Other parameters are wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5, α = 500, and β = 0.01. (Right) Bump

profile when κ = 0.05 and I0 = 0.3.

Applying the threshold conditions UL(θ1) = UL(θ2) = κ and noting the reflection symmetry
of the system, we have

κ =
1

1 + αβ

[
wl
0Δθ +

wl
2

2
sin(2Δθ)

]
+ I0 cos

p(Δθ/2),(4.10)

which provides us with an implicit equation relating the bump width Δθ = θ2−θ1 to all other
parameters. Note that we have used the fact that the threshold crossing points are symmetric
about π/4; that is, θ1 = π/4 − Δθ/2 and θ2 = π/4 + Δθ/2. One additional constraint on
the solution (4.9) is that it always remains below threshold. For sufficiently strong inputs,
the maximum of UR will occur at the peak of the input IR so that we need only check if
UR(−π/4) < κ, which we compute as

UR(−π/4) =
1

1 + αβ

[
wc
0(Δθ) +

wc
2

2
(sin(2θ2 + π/2) − sin(2θ1 + π/2))

]
+ I0

=
1

1 + αβ
[wc

0(Δθ)− wc
2 sin(Δθ)] + I0.(4.11)

This yields

wc
0(Δθ)− wc

2 sin(Δθ) < (1 + αβ)(κ − I0)(4.12)

for the subthreshold condition. Thus, for a single bump solution to exist, the threshold
condition (4.10) and the subthreshold condition (4.12) must be satisfied. Equation (4.10) can
be solved numerically using a root finding algorithm. Following this, we can find whether the
inequality (4.12) is satisfied by direct computation. The variation of the width of the bump
Δθ with the input strength I0 and depression strength β is shown in Figure 10; the stability
of the bump is calculated below.
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4.2. Stability of single bumps. To study the stability of the single bump solution, we
cannot use the technique of Taylor expanding equations (2.1) about a bump solution in the
case of a smooth sigmoid firing rate (2.2) and then taking the high-gain limit of the associated
Evans function [18]. This is due to a result we have recently shown [37], which is that the
size of perturbation in which the Evans function approach is valid becomes vanishingly small
in the high-gain limit. Thus, even in a version of system (2.1) with a steep but smooth
firing rate function, stability results obtained for bumps using linear theory that employs an
Evans function approach will be valid in a tiny region of phase space. Therefore, we utilize a
more careful treatment of local stability that considers the fact that system (2.1) is piecewise-
smooth [37, 12]. It should be stated up front that this approach can characterize only the
stability of perturbations with real eigenvalues, which allows us to state sufficient conditions
for instability. In practice, we find this characterizes the dynamics evolving from a perturbed
standing bump solution quite well (see numerical results in section 5).

We begin by letting uj(θ, t) = Uj(θ)+εψj(θ, t) and qj(θ, t) = Qj(θ)+εϕj(θ, t) for j = L,R,
where ψj and ϕj denote smooth perturbations and ε � 1. Substituting this into the full system
(2.1), imposing the single bump solutions (4.3), (4.4), and (4.5), and dividing through by ε
gives

∂ψL(θ, t)

∂t
= −ψL(θ, t) +

1

ε
wl ∗ (QL[Θ(UL + εψL − κ)−Θ(UL − κ)])

+wl ∗ (ϕLΘ(UL + εψL − κ)),(4.13)

∂ψR(θ, t)

∂t
= −ψR(θ, t) +

1

ε
wc ∗ (QL[Θ(UL + εψL − κ)−Θ(UL − κ)])

+wc ∗ (ϕLΘ(UL + εψL − κ)),(4.14)

∂ϕj(θ, t)

∂t
= −ϕj(θ, t)

α
− β

ε
Qj[Θ(Uj + εψj − κ)−Θ(Uj − κ)]

−βϕjΘ(Uj + εψj − κ)(4.15)

for j = L,R. Denote the perturbations of the bump boundaries by εΔL±(t) such that

uL(θ1 + εΔL
−(t), t) = uL(θ2 + εΔL

+(t), t) = κ.(4.16)

Taylor expanding these threshold conditions to first order in ε, we find that

ΔL
−(t) ≈ −ψL(θ1, t)

|U ′
L(θ1)|

, ΔL
+(t) ≈

ψL(θ2, t)

|U ′
L(θ2)|

.(4.17)

Following [12, 37], we can smooth out discontinuities in (4.15) by introducing the infinites-
imal fields

ΦLm(θ, t) =

∫ θ2+εΔL
+

θ1+εΔL
−

wm(θ − θ′)ϕL(θ
′, t)dθ′(4.18)

for m = l, c. Therefore, even though O(1/ε) pointwise changes in ϕL(x, t) may occur, the
bump solution may still be stable, as the region over which O(1/ε) changes occur may shrink
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to zero. This possibility is accounted for, since the dynamics of the field ΦLm(x, t) (m = l, c)
will remain O(1) when ϕL(x, t) is O(1/ε) over an infinitesimal interval.

If we now differentiate (4.18) with respect to time, we find

∂ΦLm(θ, t)

∂t
=

∫ θ2+εΔL
+

θ1+εΔL−
wm(θ − θ′)

∂ϕL(θ
′, t)

∂t
dθ′(4.19)

+ εwm(θ − θ2 − εΔL
+(t))ϕL(θ2 + εΔL

+(t), t)Δ̇
L
+(t)

− εwm(θ − θ1 − εΔL
−(t))ϕL(θ1 + εΔL

−(t), t)Δ̇
L
−(t), m = l, c,

where Δ̇L± = dΔL±/dt. We can now substitute (4.15) for ∂ϕL/∂t. Note that the final term in
(4.15) involves a Heaviside function, which will be nonzero only when the stationary bump
UL plus the perturbation εψL is greater than the threshold κ. This region is precisely defined
by the interval (θ1 + εΔL−, θ2 + εΔL

+), over which the integral in (4.19) is taken. This implies
that the resulting term

∫ θ2+εΔL
+

θ1+εΔL
−

wm(θ − θ′)ϕL(θ
′, t)Θ(UL(θ

′, t) + εψL(θ
′, t)− κ)dθ′ = ΦLm(θ, t).

Therefore, by modifying (4.13), (4.14), and (4.15) with the auxiliary variable definition given
in (4.18) we have the alternative system of equations

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t)(4.20)

+
1

ε

∫ θ2+εΔL
+(t)

θ1+εΔL
−(t)

wl(θ − θ′)QL(θ
′)dθ′ − 1

ε

∫ θ2

θ1

wl(θ − θ′)QL(θ
′)dθ′,

∂ψR(θ, t)

∂t
= −ψR(θ, t) + ΦLc(θ, t)(4.21)

+
1

ε

∫ θ2+εΔL
+(t)

θ1+εΔL−(t)
wc(θ − θ′)QL(θ

′)dθ′ − 1

ε

∫ θ2

θ1

wc(θ − θ′)QL(θ
′)dθ′,

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t)(4.22)

− β

ε

∫ θ2+εΔL
+(t)

θ1+εΔL−(t)
wm(θ − θ′)QL(θ

′)[Θ(UL + εψL − κ)−Θ(UL − κ)]dθ

+ εwm(θ − θ2 − εΔL
+(t))ϕL(θ2 + εΔL

+(t), t)Δ̇
L
+(t)

− εwm(θ − θ1 − εΔL
−(t))ϕL(θ1 + εΔL

−(t), t)Δ̇
L
−(t), m = l, c.

We can now linearize the system of equations (4.20), (4.21), and (4.22) by expanding in powers
of ε and collecting all O(1) terms. Note that it is important to keep track of the signs of ΔL±
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when approximating the various integrals due to the discontinuous nature of QL(θ). We thus
obtain the pseudolinear system of equations

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) + γSwl(θ − θ1)ψL(θ1, t)G(ψL(θ1, t))

+ γSwl(θ − θ2)ψL(θ2, t)G(ψL(θ2, t)),(4.23)

∂ψR(θ, t)

∂t
= −ψR(θ, t) + ΦLc(θ, t) + γSwc(θ − θ1)ψL(θ1, t)G(ψL(θ1, t))

+ γSwc(θ − θ2)ψL(θ2, t)G(ψL(θ2, t)),(4.24)

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t)(4.25)

−β(γSwm(θ − θ1)ψL(θ1, t)G(ψL(θ1, t))Θ(ψL(θ1, t))

+ γSwm(θ − θ2)ψL(θ2, t)G(ψL(θ2, t))Θ(ψL(θ2, t))), m = l, c,

where G is the step function

G(Δ) =

{
1 if Δ > 0,

(1 + αβ)−1 if Δ < 0,
(4.26)

and

(γS)
−1 = |U ′

L(θk)| =
∣∣∣ 1

1 + αβ

[
wl(θk − θ1)− wl(θk − θ2)

]
+ I ′L(θk)

∣∣∣(4.27)

for k = 1, 2.
Equations (4.23)–(4.25) imply that the local stability of the stationary bump solution

depends upon the spectral properties of a pseudolinear operator. In a previous study, we
solved a similar problem by assuming that solutions were nonoscillatory, which generated a
simpler spectral problem dependent on the sign of perturbations [12]. Here, we make a similar
assumption, namely, that the perturbations ψL(θ1, t) and ψL(θ2, t) (equivalently ΔL− and ΔL

+)
do not switch signs. In other words, we assume that (4.23)–(4.25) have separable solutions of
the form (ψL(θ, t), ψR(θ, t),ΦLl(θ, t),ΦLc(θ, t)) = eλt(ψL(θ), ψR(θ),ΦLl(θ),ΦLc(θ)), where λ is
real.2 The step functions Θ, G are then time-independent, so there is a common factor eλt

that cancels everywhere. We thus obtain an eigenvalue problem of the form

(λ+ 1)ψL(θ) = γSwl(θ − θ1)ψL(θ1)G(ψL(θ1))

(
1− βΘ(ψL(θ1))

λ+ α−1 + β

)

+ γSwl(θ − θ2)ψL(θ2)G(ψL(θ2))

(
1− βΘ(ψL(θ2))

λ+ α−1 + β

)
,(4.28)

(λ+ 1)ψR(θ) = γSwc(θ − θ1)ψL(θ1)G(ψL(θ1))

(
1− βΘ(ψL(θ1))

λ+ α−1 + β

)

+ γSwc(θ − θ2)ψL(θ2)G(ψL(θ2))

(
1− βΘ(ψL(θ2))

λ+ α−1 + β

)
.(4.29)

2Restricting our stability analysis to real λ means that we can derive only sufficient conditions for the
instability rather than stability of a single or double bump solution. Moreover, we cannot establish the existence
of limit cycle oscillations in terms of standard Hopf bifurcation theory. Nevertheless, numerical simulations
will establish that destabilization of a (double) bump solution can lead to oscillatory solutions suggestive of
binoculary rivalry; see section 5.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPETITIVE NETWORK WITH SYNAPTIC DEPRESSION 1327

Note that we have assumed that λ �= −(α−1 +β) so that we can use (4.25) to solve for ΦLl(θ)
and ΦLc(θ) in terms of ψL(θ1) and ψL(θ2); the case λ = −(α−1 + β) does not contribute to
any instabilities.

It is possible to show that the solutions for λ can be identified with the spectra of a set of
compact linear operators acting in the space of bounded continuous functions on the interval
[θ1, θ2], along the lines of Guo and Chow [27, 12]. However, here we will simply calculate
λ directly from the set of equations (4.28) and (4.29). In one class of solutions, we need
only restrict the function ψL(θ) to vanish on the boundary, ψL(θ1) = ψL(θ2) = 0, so that
ψR(θ) is unrestricted and λ = −1. This belongs to the essential spectrum, since λ = −1 has
infinite multiplicity and does not contribute to any instabilities. The discrete spectrum is
then obtained by setting θ = θ1 and θ = θ2 in (4.28), which determines both the eigenvalues
λ and the pair ψL(θ1), ψL(θ2) (up to a scale factor). Once these are known, the eigensolutions
ψL(θ) and ψR(θ) on θ ∈ [−π/2, π/2) are fully determined by (4.28) and (4.29). Note that the
resulting eigenvalue equation is qualitatively similar to one derived in the linearization of a
single bump in a single network with synaptic depression [12, 37]. One major difference here is
that the input to the network is inhomogeneous so that translation invariance is lost. Hence,
we no longer expect a zero eigenvalue associated with uniform shifts. We distinguish four
classes of eigensolution to (4.28) and (4.29): (i) ψL(θ1) > 0 and ψL(θ2) < 0; (ii) ψL(θ1) < 0
and ψL(θ2) > 0; (iii) ψL(θ1) > 0 and ψL(θ2) > 0; (iv) ψL(θ1) < 0 and ψL(θ2) < 0. The
four types of perturbation correspond, respectively, to a leftward shift, a rightward shift, an
expansion, and a contraction of the bump in the left eye hypercolumn. As the eigenvalue
problem is qualitatively similar to our previous work, we merely summarize the stability
properties for each class of perturbation.

(i) ψL(θ1) > 0;ψL(θ2) < 0. As has been shown in the spatially extended network with
synaptic depression and no input, increasing the strength of synaptic depression β will lead to
a destabilization of standing bumps through the shift perturbation. In fact, in all parameter
regimes we have studied, this is the particular perturbation that destabilizes first.3 In the
case of a stimulus driven system, we find that inputs serve to move the onset of destabilization
to a higher value of β. As before, we can study stability merely on the bump boundaries by
setting θ = θ1, θ2, which, along with our perturbation sign assumptions, yields

(
Γβ(λ)− γSwl(0)

(
λ+ α−1

) −γS
(
λ+ α−1

)
wl(Δθ)

−γS
(
λ+ α−1

)
wl(Δθ) Γβ(λ)− γSwl(0)

(
λ+ α−1

)
)(

ψL(θ1)
ψ(θ2)

)

= −γSαβλ

1 + αβ

(
wl(Δθ)ψL(θ2)
wl(0)ψL(θ2)

)
.(4.30)

As in the case without inputs, we assume β � 1 and carry out a perturbation expansion in
β. First, setting β = 0 in (4.30) shows that the lowest order solution is ψ−

0 = −ψ+
0 with

λ0 = −α−1 as a degenerate eigenvalue and λ0 = −1 + γS(wl(0) − wl(Δθ)), which will always
be negative, since γ−1

S > wl(0) − wl(Δθ). All eigensolutions pick up O(β) corrections as β is

3More precisely, shift perturbations are the dominant instability associated with real eigenvalues. Our
analysis cannot determine possible instabilities associated with complex eigenvalues. However, numerical sim-
ulations suggest that single bump solutions are stable for sufficiently small β and destabilize at the point where
an eigenvalue associated with shift perturbations crosses the origin; see section 5.
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then increased from zero, but we will show that the valid eigenvalue originating from −α−1

eventually becomes positive, signifying traveling pulse solutions. See [69] for a recent study
of traveling pulse solutions in a ring model with synaptic depression.

(ii) ψL(θ1) < 0;ψL(θ2) > 0. Due to reflection symmetry of the original system, when wl is
an even function, the spectrum of rightward shifts is identical to that of leftward shifts.

(iii) ψL(θ1) > 0;ψL(θ2) > 0. In this case, if we set θ = θ1, θ2, we have ψL(θ1) = ψL(θ2) > 0,
so (4.28) and (4.29) become

(λ+ α−1 + β)(λ+ 1) = (λ+ α−1)(1 + αβ)ΩI ,(4.31)

where

ΩI =
wl(0) + wl(Δθ)

wl(0)− wl(Δθ) + (1 + αβ)I ′L(θ1)
(4.32)

and we have substituted for γS using (4.27). It then follows that λ = λ± with

λ± =
1

2

[
ΩI(1 + αβ)− (

1 + α−1 + β
)]

± 1

2

√
[ΩI(1 + αβ)− (1 + α−1 + β)]2 + 4(ΩI − 1) (α−1 + β).(4.33)

The associated eigenmode corresponds to a pure expansion of the bump.

(iv) ψL(θ1) < 0;ψL(θ2) < 0. In this final case, if we set θ = θ1, θ2 and note that ψL(θ1) =
ψL(θ2), then (4.28) and (4.29) imply λ = λ0 with

λ0 = ΩI − 1.(4.34)

The associated eigenmode corresponds to a pure contraction of the bump.

We illustrate the above analysis by considering stationary single bumps in the coupled
hypercolumn network with a harmonic weight function (2.4). In particular, we plot eigenvalues
for the destabilizing perturbations for the stimulus driven bump, which is stable as β → 0. In
Figure 11, we plot the maximal real eigenvalue associated with the shift perturbation (cases (i)
and (ii)) as a function of β and as a function of I0. The bump destabilizes to shift perturbations
for sufficiently strong depression β. However, large inputs I0 can keep the bump stable for
larger values of β. In Figure 12, we plot the eigenvalues of the expansion and contraction
perturbations as a function of β and I0. In the case of contractions, there is a single negative
branch of eigenvalues. In the case of expansions, there are two negative branches for fixed
I0 and sufficiently small β, which annihilate at the left edge of a forbidden region in which
eigenvalues given by (4.33) are complex so that stability cannot be determined. At the other
end of the forbidden region, a pair of positive branches emerges for sufficiently large β. By
fixing β and varying I0, we see that eigenvalues are slightly less sensitive to the input strength
and remain the same sign over a wide range. We find that the lower branch of the expansion
mode and the branch of the contraction mode never meet, as opposed to our previous study
of a network without inhomogeneous input [12, 37].
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Figure 11. Eigenvalues associated with shift perturbations of single bump (cases (i) and (ii)). (a) Maximal
nonzero real eigenvalues plotted as a function of β for I0 = 0.24. Bump is unstable with respect to shifts for
sufficiently large β. (b) Maximal nonzero real eigenvalue plotted as a function of I0 for β = 0.01. Bump is
unstable with respect to shifts for sufficiently weak input I0. Other parameters are κ = 0.05, wl

0 = 0, wl
2 = 0.4,

wc
0 = −1, wc

2 = 0.5, and α = 500.
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Figure 12. Eigenvalues associated with expansion and contraction perturbations (cases (iii) and (iv)). (Left)
Eigenvalues of the expansion (solid) and contraction (dashed) perturbations as a function of β when I0 = 0.24.
In the grey regions, the roots of (4.33) are complex, violating the ansatz that λ is real. (Right) Eigenvalues of
the expansion (solid) and contraction (dashed) perturbations as a function of I0 for β = 0.01. Other parameters
are κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5, and α = 500.

4.3. Existence of double bump. For a double bump or fusion solution, neural activity
variables will both have associated nonempty excited regions R[UL] = (θ1, θ2) and R[UR] =
(−θ2,−θ1) and thus threshold crossing points UL(θ1) = UL(θ2) = κ and UR(−θ2) = UR(−θ1) =
κ. Therefore, by prescribing the double bump solution in both populations, equations (4.2)
become

UL(θ) =

∫ θ2

θ1

wl(θ − θ′)QL(θ
′)dθ′ +

∫ −θ1

−θ2

wc(θ − θ′)QR(θ
′)dθ′ + IL(θ),(4.35)

UR(θ) =

∫ −θ1

−θ2

wl(θ − θ′)QR(θ
′)dθ′ +

∫ θ2

θ1

wc(θ − θ′)QL(θ
′)dθ′ + IR(θ),(4.36)

Qj(θ) = 1− αβΘ(Uj(θ)− κ)

1 + αβΘ(Uj(θ)− κ)
, j = L,R.(4.37)
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Substituting (4.37) into (4.35) and (4.36) yields

UL(θ) =
1

1 + αβ

[∫ θ2

θ1

wl(θ − θ′)dθ′ +
∫ −θ1

−θ2

wc(θ − θ′)dθ′
]
+ IL(θ),(4.38)

UR(θ) =
1

1 + αβ

[∫ −θ1

−θ2

wl(θ − θ′)dθ′ +
∫ θ2

θ1

wc(θ − θ′)dθ′
]
+ IR(θ).(4.39)

Employing the sum of harmonics weight function (2.4), we can analytically calculate the
double bump solutions

UL(θ) =
1

1 + αβ

[
(wl

0 + wc
0)(θ2 − θ1) +

wl
2

2
(sin(2(θ − θ1))− sin(2(θ − θ2)))

+
wc
2

2
(sin(2(θ + θ2))− sin(2(θ + θ1)))

]
+ IL(θ),(4.40)

UR(θ) =
1

1 + αβ

[
(wl

0 + wc
0)(θ2 − θ1) +

wl
2

2
(sin(2(θ + θ2))− sin(2(θ + θ1)))

+
wc
2

2
(sin(2(θ − θ1))− sin(2(θ − θ2)))

]
+ IR(θ).(4.41)

Applying the threshold conditions, we have

κ =
1

1 + αβ

[
(wl

0 + wc
0)(Δθ) +

wl
2

2
sin(2(Δθ)) +

wc
2

2
(sin(2(θ2 + θ1))− sin(4θ1))

]

+ I0 cos
p(Δθ/2),(4.42)

κ =
1

1 + αβ

[
(wl

0 + wc
0)(Δθ) +

wl
2

2
sin(2(Δθ)) +

wc
2

2
(sin(4θ2)− sin(2(θ2 + θ1)))

]

+ I0 cos
p(Δθ/2),(4.43)

where Δθ = θ2 − θ1, the width of each bump. Therefore, we have a system of implicit
expressions that relate the threshold crossing points θ1, θ2 to all other parameters. The system
prescribed by (4.42) and (4.43) can be solved numerically using a root finding algorithm. The
variation of the width of each bump Δθ with the input strength I0 is shown in Figure 13; the
stability of these bumps is calculated below.

4.4. Stability of the double bump. As in section 4.2, we cannot calculate the stability of
the double bump here using a standard Evans function approach, and we must account for the
piecewise smooth nature of the dynamics more carefully. One caveat of this analysis is that we
may only calculate the form of perturbations to the bump with a real eigenvalue characterizing
their temporal evolution. While this may appear to be a barrier to calculating the stability
boundary, the particular perturbation that leads to the oscillatory instability leading to rivalry,
we are in fact able to characterize this boundary quite well with perturbations possessing real
eigenvalues. We explain this issue further below as well as show examples of instabilities in
section 5.

Due to the similarity our stability analysis of the double bump has to that of the single
bump, we relegate this calculation to the appendix. After changing variables and accounting
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Figure 13. Double bumps in coupled hypercolumns. (Left) Plots relating bump width Δθ to the amplitude
of input strength I0 for different values of κ using (4.42) and (4.43). Other parameters are κ = 0.05, α = 500,
β = 0.01, and p = 6. (Right) Double bump profile when κ = 0.05 and I0 = 0.4.

for the sign of perturbations at the bump boundaries, we obtain the following pseudolinear
system characterizing the evolution of perturbations of the double bump solution:

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) + ΦRc(θ, t) + γDwl(θ − θ1)ψL(θ1, t)GL,1(t)

+ γDwl(θ − θ2)ψL(θ2, t)GL,2(t) + γDwc(θ + θ1)ψR(−θ1, t)GR,1(t)

+ γDwc(θ + θ2)ψR(−θ2, t)GR,2(t),(4.44)

∂ψR(θ, t)

∂t
= −ψR(θ, t) + ΦRl(θ, t) + ΦLc(θ, t) + γDwl(θ + θ1)ψR(−θ1, t)GR,1(t)

+ γDwl(θ + θ2)ψR(−θ2, t)GR,2(t) + γDwc(θ − θ1)ψ1(θ1, t)GL,1(t)

+ γDwc(θ − θ2)ψL(θ2, t)GL,2(t)(4.45)

and

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t)

−β(γDwm(θ − θ1)ψL(θ1, t)GL,1(t)Θ(ψL(θ1, t))

+ γDwm(θ − θ2)ψL(θ2, t)GL,2(t)Θ(ψL(θ2, t))),(4.46)

∂ΦRm(θ, t)

∂t
= −(α−1 + β)ΦRm(θ, t)

−β(γDwm(θ + θ1)ψR(−θ1, t)GR,1(t)Θ(ψR(−θ1, t))

+ γDwm(θ + θ2)ψR(−θ2, t)GR,2(t)Θ(ψR(−θ2, t))),(4.47)

where GL,j(t) = G(ψL(θj , t)), GR,j(t) = G(ψR(−θj, t)), and

(γD)
−1 = |U ′

L(θk)|
=

1

1 + αβ

∣∣∣wl(θk − θ1)− wl(θk − θ2) + wc(θk + θ2)− wc(θk + θ1) + I ′L(θk)
∣∣∣

= |U ′
R(−θk)|(4.48)

=
1

1 + αβ

∣∣∣wl(θk − θ2)− wl(θk − θ1) + wc(θk + θ1)− wc(θk + θ2) + I ′R(−θk)
∣∣∣
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for k = 1, 2.

Equations (4.44)–(4.47) imply that the local stability of the stationary bump solution
depends upon the spectral properties of a pseudolinear operator. As in section 4.2, we assume
that (4.44)–(4.47) have separable solutions of the form (ψL, ψR,Φ1l,Φ2l,ΦLc,ΦRc)(θ, t) =
eλt(ψL, ψR,ΦLl,ΦRl,ΦLc,ΦRc)(θ), where λ is real. Under this assumption, the step functions
Θ, G are time-independent so that eλt cancels everywhere. Further simplification can be
achieved by assuming that λ �= −(α−1 + β) so that we can eliminate the auxiliary fields
ΦLl,ΦRl,ΦLc,ΦRc. The resulting eigenvalue problem can be analyzed along similar lines to
single bumps. That is, one particular class of solutions consists of functions ψL(θ) and ψR(θ)
that vanish on the bump boundaries so that ψL(θ1) = ψL(θ2) = ψR(−θ2) = ψR(−θ1) = 0
and λ = −1. This determines the essential spectrum. The discrete spectrum is then found
by setting θ = ±θ1,±θ2, which yields a four-dimensional matrix equation for the quantities
ψL(θj), ψR(−θj), j = 1, 2. Specifying the sign of these quantities thus yields sixteen classes of
perturbation corresponding to all of the possible combinations of the perturbations for each
individual bump: expansion, contraction, left-shift, and right-shift. However, there are only in
fact seven qualitatively different cases due to symmetry considerations. We summarize these
in Figure 14: (i) expand and contract (rivalry); (ii) same-shift; (iii) different-shift; (iv) expand-
both; (v) contract-both; (vi) expand and shift; (vii) contract and shift. It is straightforward
to numerically compute the eigenvalues associated with each perturbation after assigning the
values for G and Θ due to the signs of each of the four points ψL(θ1), ψL(θ2), ψR(−θ1), and
ψR(−θ2). We shall briefly summarize our findings for the eigenvalues associated with each
perturbation followed by some specific examples.

(i) Expand and contract (rivalry), e.g., ψL(θ1,2) > 0 and ψR(−θ1,2) < 0. In the study of
binocular rivalry, we are most interested in this perturbation, which expands one bump and
contracts the other. For sufficiently small inputs I0, we find that the double bump is unstable
with respect to this class of perturbation as β → 0. There are then three possibilities which
we have found numerically: it destabilizes to the WTA solution (single bump), which occurs
for weak synaptic depression; it destabilizes to damped oscillations which eventually return
to the double bump solution; or it destabilizes to an indefinite rivalrous state of persistent
oscillations, which occurs for sufficiently strong depression. Finally, if the input strength I0 is
large enough, we find that this is sufficient to stabilize the double bump solution with respect
to rivalrous perturbations, as expected. When the double bump is linearly stable to rivalrous
perturbations, there can coexist a state where the system persistently oscillates between either
population possessing superthreshold activity. However, the initial conditions of the system
must be sufficiently far away from the double bump solution.

(ii) Same-shift, e.g., ψL(θ1) < 0, ψL(θ2) > 0, ψR(−θ2) < 0, ψR(−θ1) > 0. We find that
eigenvalues associated with this perturbation are always negative for sufficiently strong cross-
inhibition (wc

0 < 0). However, as the amplitudes of the parameters wc
0 and wc

2 are reduced, it
is possible to destabilize the double bump solution with respect to this perturbation, which
numerically results in traveling pulse-like solutions in both hypercolumns that eventually settle
back into the double bump solution.

(iii) Different-shift, e.g., ψL(θ1) < 0, ψL(θ2) > 0, ψR(−θ2) > 0, ψR(−θ1) < 0. We find that
eigenvalues associated with this perturbation are always negative for sufficiently strong cross-
inhibition (wc

0 < 0). However, as with case (ii), when the amplitude of the parameters wc
0
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Figure 14. Illustration of different types of perturbation of a stationary double-bump solution. (Top) expand
and contract; (middle, left) right-shift both; (middle, right) left-shift and right-shift; (bottom, left) expand both;
(bottom, right) contract both.

and wc
2 is reduced, it is possible to destabilize the double bump solution, resulting in traveling

pulse-like solutions in both hypercolumns that eventually settle back into the double bump
solution.

(iv) Expand-both, e.g., ψL(θ1) > 0, ψL(θ2) > 0, ψR(−θ2) > 0, ψR(−θ1) > 0. Similar to
cases (ii) and (iii), we find that this perturbation is stabilized by strong cross-inhibition but
can lead to instability when wc

0 and wc
2 are sufficiently small in amplitude. However, due to

periodicity, the spread of activity eventually settles back into the double bump solution.

(v) Contract-both, e.g., ψL(θ1) < 0, ψL(θ2) < 0, ψR(−θ2) < 0, ψR(−θ1) < 0. Due to
the underlying symmetry of the system, we can in fact compute the eigenvalue associated
with this perturbation explicitly. Noting the sign restrictions and the fact that we must have
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Figure 15. Eigenvalues associated with expand and contract (rivalrous) perturbations of double bump (case
(i)). (a) Maximal nonzero eigenvalue plotted as a function of β for fixed I0 = 0.45. (b) Maximal nonzero
real eigenvalues plotted as a function of I0 for β = 0.01. Other parameters are κ = 0.05, wl

0 = 0, wl
2 = 0.4,

wc
0 = −1, wc

2 = 0.5, and α = 500.

ψL(θ1) = ψL(θ2) = ψR(−θ2) = ψR(−θ1) < 0, we have

λ = −1 +
γD

1 + αβ
(wl(0) + w−

l + wc(2θ1) + w+
c ),(4.49)

which we find to always be negative as long as wc
0 ≤ 0. Thus, the bump will always be stable

with respect to contractions. In fact, this seems to be what allows the system to settle back
into the double bump solution after a long excursion due to a destabilizing perturbation, since
there are flows that treat the double bump as an attractor.

(vi) Expand and shift, e.g., ψL(θ1) > 0, ψL(θ2) > 0, ψR(−θ2) < 0, ψR(−θ1) > 0. We find
no eigensolutions of this form for any parameters.

(vii) Contract and shift, e.g., ψL(θ1) < 0, ψL(θ2) < 0, ψR(−θ2) < 0, ψR(−θ1) > 0. We find
no eigensolutions of this form for any parameters.

We illustrate the stability analysis of the stationary double bump solution by plotting
eigenvalues calculated for each perturbation to bumps in a network with the harmonic weight
function (2.4). Specifically, we plot the eigenvalues for each perturbation for a stimulus driven
double bump that is unstable to rivalrous perturbations as β → 0. In Figure 15, we plot the
maximal nonzero real eigenvalue for rivalrous perturbations as a function of β and I0. For
fixed I0, as β increases from zero the positive real eigenvalue decreases as a function of β.
For sufficiently large β, this positive eigenvalue vanishes, and the double bump solution is
predicted to be stable to rivalrous perturbations. For fixed β, double bumps are unstable to
rivalrous perturbations for sufficiently weak inputs but stabilize beyond a critical value of I0.
In Figure 16, we plot the maximal eigenvalues of all other perturbations to the bump, showing
they are negative for a wide range of input strengths I0 and depression strengths β. They are
all quite insensitive to variations in these parameters.

5. Numerical simulations. We now study the full system (2.1) using a numerical approx-
imation scheme. To evolve the system in time, we use a fourth order Runge–Kutta method
with 1000–2000 spatial grid points and a time step of dt = 0.01. The integral terms in (2.1a)
and (2.1b) are approximated using Simpson’s rule. We systematically checked whether taking
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Figure 16. Eigenvalues associated with other perturbations of double bump (cases (ii)–(v)). (Left) Maximal
real eigenvalues of the expand-both (solid black), contract-both (dashed black), same-shift (solid grey), and
different-shift (dashed grey) perturbations plotted as a function of β for fixed I0 = 0.45. (Right) Maximal real
eigenvalues of each perturbation plotted as a function of I0 for β = 0.01. Other parameters are κ = 0.05,
wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5, and α = 500.

finer grids changed stability results, and it does not. Such checks are essential to studying the
stability of bumps, as grids that are too coarse can drastically alter stability results [27].

In much of parameter space, we find that our existence and stability analysis characterizes
very well the type of solutions that the system (2.1) will relax to over long times as well as
the nature of various local instabilities. Thus, if we take as an initial condition a stationary
bump solution that is stable with respect to perturbations associated with real eigenvalues
and then vary a bifurcation parameter such as β or I0, we find that the dominant instability,
as predicted by our piecewise smooth analysis, corresponds well with the numerical solution
seen initially to evolve away from the stationary solution. However, one interesting feature
we find in numerical simulations of the network is that solutions that destabilize initially
can eventually return to a stationary solution. This is due to two features of the underlying
system and associated stationary solution. First, the bump is stable with respect to certain
perturbations in our piecewise linear stability analysis. Therefore, even though the solution
may move away from a stationary bump when one perturbation is applied, it may follow a
trajectory in phase space which is eventually close to the stationary bump solution again.
This phenomenon is aided by the second effect, which is that the variables qj(θ, t) as defined
by (2.1c) reduce their value at a location quite quickly when the superthreshold activity of
uj(θ, t) sweeps over that location in the network. Thus, qj(θ, t) will be lower than the value
prescribed by the stationary solutions on the regions immediately exterior to the original
bump location following the bump. This effect will last for long periods of time since α is
large. Therefore, in some situations there will not be enough resources in the regions about
the bump’s original location to reignite the instability once the activity profile returns to the
general proximity of the bump. We shall witness this phenomenon in both single and double
bump instabilities.

For our first numerical example, we take the initial condition to be a single bump solution
specified by (4.8) which is predicted to be unstable to shift perturbations. After a brief period,
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Figure 17. Numerical simulation of a single bump destabilized by a rightward shift perturbation. (Left)
Simulation in the network (2.1) with a Heaviside firing rate function (2.3). Plot of uL(θ, t) for an initial
condition taken to be a stationary bump specified by (4.8). Solution is perturbed at t = 5 by a rightward shift
ψshift

L (θ, t) such that χ(t) = 0.02 for t ∈ [5, 5.1) and zero otherwise. Activity initially propagates rightward and
then leftward until settling back into the single bump profile. (Right) Simulation in the network (2.1) with a
smooth sigmoidal firing rate function (2.2) with gain η = 20. System is allowed to evolve for 500 time units from
the single bump solution of the nearby system with a Heaviside function (2.3) until it settles into its own single
bump solution. The system is then perturbed at t = 500 by a rightward shift ψshift

L (θ, t) such that χ(t) = 0.02
for t ∈ [500, 500.1) and zero otherwise. Activity relaxes back to the single bump solution immediately. Other
parameters are κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5, α = 500, β = 0.01, I0 = 0.24. Each t time

unit corresponds to 10ms.

we perturb the system by adding a rightward shift perturbation of uL(θ, t) defined as

ψshift
L (θ, t) = χ(t)(wl(θ − θ2)− wl(θ − θ1)),(5.1)

where χ(t) is a time-dependent function determining when and for how long the perturbation
is applied. As shown in Figure 17(left), the resulting dynamics initially evolve to a propagating
solution similar to a traveling pulse. However, due to the input and periodic boundaries of
the system, the profile does not evolve to a translationally invariant traveling pulse as in our
previous studies of a network with synaptic depression [36, 12]. In fact, the activity then
changes its direction of propagation. Following its excursion, the activity profile eventually
settles back into the stationary single bump solution. As mentioned earlier, the trajectory
of the variable uL(θ, t) is such that it relaxes back to the bump solution through a stable
flow. Since the piecewise-smooth boundary of the variables qj(θ, t) has been disrupted by
nonlinear effects of the evolving solution, the bump will be an attracting state for virtually
all reasonable flows over a long time. It appears the single bump is a marginally stable
steady state in the infinite dimensional system (2.1). Thus, even though the bump is unstable
to shift perturbations, it always restabilizes in the long time limit. It is then reasonable
to ask whether such trajectories found in system (2.1) with a Heaviside firing rate function
(2.3) are nongeneric or if it is possible to find similar behavior in the system with a smooth
sigmoid firing rate function (2.2). When simulating the nearby system with a sigmoid with
high gain, we find similar dynamics. Once the system settles into a single bump solution,
small perturbations lead to similar excursions followed by a return to the original steady
state. We found, however, that there is a critical size of perturbation that leads to such
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Figure 18. Numerical simulation of a double bump destabilized by a rivalrous perturbation. Plot of uL(θ, t)
(left) and uR(θ, t) (right) for an initial condition taken to be a double bump specified by (4.40) and (4.41).
Solution is perturbed at t = 5 by a rivalry shift ψriv

L (θ, t) and ψriv
R (θ, t), respectively, such that χ(t) = 0.02

for t ∈ [5, 5.1) and zero otherwise. Activity settles into a slow oscillation where dominance switches between
either population roughly every two seconds. Parameters are κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5,

α = 500, β = 0.01, and I0 = 0.45. Each t time unit corresponds to 10ms.

an excursion. Smaller perturbations lead to the solutions immediately relaxing back to a
single bump. We found this was not a grid size effect, as reducing the grid size did not alter
the size of perturbation necessary to destabilize the bump. Therefore, as we have found in
previous work for networks with smooth sigmoids with large gain, bumps may be stable to
extremely small perturbations, but not necessarily stable for slightly larger perturbations that
are still relatively small [37]. However, we did find that this effect eventually vanishes when
the smooth sigmoid has moderate gain. When we simulate the nearby system with a sigmoid
with gain η = 20, we find that the bump simply behaves as a stable structure, so that even
large perturbations decay. This is shown in Figure 17(right), where a shifted bump relaxes
back to the original stable structure.

For our next numerical example, we take the initial condition to be a double bump solution
specified by (4.40) and (4.41), which is predicted to be unstable to rivalrous perturbations.
After a brief period, we perturb the system by adding a rivalrous perturbation of uL(θ, t) and
uR(θ, t) defined as

ψriv
L (θ, t) = χ(t)(wl(θ − θ2) +wl(θ − θ1)),(5.2)

ψriv
R (θ, t) = −χ(t)(wl(θ + θ2) + wl(θ + θ1)).(5.3)

As shown in Figure 18, the resulting dynamics can evolve to a slow oscillation in the activ-
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ity of both populations for sufficiently weak inputs I0. First the right population’s activity
uR(θ, t) exhibits a relatively invariant bump of activity until synaptic depression exhausts
the inhibitory synapses and the left population’s activity uL(θ, t) is released from suppres-
sion. Then the left population’s activity dominates for a period until the right population
is released. This cycle continues indefinitely. Thus, even though the linear stability analysis
predicts the rivalrous perturbation having an associated positive real eigenvalue (see Figure
15), nonlinear effects of the system take over and the system oscillates. As we alluded to
in section 4.4, the spatially extended system supports a fusion/rivalry bistable state, just as
the space-clamped system of section 3 does. Thus, even in cases where the double bump
solution is linearly stable, some initial conditions evolve to a rivalry solution similar to that
plotted in Figure 18. Interestingly, Buckthought, Kim, and Wilson have recently provided
psychophysical evidence for such a form of bistability [14]. By showing subjects’ binocular
stimuli with increasingly dissimilar orientations, they found a region of hysteresis, wherein the
subject perceived either rivalry or fusion, depending on their initial perception. Admittedly,
the stimuli used to induce the effect never differed more than 30 degrees, whereas ours differ
by 90 degrees, but they observed such bistability nonetheless. To study the effect that the
gain of the firing rate function has upon such rivalry solutions, we study rivalrous oscillations
in system (2.1) with the smooth sigmoid firing rate function (2.2) with gain η = 30. By
allowing the system to evolve from the double bump solution of the nearby Heaviside system,
we find that it eventually settles into rivalrous oscillations. This is illustrated in Figure 19,
which shows rivalrous oscillations that switch between population dominance roughly every 2
seconds (200 time units). Thus, the dynamics we find in system (2.1) with a Heaviside firing
rate function (2.3) persist in the case of a sigmoid firing rate function with large but finite
gain.

In Figure 20, we show an example of a perturbation evolving to a damped oscillation.
Even though our stability analysis predicts that the double bump is unstable with respect to
rivalrous perturbations, the solution eventually returns to the stationary double bump. As
we have mentioned, double bumps can be stable to all other perturbations aside from the
rivalrous perturbation. Therefore, nonlinear effects can dominate the system in the long time
limit and the solution may flow along a trajectory which has the double bump as an attractor.
As mentioned previously, resources as defined by qj(θ, t) in the periphery of the original bump
locations are exhausted so that there is not sufficient excitation to continue the oscillation. In
addition, we cannot trust the stability analysis we have carried out beyond the point that the
original threshold conditions are violated. To our knowledge, no studies have addressed these
types of nonlinear effects at work in restabilizing bumps in spatially extended systems. How
best to characterize the onset of such an oscillation remains an open problem.

Finally, in Figure 21, we show an example of a coupled hypercolumn network driven by
stimuli of two different strengths so that IL �= IR. We take our initial condition to be the
quiescent state uL(θ, 0) = uR(θ, 0) = 0 and qL(θ, t) = qR(θ, 0) = 1. In this case, we see that
the dominance times are different for the left and right populations, just as we found in the
space-clamped system (see Figure 3). Since the right population receives a stronger input
(IR = 0.45) than the left population (IL = 0.4), superthreshold bump-like activity exists in
the right population for a longer period than the left. Also, note that the transient bump in
the right population is wider than that in the left.
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Figure 19. Numerical simulation of a double bump destabilized by a rivalrous perturbation in system (2.1)
with a sigmoid firing rate (2.2) with gain η = 30. Plot of uL(θ, t) (left) and uR(θ, t) (right) for an initial
condition taken to be a double bump specified by (4.40) and (4.41) for the nearby system with a Heaviside
firing rate (2.3). Activity evolves eventually into a slow oscillation where dominance switches between either
population roughly every two seconds. Other parameters are κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5,

α = 500, β = 0.01, and I0 = 0.45. Each t time unit corresponds to 10ms.

6. Discussion. In this paper, we analyzed the onset of binocular rivalrous oscillations in
a coupled hypercolumn model with synaptic depression. In order to facilitate our analysis we
took the firing rate function to be a Heaviside (2.3). However, it was then necessary to take
the piecewise nature of the system into account when analyzing the stability of stationary
solutions. We first calculated the period of rivalrous oscillations arising in the space-clamped
version of our model. When the input to the left and right eye populations was varied, we
found that the corresponding changes in dominance times matched very well with some of
the observations of binocular rivalry made by Levelt [45]. Then, by studying the effects of
additive noise in the model, we found realistic statistics for dominance duration distributions
when noise is included in the equations for the depression variables. In the spatially extended
version of our model, we analyzed the onset of oscillations in neural activity due to orientation
biased stimuli using local stability determined by the spectrum of a pseudolinear operator.
For WTA or single bump solutions, we found that the dominant instability was usually a
shifting of the bump boundary, which in numerical simulations led to traveling pulse-type
solutions. For fusion or double bump solutions, we found that the dominant instability was
an expansion of one bump and a contraction of the other, which in simulations often led
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Figure 20. Numerical simulation of a double bump destabilized by a rivalrous perturbation in system (2.1)
with a Heaviside firing rate (2.3). Plot of uL(θ, t) (left) and uR(θ, t) (right) for an initial condition taken to
be a double bump specified by (4.40) and (4.41). Solution is perturbed at t = 5 by a rivalry shift ψriv

L (θ, t) and
ψriv

R (θ, t), respectively, such that χ(t) = 0.02 for t ∈ [5, 5.1) and zero otherwise. Activity evolves to a damped
oscillation temporarily and then settles back into the stationary double bump. Parameters are κ = 0.05, wl

0 = 0,
wl

2 = 0.4, wc
0 = −1, wc

2 = 0.5, α = 500, β = 0.02, and I0 = 0.4. Each t time unit corresponds to 10ms.

to rivalrous oscillations. In numerical simulations, we found that the local stability analysis
predicted the point at which bump solutions destabilized, but the long time behavior of the
simulation is beyond the scope of our analysis.

In future work, it would be interesting to develop tools to analyze the long time behavior of
oscillations in the spatially extended system so we could compute the dominance times of each
population. In addition, the fact that piecewise-smooth analysis predicts that a bump can be
stable to one sign of perturbation and unstable to another sign of perturbation was borne out
in the results of our numerical simulations. It appears this behavior allows the bump to be
a starting and stopping point for homoclinic trajectories in the infinite dimensional system
(2.1). In a sense, the bump is marginally stable. This was not an issue when we studied
instabilities of bumps in a network with synaptic depression without periodic boundaries [12].
We would like to explore this notion more exactly using tools developed for the study of
piecewise-smooth dynamical systems [21].

Appendix. To calculate the stability of the double bump and derive the set of equations
(4.44)–(4.47), we begin by letting uj(θ, t) = Uj(θ) + εψj(θ, t) and qj(θ, t) = Qj(θ) + εϕj(θ, t)
for j = L,R, where ψj and ϕj denote smooth perturbations and ε � 1. Substituting into the
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Figure 21. Numerical simulation of an asymmetric rivalrous solution. Plot of uL(θ, t) (left) and uR(θ, t)
(right) for an initial condition taken to be the quiescent state uL(θ, 0) = uR(θ, 0) = 0 and qL(θ, t) = qR(θ, 0) = 1.
Activity evolves to a damped oscillation temporarily and then settles back into the stationary double bump.
Parameters are κ = 0.05, wl

0 = 0, wl
2 = 0.4, wc

0 = −1, wc
2 = 0.5, α = 500, β = 0.01, I0L = 0.4, and I0R = 0.45.

Each t time unit corresponds to 10ms.

full system (2.1), imposing the stationary solutions (4.35), (4.36), and (4.37), and dividing
through by ε then gives

∂ψL(θ, t)

∂t
= −ψL(θ, t) +

1

ε
wl ∗ (QL[Θ(UL + εψL − κ)−Θ(UL − κ)])

+wl ∗ (ϕLΘ(UL + εψL − κ)) + wc ∗ (ϕRΘ(UR + εψR − κ))

+
1

ε
wc ∗ (QR[Θ(UR + εψR − κ)−Θ(UR − κ)]),(A.1)

∂ψR(θ, t)

∂t
= −ψR(θ, t) +

1

ε
wl ∗ (QR[Θ(UR + εψR − κ)−Θ(UR − κ)])

+wl ∗ (ϕRΘ(UR + εψR − κ)) + wc ∗ (ϕLΘ(UL + εψL − κ))

+
1

ε
wc ∗ (QL[Θ(UL + εψL − κ)−Θ(UL − κ)]),(A.2)

∂ϕj(θ, t)

∂t
= −ϕj(θ, t)

α
− β

ε
Qj[Θ(Uj + εψj − κ)−Θ(Uj − κ)]− βϕjΘ(Uj + εψj − κ)(A.3)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1342 Z. P. KILPATRICK AND P. C. BRESSLOFF

for j = L,R. Denote the perturbations of the bump boundaries by εΔL±(t) and εΔR± such that

uL(θ1 + εΔL
−(t), t) = uL(θ2 + εΔL

+(t), t) = κ,(A.4)

uR(−θ1 + εΔR
−(t), t) = uR(−θ2 + εΔR

+(t), t) = κ(A.5)

for an initial time interval t ∈ [0, T ). We are especially interested in perturbations that violate
these threshold conditions eventually (after time T ), since this is precisely what occurs in the
case of rivalrous oscillations. Taylor expanding these threshold conditions to first order in
perturbations, we find that

ΔL
−(t) ≈ −ψL(θ1, t)

|U ′
L(θ1)|

, ΔL
+(t) ≈

ψL(θ2, t)

|U ′
L(θ2)|

,

ΔR
−(t) ≈

ψR(−θ1, t)

|U ′
R(−θ1)| , ΔR

+(t) ≈ −ψR(−θ2, t)

|U ′
R(−θ2)| .(A.6)

As in the single bump case, we can smooth out discontinuities in (A.3) by introducing the
fields

ΦLm(θ, t) =

∫ θ2+εΔL
+

θ1+εΔL−
wm(θ − θ′)ϕL(θ

′, t)dθ′,(A.7)

ΦRm(θ, t) =

∫ −θ1+εΔR−

−θ2+εΔR
+

wm(θ − θ′)ϕR(θ
′, t)dθ′(A.8)

for m = l, c. Thus, as in the single bump case, even though O(1/ε) pointwise changes in
ϕL(θ, t) and ϕR(θ, t) may occur, the bump solution may still be stable, since the region over
which O(1/ε) changes occur may shrink to zero. We account for this possibility, since the
dynamics of the fields ΦLm(θ, t) and ΦRm(θ, t) (m = l, c) will remain O(1) when ϕL(θ, t) and
ϕR(θ, t) are O(1/ε) over an infinitesimal interval.

If we now differentiate (A.7) and (A.8) with respect to time, we find

∂ΦLm(θ, t)

∂t
=

∫ θ2+εΔL
+

θ1+εΔL
−

wm(θ − θ′)
∂ϕL(θ

′, t)
∂t

dθ′(A.9)

+ εwm(θ − θ2 − εΔL
+(t))ϕL(θ2 + εΔL

+(t), t)Δ̇
L
+(t)

− εwm(θ − θ1 − εΔL
−(t))ϕL(θ1 + εΔL

−(t), t)Δ̇
L
−(t), m = l, c,

∂ΦRm(θ, t)

∂t
=

∫ −θ1+εΔR
−

−θ2+εΔR
+

wm(θ − θ′)
∂ϕR(θ

′, t)
∂t

dθ′(A.10)

+ εwm(θ + θ1 − εΔR
−(t))ϕR(−θ1 + εΔR

−(t), t)Δ̇
R
−(t)

− εwm(θ + θ2 − εΔR
+(t))ϕR(−θ2 + εΔR

+(t), t)Δ̇
R
+(t), m = l, c,

where Δ̇j
± = dΔj

±/dt (j = L,R). We can now substitute (A.3) for ∂ϕj/∂t (j = L,R). Note
that the final term in (A.3) for j = L (j = R) involves a Heaviside function which will be
nonzero only when the stationary bumps UL (UR) plus the perturbation εψL (εψR) is greater
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than the threshold κ. This region is precisely defined by the interval (θ1 + εΔL−, θ2 + εΔL
+)

(interval (−θ2+εΔR
+,−θ1+εΔR−)), over which the integral in (A.9) (equation (A.10)) is taken.

This implies that

∫ θ2+εΔL
+

θ1+εΔL
−

wm(θ − θ′)ϕL(θ
′, t)Θ(UL(θ

′, t) + εϕL(θ
′, t)− κ)dθ′ = ΦLm(θ, t),

∫ −θ1+εΔR
−

−θ2+εΔR
+

wm(θ − θ′)ϕR(θ
′, t)Θ(UL(θ

′, t) + εϕR(θ
′, t)− κ)dθ′ = ΦRm(θ, t).

Thus, by modifying (A.1), (A.2), and (A.3) with the auxiliary variables given in (A.9) and
(A.10), we have the alternative system of equations

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) + ΦRc(θ, t)(A.11)

+
1

ε

∫ θ2+εΔL
+(t)

θ1+εΔL
−(t)

wl(θ − θ′)QL(θ
′)dθ′ − 1

ε

∫ θ2

θ1

wl(θ − θ′)QL(θ
′)dθ′

+
1

ε

∫ −θ1+εΔR
−(t)

−θ2+εΔR
+(t)

wc(θ − θ′)QR(θ
′)dθ′ − 1

ε

∫ −θ1

−θ2

wc(θ − θ′)QR(θ
′)dθ′,

∂ψL(θ, t)

∂t
= −ψR(θ, t) + ΦRl(θ, t) + ΦLc(θ, t)(A.12)

+
1

ε

∫ −θ1+εΔR−(t)

−θ2+εΔR
+(t)

wl(θ − θ′)QR(θ
′)dθ′ − 1

ε

∫ −θ1

−θ2

wl(θ − θ′)QR(θ
′)dθ′

+
1

ε

∫ θ2+εΔL
+(t)

θ1+εΔL−(t)
wc(θ − θ′)QL(θ

′)dθ′ − 1

ε

∫ θ2

θ1

wc(θ − θ′)QL(θ
′)dθ′,

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t)(A.13)

− β

ε

∫ θ2+εΔL
+(t)

θ1+εΔL
−(t)

wm(θ − θ′)QL(θ
′)[Θ(UL + εψL − κ)−Θ(UL − κ)]dθ

+ εwm(θ − θ2 − εΔL
+(t))ϕL(θ2 + εΔL

+(t), t)Δ̇
L
+(t)

− εwm(θ − θ1 − εΔL
−(t))ϕL(θ1 + εΔL

−(t), t)Δ̇
L
−(t), m = l, c,

∂ΦRm(θ, t)

∂t
= −(α−1 + β)ΦRm(θ, t)(A.14)

− β

ε

∫ −θ1+εΔR−(t)

−θ2+εΔR
+(t)

wm(θ − θ′)QR(θ
′)[Θ(UR + εψR − κ)−Θ(UR − κ)]dθ

− εwm(θ + θ2 − εΔR
+(t))ϕR(−θ2 + εΔR

+(t), t)Δ̇
R
+(t)

+ εwm(θ + θ1 − εΔR
−(t))ϕR(−θ1 + εΔR

−(t), t)Δ̇
R
−(t), m = l, c.
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We can now linearize the system of equations (A.11), (A.12), (A.13), and (A.14) by expanding
in powers of ε and collecting all O(1) terms. Again it is important to keep track of the signs
of ΔL± and ΔR± when approximating the various integrals due to the discontinuous nature of
QL(θ) and QR(θ). We thus obtain the following pseudolinear system:

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) + ΦRc(θ, t) + γDwl(θ − θ1)ψL(θ1, t)GL,1(t)

+ γDwl(θ − θ2)ψL(θ2, t)GL,2(t) + γDwc(θ + θ1)ψR(−θ1, t)GR,1(t)

+ γDwc(θ + θ2)ψR(−θ2, t)GR,2(t),(A.15)

∂ψR(θ, t)

∂t
= −ψR(θ, t) + ΦRl(θ, t) + ΦLc(θ, t) + γDwl(θ + θ1)ψR(−θ1, t)GR,1(t)

+ γDwl(θ + θ2)ψR(−θ2, t)GR,2(t) + γDwc(θ − θ1)ψ1(θ1, t)GL,1(t)

+ γDwc(θ − θ2)ψL(θ2, t)GL,2(t)(A.16)

and

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t)

−β(γDwm(θ − θ1)ψL(θ1, t)GL,1(t)Θ(ψL(θ1, t))

+ γDwm(θ − θ2)ψL(θ2, t)GL,2(t)Θ(ψL(θ2, t))),(A.17)

∂ΦRm(θ, t)

∂t
= −(α−1 + β)ΦRm(θ, t)

−β(γDwm(θ + θ1)ψR(−θ1, t)GR,1(t)Θ(ψR(−θ1, t))

+ γDwm(θ + θ2)ψR(−θ2, t)GR,2(t)Θ(ψR(−θ2, t))),(A.18)

where GL,j(t) = G(ψL(θj , t)), GR,j(t) = G(ψR(−θj, t)), and

(γD)
−1 = |U ′

L(θk)|
=

1

1 + αβ

∣∣∣wl(θk − θ1)− wl(θk − θ2) + wc(θk + θ2)− wc(θk + θ1) + I ′L(θk)
∣∣∣

= |U ′
R(−θk)|(A.19)

=
1

1 + αβ

∣∣∣wl(θk − θ2)− wl(θk − θ1) + wc(θk + θ1)− wc(θk + θ2) + I ′R(−θk)
∣∣∣

for k = 1, 2.

REFERENCES

[1] L. F. Abbott, J. A. Varela, K. Sen, and S. B. Nelson, Synaptic depression and cortical gain control,
Science, 275 (1997), pp. 220–224.

[2] S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields., Biol. Cybernet., 27
(1977), pp. 77–87.

[3] A. Angelucci, J. B. Levitt, E. J. S. Walton, J.-M. Hupe, J. Bullier, and J. S. Lund, Circuits
for local and global signal integration in primary visual cortex, J. Neurosci., 22 (2002), pp. 8633–8646.

[4] E. Bart, S. Bao, and D. Holcman, Modeling the spontaneous activity of the auditory cortex., J.
Comput. Neurosci., 19 (2005), pp. 357–378.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPETITIVE NETWORK WITH SYNAPTIC DEPRESSION 1345

[5] R. Ben-Yishai, R. L. Bar-Or, and H. Sompolinsky, Theory of orientation tuning in visual cortex,
Proc. Natl. Acad. Sci. U.S.A., 92 (1995), pp. 3844–3848.

[6] R. Blake, A primer on binocular rivalry, including current controversies, Brain and Mind, 2 (2001),
pp. 5–38.

[7] R. Blake and N. Logothetis, Visual competition, Nature Reviews Neuroscience, 3 (2002), pp. 1–11.
[8] G. G. Blasdel, Orientation selectivity, preference, and continuity in monkey striate cortex, J. Neurosci.,

12 (1992), pp. 3139–61.
[9] C. J. Bossink, P. F. Stalmeier, and C. M. De Weert, A test of Levelt’s second proposition for

binocular rivalry, Vision Res., 33 (1993), pp. 1413–1419.
[10] J. W. Brascamp, R. van Ee, A. J. Noest, R. H. A. H. Jacobs, and A. V. van den Berg, The time

course of binocular rivalry reveals a fundamental role of noise, J. Vision, 6 (2006), pp. 1244–1256.
[11] P. C. Bressloff and J. D. Cowan, An amplitude equation approach to contextual effects in visual

cortex, Neural Comput., 14 (2002), pp. 493–525.
[12] P. C. Bressloff and Z. P. Kilpatrick, Two–dimensional bumps in piecewise smooth neural fields with

synaptic depression, submitted.
[13] R. J. Brown and A. M. Norcia, A method for investigating binocular rivalry in real-time with the

steady state VEP, Vision Res., 37 (1997), pp. 2401–2408.
[14] A. Buckthought, J. Kim, and H. R. Wilson, Hysteresis effects in stereopsis and binocular rivalry,

Vis. Res., 48 (2010), pp. 819–830.
[15] F. S. Chance, S. B. Nelson, and L. F. Abbott, Synaptic depression and the temporal response

characteristics of V1 cells, J. Neurosci., 18 (1998), pp. 4785–4799.
[16] B. Chapman, K. R. Zahs, and M. P. Stryker, Relation of cortical cell orientation selectivity to

alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation
column in ferret visual cortex, J. Neurosci., 11 (1991), pp. 1347–1358.

[17] S. C. Chong, D. Tadin, and R. Blake, Endogenous attention prolongs dominance durations in binoc-
ular rivalry, J. Vision, 5 (2005), pp. 1004–1012.

[18] S. Coombes and M. R. Owen, Evans functions for integral neural field equations with Heaviside firing
rate function, SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 574–600.

[19] S. Coombes, Waves, bumps, and patterns in neural field theories, Biol. Cybernet., 93 (2005), pp. 91–108.
[20] R. Curtu, A. Shpiro, N. Rubin, and J. Rubin, Mechanisms for frequency control in neuronal compe-

tition models, 7 (2008), pp. 609–649.
[21] M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk, Piecewise-Smooth Dynamical

Systems: Theory and Applications, Springer, London, 2008.
[22] O. Faugeras, R. Veltz, and F. Grimbert, Persistent neural states: Stationary localized activity

patterns in the nonlinear continuous n-population, q-dimensional neural networks, Neural Comput.,
21 (2009), pp. 147–187.

[23] D. Ferster and K. D. Miller, Neural mechanisms of orientation selectivity in the visual cortex, Ann.
Rev. Neurosci., 23 (2000), pp. 441–471.

[24] R. Fox and F. Rasche, Binocular rivalry and reciprocal inhibition, Percept. Psychophys., 5 (1969),
pp. 215–217.

[25] A. W. Freeman, Multistage model for binocular rivalry, J. Neurophysiol., 94 (2005), pp. 4412–4420.
[26] C. D. Gilbert, Horizontal integration and cortical dynamics, Neuron, 9 (1992), pp. 1–13.
[27] Y. Guo and C. C. Chow, Existence and stability of standing pulses in neural networks: II. Stability,

SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 249–281.
[28] J. D. Haynes, R. Deichman, and G. Rees, Eye-specific effects of binocular rivalry in the human lateral

geniculate nucleus, Nature, 438 (2005), pp. 496–499.
[29] H. von Helmholtz, Treatise on Physiological Optics, Dover, New York, 1866.
[30] J. C. Horton and D. L. Adams, The cortical column: A structure without a function, Proc. R. Soc.

London B Biol. Sci., 360 (2005), pp. 837–862.
[31] D. H. Hubel and T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in

the cat’s visual cortex, J. Physiol., 160 (1962), pp. 106–154.
[32] D. H. Hubel and T. N. Wiesel, Ferrier lecture. functional architecture of macaque monkey visual

cortex, Proc. R. Soc. London B Biol. Sci., 198 (1977), pp. 1–59.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1346 Z. P. KILPATRICK AND P. C. BRESSLOFF

[33] J. M. Ichida and V. A. Casagrande, Organization of the feedback pathway from striate cortex (V 1)
to the lateral geniculate nucleus (LGN) in the owl monkey (Aotus trivirgatus), J. Comp. Neurol., 454
(2002), pp. 272–283.

[34] D. Z. Jin, V. Dragoi, M. Sur, and H. S. Seung, Tilt aftereffect and adaptation-induced changes in
orientation tuning and visual cortex, J. Neurosci., 94 (2005), pp. 4038–4050.

[35] L. C. Katz, C. D. Gilbert, and T. N. Wiesel, Local circuits and ocular dominance columns in monkey
striate cortex, J. Neurosci., 9 (1989), pp. 1389–1399.

[36] Z. P. Kilpatrick and P. C. Bressloff, Effects of adaptation and synaptic depression on spatiotemporal
dynamics of an excitatory neuronal network, Phys. D, 239 (2010), pp. 547–560.

[37] Z. P. Kilpatrick and P. C. Bressloff, Stability of bumps in piecewise smooth neural fields with
nonlinear adaptation, Phys. D, 239 (2010), pp. 1048–1060.

[38] L. Lack, Selective Attention and the Control of Binocular Rivalry, Mouton, The Hague, 1978.
[39] C. R. Laing and C. C. Chow, A spiking neuron model for binocular rivalry, J. Comput. Neurosci., 12

(2002), pp. 39–53.
[40] S.-H. Lee, R. Blake, and D. J. Heeger, Traveling waves of activity in primary visual cortex during

binocular rivalry, Nat. Neurosci., 8 (2004), pp. 22–23.
[41] S. R. Lehky, An astable multivibrator model of binocular rivalry, Perception, 17 (1988), pp. 215–228.
[42] S. R. Lehky, Binocular rivalry is not chaotic, Proc. Roy. Soc. London: Biol. Sci., 259 (1995), pp. 71–76.
[43] S. R. Lehky, No binocular rivalry in the LGN of alert macaque monkeys, Vis. Res., 36 (1996), pp. 1225–

1234.
[44] D. A. Leopold and N. K. Logothetis, Activity changes in early visual cortex reflect monkeys’ percepts

during binocular rivalry, Nature, 379 (1996), pp. 549–553.
[45] W. J. M. Levelt, On Binocular Rivalry, Institute for Perception RVO–TNO, Soesterberg, The Nether-

lands, 1965.
[46] N. K. Logothetis, D. A. Leopold, and D. L. Sheinberg, What is rivalling during binocular rivalry?,

Nature, 380 (1996), pp. 621–624.
[47] P. N. Loxley and P. A. Robinson, Soliton model of competitive neural dynamics during binocular

rivalry, Phys. Rev. Lett., 102 (2009), 258701.
[48] R. S. Menon, S. Ogawa, J. P. Strupp, and K. Uğurbil, Ocular dominance in human v1 demonstrated
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