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Synaptic mechanisms of 
interference in working memory
Zachary P. Kilpatrick1,2

Information from preceding trials of cognitive tasks can bias performance in the current trial, a 
phenomenon referred to as interference. Subjects performing visual working memory tasks exhibit 
interference in their responses: the recalled target location is biased in the direction of the target 
presented on the previous trial. We present modeling work that develops a probabilistic inference model 
of this history-dependent bias, and links our probabilistic model to computations of a recurrent network 
wherein short-term facilitation accounts for the observed bias. Network connectivity is reshaped 
dynamically during each trial, generating predictions from prior trial observations. Applying timescale 
separation methods, we obtain a low-dimensional description of the trial-to-trial bias based on the 
history of target locations. Furthermore, we demonstrate task protocols for which our model with 
facilitation performs better than a model with static connectivity: repetitively presented targets are 
better retained in working memory than targets drawn from uncorrelated sequences.

Parametric working memory experiments are a testbed for behavioral biases and errors, and help identify neural 
mechanisms that underlie them1–3. In visuospatial working memory, subjects identify, store, and recall target 
locations in trials lasting a few seconds. Response errors are normally distributed4–6, and tend to accumulate dur-
ing the delay-period, while subjects retain the target location in memory1,6,7. Complementary neural recordings 
suggest these working memories are implemented in circuits comprised of stimulus-tuned neurons with slow 
excitation and broad inhibition8,9. Persistent activity emerges as a tuned pattern of activity called a bump state, 
whose peak encodes the remembered target position6,10.

Neuronal studies of visual working memory typically focus on population activity within a single trial, ignor-
ing serial correlations across trials11. Several authors have identified behavioral biases that cause the previous 
trial’s visual target to interfere with the subject’s response on the subsequent trial12,13. For instance, in delayed 
match-to-sample tests, false alarms occur more often when comparison stimuli match samples from previous 
trials14. Interference was originally observed in verbal working memory tasks15,16, and evidence suggests the effect 
impacts working memory capacity17,18. One consistent observation is that interference is reduced by increasing 
the time interval between trials13,19,20, suggesting the effect persists for a few seconds. Investigations of interfer-
ence in visuospatial working memory reveal other effects: Increasing the delay-period of working memory trials 
increases the bias strength, and responses are biased in the direction of the stimulus from the previous trial13.

Our study focuses on why and how interference biases arise visuospatial working memory. First, what evi-
dence accumulation strategy accounts for the bias introduced by the previous trial’s target? We will show these 
biases emerge in observers using sequential Bayesian updating to predict the location of the next target. Such 
models are obtained by iteratively applying Bayes’ rule to a stream of noisy measurements, updating an observ-
er’s belief of the most likely choice. In changing environments, older measurements are discounted at a rate that 
increases with the assumed change rate of the environment21,22. In our model, the sequence of targets observed 
on each trial is used to predict the next target. When subjects assume the environment changes rapidly, only the 
most recent target is used to make their prediction, leading to suboptimal inference of the subsequent target23,24.

What neurophysiological processes could account for intertrial biases? Both the decay and activation times-
cales of the bias appear to be on the order of seconds. We propose short-term facilitation (STF), which acts on the 
timescale of seconds25,26, can account for the dynamics of the bias. In a recurrent network that sustains persistent 
activity during a delay-period in the form of an activity bump, facilitated synapses from neurons tuned to the 
previous target attract the activity bump in the subsequent trial. Previous models identified STF as a possible 
mechanism for lengthening the timescale of working memory27–29. Our study proposes interference arises as a 
result of an irrelevant working memory remaining from the previous trial.
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Our neurocomputational model accounts for recent observations of interference from visual working memory 
experiments13, and makes novel predictions linking behavioral responses to corresponding neural and synaptic 
mechanisms. The separation in timescales between the neural activity dynamics and STF variable allows us to 
derive a low-dimensional model describing the bump’s interaction with the network’s evolving synaptic weights. 
We find that protocols with a uniform distribution of possible target angles lead to response error distributions 
that are normally distributed about zero as found previously1,6,11. Conversely, target protocol sequences with 
strong serial correlations can lead to a biased distributions in recalled target positions. Such biases may be advan-
tageous in more complex tasks, where information from previous trials provides information about the target 
location in subsequent trials, as we show. Finally, we demonstrate that a recurrent network with STF supports 
bump attractors whose diffusion time course possesses two distinct phases, a prediction we propose to validate 
our model.

Results
Our study presents two frameworks for generating interference in a sequence of visual working memory trials. 
Both models use information about the target location on the previous trial to bias the response on the current 
trial. First, we develop a probabilistic inference model that predicts the distribution of possible target angles on 
the current trial based on observations of past trials. When the observer assumes the environment changes rap-
idly, the predictive distribution is primarily shaped by the previous trial’s target. Second, we analyze a recurrent 
network model with STF wherein a localized bump of activity represents the observer’s belief on the current trial 
and the spatial profile of STF represents the observer’s evolving predictive distribution for the subsequent target. 
We show the attractor structure of the network model can be directly related to the predictive distribution of the 
inference model.

Interference in a visual working memory task.  We focus specifically on an oculomotor delayed-response 
task with a single target presented in each trial1,6. On each trial, the subject views a target θn during a short cue period 
(Fig. 1A). They must remember the target location during a delay-period and saccade to the remembered location 
at the end. Response biases depend on the previous trial in three distinct ways13: (i) responses are attracted to the 
location of the previous target, graded with the difference between the current and previous target (Fig. 1B); (ii) the 
bias decreases as the interval between trials is increased (Fig. 1C); and (iii) the bias increases as the delay-period 
increases (Fig. 1D). As we will show, these biases are captured by a model of an observer that predicts the current 
target based on the previous target. These effects also emerge in a recurrent network model with slow excitation, 
subject to STF, and broad inhibition (Fig. 1E). This network represents the memory of the presented target as a bump 
of neural activity, which drifts in the direction of the target presented on the previous trial (Fig. 1F). Before analyzing 
the mechanics of this network model in more detail, we derive a probabilistic inference model that accounts for these 
tendencies.

Inference model for updating target predictions.  Interference increases error in working memory 
tasks with independent trials, but may improve performance in tasks with probabilistically structured sequences 
of visual targets. We propose this as a biological origin of interference: subjects assume some predictable temporal 
structure in their environment. In fact, sequential Bayesian updating can account for interference observed in 
working memory, given specific constraints on a probabilistic updating algorithm. The observer attempts to pre-
dict the probability of observing target angle θn+1 = θ in trial n + 1, given the targets θ1:n = {θ1, θ2, …, θn} observed 
in the previous n trials (Fig. 2A). However, the target θj on the jth trial will only help predict the target θn+1 on the 
n + 1th trial if the distribution sn+1(θ) from which targets are drawn remains the same between trial j and trial 
n + 130. The observer assumes the distribution from which presented targets are drawn changes stochastically at a 
fixed rate ε θ= +s: P( ( )n 1  ≢  θs ( ))n . Most visual working memory protocols fix the distribution of target angles 
throughout the task (ε = 0)1,3,6,13, as we do for most of our study, so the observer employs a potentially incorrect 
model to estimate this distribution (ε > 0). Subjects in psychophysical tasks can have a strong bias toward assum-
ing environments change on a timescale of several seconds21, and this bias is not easily trained away23,31. 
Combining these features of the model, the observer updates their predictive distribution for the target during the 
(n + 1)th trial.

Our algorithm is based on models that compute a predictive distribution for a stochastically moving target, given 
a sequence of noisy observations30,32. The predictive distribution is computed using sequential analysis22,33: Prior to 
trial n + 1, the observer has seen n targets θ1:n = {θ1, θ2, …, θn}. The observer computes θ θ θ= = |θ′ +f ( ): P( n 1
θ θ θ θ= ′ ≡+s s, ( ) ( ))j n j1  (Fig. 2B), the probability of observing the target θn+1 in the (n + 1)th trial assuming the 
underlying probability distribution from which targets are sampled does not change from trial j to n + 1 
(sn+1(θ) ≡ sj(θ)), for each trial j = 1, …, n. The true distribution of target angles θ remains uniform throughout most 
our study, so the observer is applying suboptimal inference. Further details of our Bayesian nonparametric model are 
given in Methods.

The observer thus computes a predictive distribution Ln+1,θ = P(θn+1 = θ|θ1:n, ε), using the previous targets θ1:n 
(Fig. 2A) to predict the subsequent target θn+1. If the observer assumes the distribution sn+1(θ) from which targets 
are drawn in trial n + 1 changes stochastically with a rate ε ∈ (0, 1), recent observations will be weighted more in 
determining Ln+1,θ 21,22,30. Each observation θj contributes to the current estimate of Ln+1,θ via the probability θθf ( )

j
 

(Fig. 2B). Observations are weighted by assuming the observer has a fixed belief about the value ε, specifying the 
average number of trials they expect the distribution sn(θ) to remain the same. Leveraging techniques in proba-
bilistic inference (See Methods), we find
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 and =P : 1/3600  is the uniform density for −180° ≤ θ < 180°. To 

understand Eq. (1), it is instructive to examine limits of the parameter ε that admit approximations or exact 
updates.

Static environments (ε → 0).  In the limit ε → 0, the observer assumes the environment is static, so the predictive 
distribution is comprised of equal weightings of each observation (See Fig. 2C and34,35):
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Figure 1.  Interference in visuospatial working memory, and our corresponding recurrent network model with 
STF. (A) A visuospatial working memory task was administered in consecutive trials (schematics adapted from 
Papadimitriou et al.13). The subject fixates on the central (blue) dot and a target (red dot) appears at location θn 
on trial n. After the target disappears, the subject retains a memory of the target location during the delay-
period (TD

n and +TD
n 1, 0–6000 ms). Lastly, the subject makes a saccade (rn and rn+1) to the remembered target 

location. Papadimitriou et al.13 found a systematic impact of the relative location (θn − θn+1) of the trial n target 
on the trial n + 1 response rn+1. (B) Response biases in trial n + 1 θ〈 − 〉θ+ + +( )rn n1 1 n 1

 depend on the relative 
location of the target (θn − θn+1) in trial n. Responses err in the direction of the previous target θn, but this 
tendency is non-monotonic in θn − θn+1. (C,D) The maximum average bias in trial n + 1 decreases with 
intertrial interval TI

n (panel C) and increases with the trial n + 1 delay-period +TD
n 1 (panel D). (E) Schematic of 

our recurrent network model, showing excitatory (triangle) and inhibitory (circles) neurons. Connections 
between excitatory cells are distance-dependent. Effects of the inhibitory population are fast and spatially 
uniform, so excitatory and inhibitory populations are merged into single variable u(x, t). STF increases the 
strength of recently used synapses, described by the variable q(x, t). (F) A tuned input during the cue period 
(TC) generates a bump of neural activity u(x, t) centered at x = θn that persists during the delay-period of trial n 
(TD

n) and ceases after the response. After the intertrial interval (TI
n), the bump initially centered at x = θn+1 drifts 

towards the position of the bump in the previous trial (dotted line) due to the attractive force of STF. Input 
fluctuations are ignored here to highlight the bias in a single trial.
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As has been shown previously, Eq. (2) can be written iteratively36:

θ
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θ=θ θ θ+
−L f LP( )
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n
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1:
,n

suggesting such a computation could be implemented and represented by neural circuits. Temporal integration of 
tuned inputs has been demonstrated in both neural recordings37–39 and circuit models35,36,40 of decision-making 
tasks. Most oculomotor delayed-response tasks use a distribution of targets s(θ) that is constant across trials1,3,6,13. 
Therefore, Eq. (2) is the optimal strategy for obtaining an estimate of s(θ), assuming the observer has a correct 
representation of the probability θθf ( )

j
. For instance, if the distribution s(θ) were peaked, repeated observations 

θ1:n would gradually improve the observer’s estimate of that peak in Eq. (2). In changing environments (ε > 0), 
recently observed targets are weighted more strongly than older targets, and the predictive distribution should 
down-weight the influence of past targets at a rate that increases with ε22.

Rapidly-changing environment (ε ≈ 1).  Our work focuses on the limit where the environment changes rapidly, 
ε ≈ 1 ( ε< − 0 (1 ) 1), to account for biases that depend on the previous trial’s target θn (See Methods for other 
cases). In this case, the predictive distribution for trial n + 1 is a single peaked function centered at θn (Fig. 2C). 
The observer assumes the environment changes fast enough that each subsequent target is likely drawn from a 
new distribution ( θ+s ( )n 1  ≢  θs ( )n ). This is a suboptimal strategy, but matches the typical trends of interference in 
working memory. Applying this assumption to Eq. (1), the formula for Ln+1,θ is dominated by terms of order 
(1 − ε) and larger. Truncating to  ε−(1 ) and normalizing the update equation (See Methods) then yields

ε ε θ= + − .θ θ+
L fP (1 ) ( ) (3)n 1, 0 n

Thus, the dominant contribution from θ1:n to θ+
Ln 1,  is the target θn observed during the previous trial n 

(Fig. 2C), similar to the behavioral findings in Papadimitriou et al.13.

Figure 2.  Updating the predictive distribution Ln+1,θ. The observer infers the predictive distribution for the 
subsequent target θn+1 from prior observations θ1:n, assuming a specific change rate ε of the environment: 

θ θ θ ε= = |θ+ +L : P( , )n n n1, 1 1: . (A) A sequence of presented targets: θ1:3. Note the environment is typically static, 
so εtrue = 0. (B) Probability θθf ( )

j
, peaked and centered at θj, showing the observer’s assumed probability that 

θn+1 = θ, if θj is observed on trial j and the distribution remains the same in between (sn+1(θ) ≡ sj(θ)). (C) 
Evolution of the predictive distribution θ θ θ ε= = |θ+ +L : P( , )n n n1, 1 1:  for static (ε = 0); slowly-changing (ε = 0.1); 
and rapidly-changing (ε = 0.8) environments. In static environments, all observations θ1:3 are weighted equally 
whereas in the rapidly-changing environment, the most recent observation dominates.
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Note, sequential computations are trivial in the limit of a constantly-changing environment ε → 1, since the 
observer assumes the environment is reset after each trial. Prior observations provide no information about the 
present distribution, so the predictive distribution is always uniform: ≡θ+L Pn 1, 0.

In summary, a probabilistic inference model that assumes the distribution of targets is predictable over short 
timescales leads to response biases that depend mostly on the previous trial. We now demonstrate that this pre-
dictive distribution can be incorporated into a low-dimensional attractor model which describes the degradation 
of target memory during the delay-period of visual working memory tasks10,41,42.

Incorporating suboptimal predictions into working memory.  We model the loading, storage, and 
recall of a target angle θ using a low-dimensional attractor model spanning the space of possible target angles 
θ ∈ [−180, 180)°. These dynamics can be implemented in recurrent neuronal networks with slow excitation and 
broad inhibition6,9,43. Before examining the effects of neural architecture, we discuss how to incorporate the pre-
dictive distribution update, Eq. (3), into an associated low-dimensional model. Our analysis links the update of 
the predictive distribution to the spatial organization of attractors in a network. Importantly, working memory 
is degraded by dynamic fluctuations, so the stored target angle wanders diffusively during the delay-period6,9,42.

During the delay-period of a single trial, the stored target angle θ(t) evolves according to a stochastic differ-
ential equation10:

θ θ
θ

σ ξ= − + .θt t t td ( ) d ( ( ))
d

d d ( ) (4)

Here θ(t) is restricted to the periodic domain θ ∈ [−180, 180)° and dξ is a standard white noise process. Equation 
(4) can be derived as the low-dimensional projection for the location of a bump attractor in a recurrent network. 
The potential gradient − θ′( ) models spatial heterogeneity in neural architecture that shapes attractor dynamics 
(Fig. 3A). During trial n + 1, we label the potential θ θ= +( ): ( )n 1  . Classic models of bump attractors on a ring 
assume distance-dependent connectivity9,43. The case θ+

′ ( )n 1  ≢ 0 accounts for spatial heterogeneity in connectiv-
ity that may arise from a combination of training and synaptic plasticity10,44, or random components of synaptic 
architecture45. Potential models of bump attractors have been derived in detail for recurrent networks46,47, and 
agree well with the qualitative dynamics of spiking network models10,42. The potential landscape of Eq. (4) is 
assumed to be updated during each trial, so at the beginning of trial n + 1 it has the form θ+ ( )n 1 . When 

θ ≡+ ( ) 0n 1 , the potential is flat, so θ(t) evolves along a line attractor46. On the other hand, when the potential is 
heterogeneous,  θ+ ( )n 1  ≢ 0, θ(t) tends to drift toward one of a finite number of discrete attractors10,42. We will 
incorporate a process whereby previous targets are used to update the potential, so  θ+ ( )n 1  is typically heteroge-
neous. The observer sees the target at the beginning of trial n + 1, θ(0) = θn+1 (Fig. 3A), and the angle θ(t) evolves 
according to Eq. (4) during the delay-period, lasting TD time units. After the delay-period, θ(TD) is the recalled 
angle. Depending on the underlying potential θ( )n , there will be a strong bias to a subset of possible targets.

We derive a correspondence between the probabilistic inference model and attractor model by assuming sta-
tionarity of  θ+ ( )n 1  within each trial (See Methods). In the recurrent network model (Fig. 1E), we take these 
within-trial dynamics into account. Freezing  θ+ ( )n 1  during a trial allows us to relate the statistics of the position 
θ(t) to the shape of the potential. Specifically, we relate the stationary density of Eq. (4) to the desired predictive 
distribution Ln+1,θ (See Methods). Thus, if information about the current trial’s target θn+1 is degraded, the prob-
ability distribution associated with the recalled target angle θ is Ln+1,θ. Focusing on interference trends in Fig. 1, 
we aim to have the attractor structure of Eq. (4) represent the predictive distribution in Eq. (3). Our calculations 
relate the potential function in trial n + 1 to the probability generated by the trial n target (Fig. 3A) as

θ θ∝ − .θ+ f( ) ( ) (5)n 1 n


The potential θ+ ( )n 1  can be implemented by a decaying plasticity process that facilitates synapses from neu-
rons tuned to the previous target θn. The predictive distribution Ln+1,θ is therefore encoded by a potential  θ+ ( )n 1  
that shapes the dynamics of the attractor model. As we will show, this can be accomplished via STF (Fig. 3B).

Short-term facilitation generates interference in working memory.  We now show a neuronal net-
work model describing neural activity u(x, t) subject to STF q(x, t) can incorporate predictive distribution updates 
derived above. Predictions are stored in the dynamically changing synaptic weights of a recurrent neuronal net-
work. The recurrent network model spatially labels neurons according to their target orientation preference, 
determining the distance-dependent structure of inputs to the network. This is captured by a network with local 
excitation and effective inhibition that is fast and broad. Connectivity is shaped dynamically by STF (Fig. 1E). See 
Methods for more details.

A sequence of delayed-response protocols is implemented in the recurrent network by specifying a spatiotem-
poral input I(x, t) across trials (top of Fig. 1F). Each trial has a cue period of time length TC; a delay-period of time 
length +TD

n 1; and an intertrial period of time length +TI
n 1 before the next target is presented. The network receives 

a peaked current centered at the neurons preferring the presented target angle θn+1 during the cue period of trial 
n + 1; no external input during the delay-period; and a strong inactivating current after the delay-period6,9. The 
resulting bump attractor drifts in the direction of the bump from trial n, due to the STF at the location of the trial 
n bump (Figs 1F and 3B).

The mechanism underlying intertrial bias is determined by projecting our recurrent network model to a 
low-dimensional system that extends Eq. (4) to account for STF. To reduce the recurrent network, we project the 
fast dynamics of bump solutions to an equation for the bump’s position θ(t) in trial n + 128,42,47. The STF variable 
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q(x, t) determines an evolving potential function θ t( , )  that shapes the bump’s position (Fig. 4). We use timescale 
separation methods (See Methods) to derive a set of stochastic differential equations, which approximates the 
motion of the bump’s position θ(t) and the location of STF θq(t):

θ
θ θ

θ

θ θ

θ
σ ξ= −

−
−

−
++t t t t t

t t
t td ( ) ( ) d ( ( ) )

d
d ( )

d ( ( ) ( ))
d

d d ( ), (6a)n
n

n
q

1A
U

A
U

τθ θ θ= − − t d t t( ) ( ( ) ( )), (6b)q q

during trial n + 1 (tn < t < tn+1). The slowly-evolving potential gradient −  θ
θ

∂
∂

t( , ) shaping the dynamics of θ(t) is 
a mixture of STF contributions from trial n (decaying t( )n ) and trial n + 1 (increasing  + t( )n 1 ). The functions 

t( )n  obey linear dynamics as shown in Fig. 4 (and see Methods). The bump position θ(t) moves towards the 
minimum of this dynamic potential,  θθ targmin [ ( , )] (Fig. 4). The variable θq(t) is the location of STF originating 
in trial n + 1, and its position slowly moves toward the bump location θ(t) via the scaled circular difference d(θ). 
The parametrized timescale τ of STF is inversely related to the observer’s perceived environmental change rate ε 
in Eq. (3), since increasing ε corresponds to decreasing τ. While our derivation (See Methods) is performed 
assuming STF is slow and weak, we find the approximation agrees well with the full system for stronger STF.

The presence of STF provides two contributions to the slow dynamics of the bump position θ(t). The memory 
of the previous trial’s target θn is reflected by the potential  θ θ−( )n , whose effect decays slowly during trial n + 1. 
This attracts θ(t), but the movement of θ(t) towards θn is slowed by the onset of the STF variable initially centered 

Figure 3.  Encoding the predictive distribution in the potential function of an attractor network. (A) In a 
rapidly-changing environment, the predictive distribution is determined by the probability θθf ( )

n
 (See Fig. 2C). 

In the low-dimensional system, with dynamics described by Eq. (4), this probability is represented by a potential 
function θ+ ( )n 1  whose peak (valley) corresponds to the valley (peak) of θθf ( )

n
, so the stored angle θ(t) drifts 

towards the minimum of  θ+ ( )n 1  during the delay-period. (B) A recurrent network with neurons distributed 
across x ∈ [−180, 180)° with STF (Fig. 1E) can implement these dynamics. The position of the trial n target is 
encoded by the spatial profile of STF q(x, t) during the early portion of trial n + 1, attracting the neural activity 
u(x, t) bump during the delay-period.
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at θn+1. The STF variable’s center-of-mass θq(t) slowly drifts towards θn, which allows θ(t) to drift there as well, 
θ θ− t( ( ))q . This accounts for the slow build-up of the bias that increases with the length of the delay-period13.

Target- and time-dependent trends match experimental observations.  We now demonstrate that 
the bias observed in the visual working memory experiments of Papadimitriou et al.13 can be accounted for by 
our recurrent network model (Fig. 1E) and our low-dimensional description of bump motion dynamics (Fig. 4). 
To represent a sequence of working memory trials, targets (θ1, θ2, θ3, …) were presented to the recurrent network, 
and the center-of-mass of the bump was recorded at the end of each delay-period, representing the response (r1, 
r2, r3, …) (See Methods). The bias of responses was determined by computing the difference between the response 
and the presented target, rn − θn. Means and variances of the bias were determined under each condition.

Our results are summarized in Fig. 5, focusing on three conditions considered in Papadimitriou et al.13. 
First, we calculated the bias when conditioning on the angle between the trial n and trial n + 1 targets, θn − θn+1 
(Fig. 5A). Positive (negative) angles lead to positive (negative) bias; i.e. the bump drifts in the direction of the 
previous target θn. The bias is graded with the difference, θn − θn+1. To expose this effect, we averaged across trials, 
since the recurrent network incorporates dynamic input fluctuations, as in bump attractor models of visuospatial 
working memory6,9. We also calculated the peak bias as a function of the intertrial interval (ITI), the time between 
the trial n response (rn) and the trial n + 1 target presentation θn+1. Consistent with Papadimitriou et al.13, the 
peak bias decreased with the ITI (Fig. 5B). The mechanism for this decrease is the slow decay in the STF of syn-
apses utilized in the previous trial. Finally, the peak bias increased with the delay within a trial, since persistent 
activity was slowly attracted to the location of the previous target (Fig. 5C). This slow saturation arises due to the 
slow kinetics of STF within a trial. The bias produced is self-reinforcing, as the synapses originating from the 
newly-activated neurons undergo STF.

Not only did our recurrent network model recapitulate the main findings of Papadimitriou et al.13, we also 
found our low-dimensional description of the bump and STF variable dynamics had these properties (blue curves 
in Fig. 5). The mechanics underlying the bias can be described with a model of a particle evolving in a slowly 
changing potential (Fig. 4), shaped by the dynamics of STF. Having established a mechanism for the bias, we 
consider how different protocols determine the unconditional statistics of responses.

Task protocol shapes ensemble statistics.  Visual working memory tasks are often designed such that 
sequential target locations are independent6,9. In such protocols, there is no advantage in using previous trial 
information to predict targets within the current trial. Nonetheless, these biases persist in the intertrial response 
correlations discussed in Papadimitriou et al.13 and Fig. 5. On the other hand, interference might be advantageous 
for tasks in which successive target angles θn+1 depend on the previous θn. Consider object motion tracking tasks 
with transiently occluded objects48,49. The object’s location prior to occlusion predicts its subsequent location 

Figure 4.  Low-dimensional system (green box) captures the motion of the bump (θ(t)) and the evolving 
potential,  θ t( , ), shaped by STF. The center-of-mass of the neural activity bump θ(t) is attracted by the most 
facilitated region of the network,  θθ targmin [ ( , )]. The current trial’s bump location θ(t) attracts the variable 
θq(t), indicating the location of STF in the current trial. The evolving potential  θ t( , ) is then comprised of the 
weighted sum of the potential arising from the previous target  θ θ−( )n  and the current bump θ θ− t( ( ))q . 
Dynamic fluctuations also perturb the position θ(t), so memory would degrade diffusively in the case of a flat 
potential θ ≡( ) 0 . See Methods for a complete derivation.
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when it reappears, so object memory that persists beyond a single trial can be useful for more naturally-inspired 
tasks.

We demonstrate this idea by comparing the network’s performance in working memory tasks whose targets 
are drawn from distributions with different intertrial dependencies (Fig. 6). As a control, we consider the case of 
independent targets θn and θn+1 (Fig. 6A). Responses are normally distributed about the true target angle. The 
dynamics of the bump encoding the target are shaped by both input fluctuations and a bias in the direction of 
the previous target on individual trials. However, the directional bias is not apparent in the entire distribution of 
response angles, since it samples from all possible pairs (θn+1, θn). An ensemble-wide measure of performance is 
given by the standard deviation of the response distribution (σ ≈ 4.42). When the current target angle depends on 
the previous angle, the relative response distribution narrows (Fig. 6B). Memory of the previous trial’s target θn 
stabilizes the memory of the current trial’s target θn+1, decreasing the standard deviation of responses (σ ≈ 3.20). 
There is a high probability the current target θn+1 will be close to the previous target θn, so the timescale of the 
network’s underlying inference process is reasonably well matched to the environment. However, such effects can 
be deleterious when the previous angle θn is skewed in comparison to the current angle θn+1. Protocols with this 
angle dependence lead to a systematic bias in the relative response distribution, so its peak is shifted away from 
zero (Fig. 6C).

Our neuronal network model predicts that, if an intertrial bias is present in the computations of a neural 
circuit, it should be detectable by varying the intertrial dependence of target angles θn. Furthermore, when there 
are strong local correlations between adjacent trials (P(θn+1, θn) is large for |θn+1 − θn| small), responses are more 
accurate than for protocols with independent adjacent trial angles. Since the strength of the bias increases as the 
intertrial interval is decreased, due to the decay of STF, we expect the effect to be more pronounced for trials taken 
closer together.

Two timescales of memory degradation.  Wimmer et al.6 have shown that both the normal distribu-
tion of saccade endpoints and observed changes in neural firing rates during the delay-period can be replicated 
by a diffusing bump attractor model6. We have shown that a recurrent network with STF (Fig. 1E) still leads to 
a normal distribution of predicted response angles (Fig. 6A). Our model also provides new predictions for the 
dynamics of memory degradation, which we now compare with the standard diffusing bump attractor model9,47 
(Fig. 7). In a network with STF (Fig. 7A), bump trajectories evolve in a history-dependent fashion (Fig. 7B). 
Initially, bumps diffuse freely, but are eventually drawn to their starting location by facilitated synapses (See 
also Fig. 4). This leads to two distinct phases of diffusion, as shown in plots of the bump variance (Fig. 7C). 
Rapid diffusion occurs initially, as the bump equilibrates to the quasistationary density determined by the slowly 
evolving potential (Fig. 4). Slower diffusion occurs subsequently, as spatial heterogeneity in synaptic architecture 
gradually responds to changes in bump position via STF. Stabilizing effects of STF on bump attractors have been 
analyzed previously28, but our identification of these multiple timescale dynamics is novel. This feature of the 
bump dynamics is not present in networks with static synapses (Fig. 7D). Here, bumps evolve as a noise-driven 
particle over a flat potential landscape (Fig. 7E), described by Brownian motion: a memoryless stochastic pro-
cess41,46. Variance in bump position scales purely linearly with time (Fig. 7F), and the diffusion coefficient can be 
computed using a low-dimensional approximation47.

The qualitative differences between the bump attractor with and without dynamic synapses should be detect-
able in both behavioral and neurophysiological recordings6. Moreover, the observed intertrial bias identified in 
recent analyses of behavioral data requires some mechanism for transferring information between trials that is 

Figure 5.  Intertrial bias is shaped by (A) the angle between targets θn+1 and θn; (B) the interval between trials 
n and n + 1 (ITI); and (C) the delay-period during trial n + 1. (A) Responses in trial n + 1 are biased in the 
direction of the previous trial target (θn). Simulations of the recurrent network (red circles) are compared 
with the low-dimensional model (blue line). Shaded region indicates one standard deviation (See Methods for 
details). (B) The peak bias decreases with the intertrial interval (ITI), due to the temporal decay of STF. (C) The 
peak bias increases with the delay since the bump drifts towards the equilibrium position determined by the 
STF profile.
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distinct from neural activity13, as dynamic synapses are in our model. In total, our model provides both an intu-
ition for the behavioral motivation as well as neurophysiological mechanisms that produce such interference.

Discussion
Neural circuit models of visual working memory tend to use neural activity variables as the encoders of target 
locations. Our computational models account for interference in visual working memory using both suboptimal 
Bayesian inference and STF acting on a recurrent network model of delay-period activity. The timescale and 
prior target dependence of attractive biases we observe correspond to psychophysical observations of behavioral 
experiments in monkeys13. STF evolves dynamically over seconds45,50, matching the kinetics of interference in 
visual working memory. The link we have drawn between our two models suggests neural circuits can implement 
probabilistic inference using short-term plasticity.

Experimental predictions.  More complete descriptions of the neural mechanics of visual working memory 
could be accomplished by analyzing the effects of correlations in sequential target presentations. Since responses 
in subsequent trials are shaped by the previous trial’s target13, computational models can be validated by deter-
mining how well their response distributions reflect trial-to-trial target correlations (Fig. 6). It is also possible 
that the introduction of target sequences whose distributions change in time could impact quantitative features 
of interference. For instance, implementing tasks with target sequences that have multiple trial correlations may 
extend the timescale of interference beyond a single trial. Furthermore, our model predicts that multiple times-
cales emerge in the statistics of delay-period activity during a working memory task (Fig. 7). Variance of recall 
error increases sublinearly in our model, consistent with a recent reanalysis of psychophysical data of saccades to 
remembered visual targets4,51. The dynamics of our model are thus inconsistent with the purely linear diffusion of 
recall error common in bump attractor models with static synapses6,9.

The idea that STF may play a role in working memory is not new27,52, and there is evidence that prefrontal cor-
tex neurons exhibit dynamic patterns of activity during the delay-period, suggestive of an underlying modulatory 
process53. However, it remains unclear how the presence of STF may shape the encoding of working memories. 
Our model suggests STF can transfer attractive biases between trials. Recent findings on the biophysics of STF 
could be harnessed to examine how blocking STF shapes behavioral biases in monkey experiments54. We predict 
that reducing the effects of the STF would both decrease the systematic bias in responses and increase the ampli-
tude of errors, since the stabilizing effect of STF on the persistent activity will be diminished28.

Figure 6.  Response distribution is shaped by dependence between target angles in adjacent trials P(θn+1|θn). 
(A) Visual working memory protocols typically use a sequence of targets with no trial-to-trial dependence 
(uniform P(θn+1, θn), shown for θn ≡ 0°)6,9. Relative responses (rn − θn) are normally distributed about the true 
target. (B) Current target θn+1 depends on the previous target θn according to a locally peaked distribution. The 
response distribution narrows (note decreased standard deviation σ), since the target θn+1 is often close to the 
previous target θn. (C) Current target θn+1 is skewed clockwise from previous angle θn. Responses are thus 
skewed counter-clockwise towards the previous target (note average response r  is shifted). Numerical methods 
are described in Methods.
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Comparison with previous work.  The work of Papadimitriou et al.13,55 also contains modeling studies, 
accounting for some aspects of their experimental observations. Our computational model differs from and 
extends their findings in several important ways. We propose that interference can arise as a suboptimal inference 
process, which can be implemented by concrete synaptic mechanisms. This conclusion can only be drawn from a 
tractable model, allowing us to reduce our recurrent network’s dynamics to the low-dimensional system, Eq. (6). 
Furthermore, Papadimitriou et al.13 employ a two-store model of memory that is not linked to a specific physiolog-
ical mechanism, whereas we propose STF and use a well tested model of its kinetics56. Lastly, Papadimitriou et al.55  
present recorded data from the frontal eye fields showing no firing rate tuning to the previous target during 
the current target onset. While this observation contradicts their purely activity-based description of the bias 
proposed in Papadimitriou et al.13, this is not an issue for the STF-based bias we propose here. The mechanism 
we propose is gradual and initially silent within the current trial, revealing its effects toward the end of the delay 
period, so it is consistent with the findings of Papadimitriou et al.55.

Alternative neurophysiological mechanisms for intertrial bias.  Our study accounts for biases 
observed by Papadimitriou et al.13, who identified an attraction between the previous target and current response. 
Strengthening synapses that originate from recently active neurons can attract neural activity states in subsequent 
trials. This is consistent with recent experiments showing latent and “activity-silent” working memories can be 
reactivated in humans using transcranial magnetic stimulation57, suggesting working memory is maintained by 
mechanisms other than target-tuned persistent neural activity27,53. The principle of using short-term plasticity to 
store memories of visual working memory targets could be extended to account for longer timescales and more 
intricate statistical structures. Short-term depression (STD) could effect a repulsive bias on subsequent responses, 
since neural activity would be less likely to persist in recently-activated depressed regions of the network58. In 
this way, STD could encode a predictive distribution for targets that are anti-correlated to the previously present 
target.

Other physiological mechanisms could also shape network responses to encode past observations in a pre-
dictive distribution. Long-term plasticity is a more viable candidate for encoding predictive distributions that 
accumulate observations over long timescales. Consider a protocol that uses the same distribution of target angles 
throughout an entire experiment, but this distribution is biased towards a discrete set of possible angles42. For a 
recurrent network to represent this distribution, it must retain information about past target presentations over 
a long timescale. Many biophysical processes underlying plasticity are slow enough to encode information from 
such lengthy sequences59,60. Furthermore, the distributed nature of working memory suggests that there may be 
brain regions whose task-relevant neural activity partially persists from one trial to the next61. Such activity could 
shape low-level sensory interpretations of targets in subsequent trials.

Figure 7.  Recurrent networks with STF (panels A–C) exhibit two timescales of delay-period dynamics, 
in contrast to the single timescale dynamics of networks with static synapses (panels D–F). (A) Release 
of neurotransmitter leads to the strengthening of the synapse via STF. (B) In a facilitating network, bump 
trajectories (lines) stray less from their initial position due to the attractive effect of STF. Large ensemble 
standard deviation shown in red. (C) STF generates two phases of variance scaling. An initial fast phase is 
followed by a slower phase due to the dampening effect of STF in both neuronal network (red dashed) and 
low-dimensional (blue solid) simulations. (D) Network with static synapses. (E) Bump trajectories obey linear 
diffusion, due to the spatial homogeneity of the network. (F) Variance grows linearly with time, a hallmark of 
pure diffusion. See Methods for further details.
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Synaptic plasticity can stabilize working memory.  Several modeling studies of working memory have 
focused on the computational capability of synaptic dynamics62. For instance, STF can prolong the lifetime of 
working memories in spatially heterogeneous networks, since facilitated synapses slow the systematic drift of 
bump attractor states28,63. This is related to our finding that STF reduces the diffusion of bumps in response to 
dynamic fluctuations (Fig. 7B), generating two timescales of memory degradation, corresponding to the bump 
variance (Fig. 7C). This scaling may be detectable in neural recordings or behavioral data, since recall errors 
may saturate if stabilized by STF. Facilitation can also account for experimentally observed increases in spike 
train irregularity during the delay-period in circuit models that support tuned persistent activity64. Alternatively, 
homeostatic synaptic scaling can compensate for spatial heterogeneity, which would otherwise cause persistent 
states to drift10. However, the short homeostatic timescales often suggested in models do not often match exper-
imental observations65.

Models of working memory have also replaced persistent neural firing with stimulus-selective STF, so neu-
ronal spiking is only required for recall at the end of the delay-period27. One advantage of this model is that 
multiple items can be stored in the dynamic efficacy of synapses, and the item capacity can be regulated by exter-
nal excitation for different task load demands29. Our model proposes that STF plays a supporting rather than a 
primary role, and there is extensive neurophysiological evidence corroborating persistent neural activity as a 
primary working memory encoder6,66.

Robust working memory via excitatory/inhibitory balance.  Computational modeling studies have 
demonstrated that a balance of fast inhibition and slow excitation can stabilize networks, so they accurately 
integrate inputs40,46,67. Drift in the representation of a continuous parameter can be reduced by incorporating 
negative-derivative feedback into the firing rate dynamics of a network, similar to introducing strong friction into 
the mechanics of particle motion on a sloped landscape68. Fast inhibition balanced by slower excitation produces 
negative feedback that is proportional to the time-derivative of population activity. A related mechanism can be 
implemented in spiking networks wherein fast inhibition rapidly prevents runaway excitation, and the resulting 
network still elicits highly irregular activity characteristic of cortical population discharges69. Mutually inhibit-
ing balanced networks are similarly capable of representing working memory of continuous parameters70, and 
extending our framework by incorporating STF into this paradigm would be a fruitful direction of future study.

Extensions to multi-item working memory.  Working memory can store multiple items at once, and the 
neural mechanisms of interference between simultaneously stored items are the focus of ongoing work71,72. While 
there is consensus that working memory is a limited resource allocated across stored items, controversy remains 
over whether resource allocation is quantized (e.g., slots)73,74 or continuous (e.g., fluid)71,75. Spatially-organized 
neural circuit models can recapitulate inter-item biases observed in multi-item working memory experiments, 
and provide a theory for how network interactions produce such errors76,77. In these models, each remembered 
item corresponds to an activity bump, and the spatial scale of lateral inhibition determines the relationship 
between recall error and item number78. The model provides a theory for attractive bias and forgetting of items 
since nearby activity bumps merge with one another. This is related to the mechanism of attractive bias in our 
model, but a significant difference is that previous models only required localized excitation whereas we use STF. 
It would be interesting to identify the temporal dynamics of biases in multi-item working memory to see if they 
suggest slower timescale processes like short-term plasticity.

Tuning short-term plasticity to the environmental timescale.  We have not identified a mechanism 
whereby our network model’s timescale of inference could be tuned to learn the inherent timescale of the envi-
ronment. There is recent evidence from decision-making experiments that humans can learn the timescale on 
which their environment changes and use this information to weight their observations toward a decision21,79. 
Our model suggests that the trial-history inference utilized by subjects in Papadimitriou et al.13 is significantly 
suboptimal, perhaps because it is difficult to infer the timescale of relevant past-trial information. The complexity, 
sensitivity, and resource expense of optimal inference in most contexts likely makes it impossible to implement 
exactly in neural circuits80,81. This may explain why humans often use suboptimal methods for accumulating 
evidence21,23,82. Plasticity processes that determine the timescale of evidence accumulation may be shaped across 
generations by evolution, or across a lifetime of development. Nonetheless, metaplasticity processes can internally 
tune the dynamics of plasticity responses in networks without changing synaptic efficacy itself, and these changes 
could occur in a reward-dependent way83,84. Recently, a model of reward-based metaplasticity was proposed to 
account for adaptive learning observed in a probabilistic reversal learning task85. Such a process could modify the 
timescale and other features of short-term plasticity in ways that improve task performance in working memory 
as well.

Conclusions
Our results suggest that interference observed in visual working memory tasks can be accounted for by a persis-
tently active neural circuit with STF. Importantly, interference is graded by the time between trials and during a 
trial. The interplay of synaptic and neural processes involved in interference may have arisen as a robust system 
for processing visual information that changes on the timescale of seconds. More work is need to determine how 
information about the environment stretches across multiple timescales to shape responses in cognitive tasks. We 
expect that identifying the neural origin of such biases will improve our understanding of how working memory 
fits into the brain’s information-processing hierarchy.
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Methods
Assumptions of the inference model.  Our model performs nonparametric density estimation to approx-
imate the distribution sn+1(θ) from which a target θ will be drawn in trial n + 1. The observer assumes the possible 
distributions s(θ) are drawn from a function space s ∈ S according to the prior p(s). We assume that marginalizing 
over this space of distributions yields the uniform density ∫ θ= =s p s sP ( ) ( )d 1/360

S0 . One possibility is that the 
distribution sn+1(θ) is constructed by drawing N-tuples a and ψ from a uniform distribution over the hypercubes 
[0, amax]N and [−180°, 180°)N and using the entries in an exponential distribution of a sum of cosines:
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
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where ωj = jπ/180 and s is a normalization constant. For instance, when N = 1,

θ ω θ ψ= ⋅ −+s a( ) exp[ cos( ( ))],n s1 1 1 1

peaked at ψ1. For the main instantiation and reduction of our model, knowing the specific family of distributions 
is unnecessary.

The probability θ θ θ θ θ θ θ= = | = ′ ≡θ′ + +f s s( ): P( , ( ) ( ))n n n n1 1  is defined under static conditions (sn+1(θ) ≡ sn(θ)) 
to separate the dynamic effects of sampling distribution sn(θ) changes. We are performing nonparametric Bayesian 
estimation of the distribution, and the probability fθ′(θ) is already marginalized over the space of distributions s(θ). 
Thus, we do not model the intermediate step of inferring the probability of each distribution s(θ) and marginalizing, 
but it could be computed by integrating over the prior on the function space, ∫θ θ θ= | ′θ′f s f s s( ) ( ) ( )d

S
. Each obser-

vation θ′ would give the probability f(s|θ′) that the current distribution is s(θ). Integrating over the space of all distri-
butions s ∈ S provides the probability the next target will be θ, based on the previous observation θ′ alone and the 
assumption that the distribution remains the same from trial n to n + 1. Further details on the difference between 
parametric and nonparametric Bayesian estimation of densities can be found in Orbanz and Teh86. Note, we assume 
self-conjugacy of fθ′(θ) = fθ(θ′), which follows since the order of observations does not matter while the environment 
remains fixed. This relationship will also make the predictiveness of our model more apparent. It is important to note 
that the observer assumes the form of fθ′(θ), but this is not necessarily the distribution an ideal observer should use. 
For illustration, we consider a family of distributions given by an exponential of cosines:
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for ωj = jπ/180, which is self-conjugate: fθ′(θ) ≡ fθ(θ′)87. A distribution like Eq. (7) would emerge from a generative 
model with distance-dependent spatial correlations in the ensemble of produced targets. The example fθ′(θ) we 
use for comparison with our recurrent network with STF is close to the case of Eq. (7) with N = 1. A description 
of the parameters and variables in our model is provided in Table 1.

Derivation of the probabilistic inference model.  The observer’s predictive distribution 
Ln+1,θ = P(θn+1|θ1:n,ε) is derived by computing the probability of observing θn+1 given each prior observation θj, 
j = 1, …, n. Importantly, we must compute the probability of each run length ln = l, l = 0, …, n, corresponding to 
the number of trials the assumed underlying distribution sn(θ) has remained the same30,32. Knowing the prob-
ability of each run length will inform us of how much to weight each observation θj, j = 1, …, n. In particular, 
ln = n indicates the environment has remained the same since the first trial, and ln = 0 indicates the environment 
changes between trial n and n + 1. Summing over all possible run lengths, the marginal predictive distribution is

∑ θ θ θ ε= | = = |θ+
=

+L l l l lP( , )P( , ),
(8)n

l

n

n n n
l

n n1,
0

1 1: 1:

where θ θ| =+ l lP( , )n n n
l

1 1:  is the conditional predictive distribution assuming run length ln = l with the special case 
θ θ| = =+ lP( 0, ) Pn n n1 1:

0
0 (the uniform distribution), and P(ln = l|θ1:n) is the conditional probability of the run 

Symbol Description

θn target observed on trial n

sn+1(θ) unknown target distribution observer attempts to infer before trial n + 1

θθf ( )
n

probability of observing target θ in the next trial given θn was observed previously, and the 
environment has not changed since

ε assumed environmental change rate used to discount evidence

Ln+1,θ
predictive distribution: inferred probability of seeing target θ in trial n + 1, given past 
observations θ1:n and assumed change rate ε

ln run-length: number of trials prior to trial n + 1 with same distribution

P0 uniform prior: distribution defining θ ∈ [−180°, 180°) with same probability

Table 1.  Variables and parameters of the probabilistic inference model.
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length ln = l given the series of target angles θ1:n. We further simplify Eq. (8) as follows: First, utilizing sequential 
analysis, we find that if the present run length is ln = l, the conditional predictive distribution is given by the prod-
uct of probabilties from the last l observations22:
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where P0 is the uniform distribution, θ θ= ∏ =θ+ = + fP( ) ( ) 1n n j n
n

1: 1 j
, and we have utilized our self-conjugacy 

assumption for fθ′(θ) ≡ fθ(θ′). Next, we assume that observations provide no information about the present run 
length rn, which would be a consequence of the observer making no a priori assumptions on the overall distribu-
tion from which targets θ1:n are drawn. Thus, the observer only uses their knowledge of the change rate of the 
environment ε to determine the probability of a given run length ln = l, and the conditional probability can be 
computed
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Plugging Eqs (9–10) into the update Eq. (8), we find the probability of the next target being at angle θn+1 = θ, 
given that the previous n targets were θ1:n, is:
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Limit of slowly-changing environment (small ε).  Here, we examine the case ε< 0 1, where the 
environment changes very slowly. Assuming independence of the target angles selected on each trial θ1:n

35, 
P(θn−l:n) = P(θn−l:n−1)P(θn), we can split the probabilities over the target sequences θn−l:n into products: 
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1. The last equality holds because the unconditioned probability of a particular 
target location is uniform P0. Applying this assumption to Eq. (1) and truncating to  ε( ), we have
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1, , normalized at each step.

Limit of rapidly-changing environment (ε ≈ 1).  Here, we examine the case ε ≈ 1 ( ε< − 0 (1 ) 1), a 
rapidly-changing environment. Applying this assumption to Eq. (1), we find Ln+1,θ is dominated by terms of order 
(1 − ε) and larger. Terms of order (1 − ε)2 are much smaller. For instance, we can approximate to linear order, 
dropping terms of ε−((1 ) )2 , to reduce Eq. (1) to
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. Alternatively, we can truncate by multiplying through by 
[1 − (1 − ε)]/[1 − (1 − ε)], truncating to  ε−(1 ) and normalizing to yield
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the key update equation in our Results (Figs 2 and 3A). Higher order approximations are obtained by keeping 
more terms from Eq. (1); e.g., a second order approximation yields
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θ
θ θ≈ + − +

−
θ θ θ θ+

−
−

L f f fP (1 ) ( ) (1 ) P
P( )

( ) ( ),n
n n

1, 0

2
0

1:
n n n 1

successively downweighting the influence of previous observations (θn−1).

Relating the predictive distribution to the potential of an attractor model.  A predictive distribu-
tion can be represented by an attractor model by first determining the formula of the stationary distribution of Eq. 
(4), given an arbitrary potential function θ+ ( )n 1 . Equation (4) can be reformulated as an equivalent 
Fokker-Planck equation for the represented angle θ during trial n + 1 assuming the present potential function is 
 θ+ ( )n 1

88,
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θ

θ
θ

θ
θ

σ θ

θ

∂

∂
=

∂
∂













+
∂

∂
θ+ +

+
+p t

t
p t

p t( , ) d ( )
d

( , )
2

( , )
,

(12)
n n

n
n1 1

1

2 2
1

2

where pn+1(θ, t) is the probability density corresponding to the target angle estimate θ at time t. The initial esti-
mate of the target is exact, θ(0) = θn+1, so pn+1(θ, 0) = δ(θ − θn+1) is the initial condition. We summarize the con-
stituent variables and model parameters in Table 2.

We now derive the form of θ+ ( )n 1  that leads to a stationary density corresponding the predictive distribution 
Ln+1,θ in the limit t → ∞ in Eq. (12). The stationary density θ+p ( )n 1  is analogous to a predictive distribution repre-
sented by Eq. (4) since it is the probability the system represents when no information about the current trial’s 
target θn+1 remains. Thus, we build a rule to update θ+ ( )n 1  to mirror the update of Ln+1,θ in Eq. (3). To obtain this 
result, we match the stationary density for Eq. (12) to the updated predictive distribution:

θ θ= = .θ
→∞ + + +p t p Llim ( , ) ( ) (13)t n n n1 1 1,

Solving Eq. (12) for its stationary solution, we find that during trial n + 1:

θ χ
θ

σ
=





−







θ
+ +

+p ( ) exp
2 ( )

,
(14)n n

n
1 1

1
2



where χn+1 is a normalization factor chosen so that ∫ θ θ =
− +p ( )d 1n180

180
1 . Plugging Eq. (14) into Eq. (13) and solv-

ing for θ+ ( )n 1 , we obtain

θ
σ χ

= .θ

θ
+

+

+L
( )

2
lnn

n

n
1

2
1

1,


For a rapidly changing environment ε< − 0 (1 ) 1, we approximate Ln+1,θ using Eq. (3) so that

 θ
σ

χ ε ε θ

σ χ
ε

θ

= − + −

≈








− −
− 







θ
θ

θ θ

+ +

+

f

f

( )
2

[ ln ln( P (1 ) ( ))]

2
ln

P
(1 )

( ) P

P
,

n n

n

1

2

1 0

2
1

0

0

0

n

n

where we have linearized in (1 − ε). However, for Eq. (4), only the derivative of  θ+ ( )n 1  impacts the dynamics, so 
we drop the additive constants and examine the proportionality

θ θ∝ − .θ+ f( ) ( )n 1 n


In the limit of weak interactions between trials, the potential θ+ ( )n 1  should be shaped like the negative of the 
probability θθf ( )

n
 based on the previous trial’s target θn.

Bump attractor model with short-term facilitation.  Our neuronal network model is comprised of two 
variables evolving in space x ∈ [−180, 180)°, corresponding to the stimulus preference of neurons at that location, 
and time t > 0. Variables and parameters are summarized in Table 3, and the evolution equations consist of one 
stochastic integrodifferential equation and one auxiliary differential equation:

τ = − + ∗ + + +u x t u x t w x q x t F u x t I x t t W x td ( , ) [ ( , ) ( ) [(1 ( , )) ( ( , ))] ( , )]d d ( , ), (15a)u

τ β= − + −+q x t q x t F u x t q q x t( , ) ( , ) ( ( , )) ( ( , )), (15b)

where u(x, t) describes the evolution of the normalized synaptic input at location x. The model Eq. (15) can 
be derived as the large system size limit of a population of synaptically coupled spiking neurons89, and similar 
dynamics have been validated in spiking networks with lateral inhibitory connectivity6,9. We fix the timescale of 
dynamics by setting τu = 10 ms, so time evolves according to units of a typical excitatory synaptic time constant90. 

Symbol Description

θ(t) observer’s estimate of the remembered target during the delay-period

 θ+ ( )n 1 potential determining the dynamics of θ during the delay-period

σθ standard deviation of the dynamic fluctuations

pn+1(θ, t) probability density function (pdf) of observer’s estimate θ at time t

θ+p ( )n 1
stationary density: pdf of estimate θ over long time, t → ∞

Table 2.  Variables and parameters of the particle evolving on a potential model.
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This population rate model can be explicitly analyzed to link the architecture of the network to a low-dimensional 
description of the dynamics of a bump attractor as described by Eq. (4).

Each location x in the network receives recurrent coupling defined by the weight function w(x − y) via a con-
volution ∫∗ = −

−
w x g x w x y g y y( ) ( ) ( ) ( )d

180

180 . We take this function to be peaked when x = y and decreasing as 
the distance |x − y| grows, in line with anatomical studies of delay-period neurons in prefrontal cortex8. We do not 
separately model excitatory and inhibitory populations, but Eq. (15) can be derived from a model with distinct 
excitatory and inhibitory populations in the limit of fast inhibitory synapses43,67. Thus, we have combined excita-
tory and inhibitory populations, so w(x − y) takes on both positive and negative values. Our analysis can be 
applied to a general class of distance-dependent connectivity functions, given by an arbitrary sum of cosines 

α ω− = ∑ −=
∞w x y x y( ) cos( ( ))n n n0  where ωn = nπ/180, and we will use a single cosine to illustrate in examples: 

w(x − y) = cos(ω1(x − y)). The nonlinearity F(u) converts the normalized synaptic input u(x, t) into a normalized 
firing rate, F(u) ∈ [0, 1]. We take this to be sigmoidal F(u) = 1/[1 + e−γ(u−κ)]91, with a gain of γ = 20 and a threshold 
of κ = 0.1 in numerical simulations. In the high-gain limit (γ → ∞), a Heaviside step function F(u) = H(u − κ) 
allows for explicit calculations43,89.

Recurrent coupling is shaped by STF in active regions of the network (F(u) > 0), as described by the variable 
q(x, t) ∈ [0, q+]; q+ > 0 and β determine the maximal increase in synaptic utilization and the rate at which facili-
tation occurs26,56. For our numerical simulations, we consider the parameter values q+ = 2 and β = 0.01, consist-
ent with previous models employing facilitation in working memory circuits27–29 and experimental findings for 
facilitation responses in prefrontal cortex45,50. The timescale of plasticity is slow, τ = 1000ms 10ms, consistent 
with experimental measurements26. Our qualitative results are robust to parameter changes. Information from the 
previous trial is maintained by the slow-decaying kinetics of the facilitation variable q(x, t), even in the absence of 
neural activity27,29.

Effects of the target and the response are described by the deterministic spatiotemporal input I(x, t), which we 
discuss more in detail below. The noise process W(x, t) is white in time and has an increment with mean 〈dW(x, 
t)〉 ≡ 0 and spatial correlation function 〈dW(x, t)dW(y, s)〉 = C(x − y)δ(t − s)dtds. In numerical simulations, we 
take our correlation function to be σ− = −C x y x y( ) cos( )W

2  with σW = 0.005, so the model recapitulates the 
typical 1–5% standard deviation in saccade endpoints observed in oculomotor delayed-response tasks with 
delay-periods from 1–10 s1,4,6.

Implementing sequential delayed-response task protocol.  A series of oculomotor delayed-response 
tasks is executed by the network Eq. (15) by specifying a schedule of peaked inputs occurring during the cue 
periods of length TC, no input during trial n’s delay-period of length TD

n, and brief and strong inhibitory input of 
length TA after the response has been recorded, and then no input until the next trial. This is described by the 
spatiotemporal function

θ

=











− − ∈ +
∈ + + +

− ∈ + + + + +
∈ + + + +

I x t

I I x t t t T
t t T t T T

I t t T T t T T T
t t T T T t

( , )

exp[ (cos( ) 1)], [ , ),
0, [ , ),

, [ , ),
0, [ , ),

n n n C

n C n C D
n

R n C D
n

n C D
n

A

n C D
n

A n

0 1

1

for all n = 1, 2, 3, …, where tn is the starting time of the nth trial which has cue period TC, delay-period TD
n, inacti-

vation period TA, and subsequent intertrial interval TI
n. Note that the delay and intertrial interval times may vary 

trial-to-trial, but the cue is always presented for the same period of time as in13. The amplitude of the cue-related 
stimulus is controlled by I0, and I1 controls is sharpness. Activity from trial n is ceased by the global inactivating 
stimulus of amplitude IR.

In numerical simulations, we fix the parameters TC = 150 ms; TA = 500 ms; I0 = I1 = 1; and IR = 2. Target locations 
θn are drawn from a uniform probability mass function (pmf) for the discrete set of angles θn ∈ {−180°, −162°, …, 
162°} to generate statistics in Fig. 5A, which adequately resolves the bias effect curves for comparison with the results 

Symbol Description

u(x, t) synaptic input to location x at time t

q(x, t) short term facilitation (STF) increases the strength of connectivity 
from neurons at location x in response to their activation

τu timescale of synaptic excitation, set to 10 ms in simulations90

w(x − y) baseline strength and polarity of synaptic connectivity from y to x

F(u) nonlinearity that converts synaptic input to output population rate

I(x, t) external input due to visual stimuli

W(x, t) spatiotemporal noise due to dynamic fluctuations

τ timescale of STF, set to 1 s in simulations26

β onset rate of STF, set to 0.01 in simulations27

q+ maximal increase in synaptic utilization, set to 2 in simulations27

Table 3.  Variables and parameters of the recurrent network model.
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in13. Intertrial intervals are varied to produce Fig. 5B by drawing = − + ++T t T T T: ( )I
n

n C D
n

A1  randomly from a 
uniform pmf for the discrete set of times ∈ …T {1000, 1200, , 5000}msI

n  and θn randomly as in Fig. 5A and iden-
tifying the θn that produces the maximal bias for each value of TI

n. Delay-periods are varied to produce Fig. 5C by 
drawing TD

n randomly from a uniform pmf for the discrete set of times ∈ …T {0, 200, , 5000}msI
n  and following a 

similar procedure to Fig. 5B. Draws from a uniform density function θ ≡P( ) Pn 0, defined on θn ∈ [−180, 180)° are 
used to generate the distribution in Fig. 6A and plots in Fig. 7. Nontrivial correlation structure in target selection is 
d e f i n e d  b y  t h e  s u m  o f  a  v o n  M i s e s  d i s t r i b u t i o n  a n d  u n i f o r m  d i s t r i b u t i o n 

θ θ ε ε= − +θ θ μ
+

− −+corr ( , ) (1 ) e Pn n v1
25cos( )

0
n n 1  for fixed θn with ε = 0.5; μ = 0 for local correlations (Fig. 6B) and 

μ = 90 for skewed correlations (Fig. 6C).
The recurrent network, Eq. (15), is assumed to encode the initial target θn during trial n via the center-of-mass 

θ(t) of the corresponding bump attractor. Representation of the cue at the end of the trial is determined by per-
forming a readout on the neural activity u(x, t) at the end of the delay time for trial n: = + +t t T Tn C D

n. One way 
of doing this would be to compute a circular mean over x weighted by u(x, t), but since u(x, t) is a roughly sym-
metric and peaked function in x, computing θ =t u x t( ): argmax ( , )x  (when ∈ + +t t t T T[ , )n n C D

n ) is an accurate 
and efficient approximation6,42. The bias and relative saccade endpoint on each trial n are then determined by 
computing the difference θ(t) − θn (Figs 5, 6 and 7).

Deriving the low-dimensional description of bump motion.  We analyze the mechanisms by which 
STF shapes the bias on subsequent trials by deriving a low-dimensional description for the motion of the bump 
position θ(t). To begin, note that in the absence of facilitation (β ≡ 0), the variable q(x, t) ≡ 0. In the absence of 
noise (W(x, t) ≡ 0), the resulting deterministic Eq. (15) has stationary bump solutions that are well studied and 
defined by the implicit equation43,47,89:

∫= − .
−

U x w x y F U y y( ) ( ) ( ( ))d
180

180

Assuming the stimulus I(x, t) presented during the cue period of trial n (t ∈ [tn, tn + TC)) is strong enough to 
form a stationary bump solution, the impact of the facilitation variable q(x, t) and noise W(x, t) on u(x, t) during 
the delay-period ( ∈ + + +t t T t T T[ , )n C n C D

n ) can be determined perturbatively, assuming | | q 1 and 
| | Wd 1. Since τ τ u, u(x, t) will rapidly equilibrate to a quasi-steady-state determined by the profile of q(x, t). 
We thus approximate the neural activity dynamics as u(x, t) ≈ U(x − θ(t)) + Φ(x, t), where θ(t) describes the 
dynamics of the bump center-of-mass during the delay-period ( θ| |  1 and θ| | d 1), and Φ(x, t) describes per-
turbations to the bump’s shape (|Φ|  1). Plugging this approximation into Eq. (15) and truncating to linear 
order yields

∫θ θΦ − Φ = ′ + − + +
−

d x t x t t U x w x y q y t F U y y t W( , ) ( , )d ( )d ( ) ( , ) ( ( ))d d d , (16)s
180

180


where  ∫= − + − ′
−

u u w x y F U y u y y( ) ( ( )) ( )d
180

180  is a linear operator and q(x, ts) is the facilitation variable evolving 
on the slow timescale τ τ= t t t/s u , quasi-stationary on the fast timescale of u(x, t). From numerical simulations, we 
know that the synaptic input variable remains finite, so any terms in the approximation u ≈ U + Φ should also be 
bounded, including Φ(x, t). Therefore, we require a bounded solution to Eq. (16) by requiring the right hand side is 
orthogonal to the nullspace V(x) of the adjoint linear operator ∫= − + ′ −

−
⁎v v F U w x y v y y( ) ( ) ( )d

180

180
 . 

Orthogonality is enforced by requiring the inner product ∫〈 〉 =
−

u v u x v x x, ( ) ( )d
180

180  of the nullspace V(x) with the 
inhomogeneous portion of Eq. (16) is zero. It can be shown V(x) = F′(U(x))U′(x) spans the nullspace of ⁎ 47. This yields 
the following equation for the evolution of the bump position:

θ θ σ ξ= +t K t t t td ( ) ( ( ), )d d ( ), (17)s

where the slowly evolving nonlinearity

∫ ∫

∫
θ

θ
=

− + ′ ′

′ ′
− −

−

K t
w x y q y t F U y yF U x U x x

U x F U x x
( , )

( ) ( , ) ( ( ))d ( ( )) ( )d

( ) ( ( ))d (18)
s

s180

180

180

180

180

180 2

is shaped by the form of q(x, ts) and the noise ξ(t) is a standard Wiener process that comes from filtering the full 
spatiotemporal noise process dW(x, t), so the diffusion coefficient

∫ ∫

∫

σ
= =

−




′ 


.− −

−

D
V x C x y y x

U x V x x
:

2

( ) ( )d d

( ) ( )d

2
180

180

180

180

180

180 2

Equation (17) has the same form as Eq. (4). Thus, if the facilitation variable q(x, ts) evolves trial-to-trial such 
that K(θ, ts) has similar shape to − θ

θ
+ ( )d

d
n 1  at the beginning of the (n + 1)th trial (t = tn+1), the dynamics of the 

network Eq. (15) can reflect a prior distribution based on the previous target(s). Given the approximation we 
derived in Eq. (5), we enforce proportionality θ θ∝ −

θ+
+K t( , ) ( )n 1

d
d

n 1 :
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θ α
θ

θ
= θ

+K t
f

( , )
d ( )

d
, (19)n 1

n

where α is a scaling constant and tn+1 is the starting time of trial n + 1 in the original time units t = τts/τu. The 
form of the probability fθ′(θ) that can be represented is therefore restricted by the dynamics of the facilitation 
variable q(x, t). We can perform a direct calculation to identify how q(x, t) relates to the predictive distribution it 
represents in the following special case.

Explicit solutions for high-gain firing rate nonlinearities.  To explicitly calculate solutions, we take the 
limit of high-gain, so that F(u) → H(u − κ) and w(x) = cos(ω1x), note ω1 = 180/π. Note, we have compared our 
predictions here with the results of numerical simulations for sigmoidal firing rates F(u) = 1/[1 + e−γ(u−κ)] with 
gain γ = 20, and the results are in good agreement. In this case, the bump solution U(x − x0) = (2 sin(a)/ω1)
cos(ω1(x − x0)) for U(±a) = κ and null vector V(x − x0) = δ(x − x0 − a) − δ(x − x0 + a) (without loss of generality 
we take x0 ≡ 0)47. Furthermore, we can determine the form of the evolution of q(x, t) by studying the stationary 
solutions to Eq. (15) in the absence of noise (W ≡ 0). For a bump U(x) centered at x0 = 0, the associated stationary 
form for Q(x) assuming H(U(x) − κ) = 1 for x ∈ (−a, a) and zero otherwise is Q(x) = βq+/(1 + β) for x ∈ (−a, a) 
and zero otherwise. Thus, if the previous target was at θn, we expect q(x, t) to have a shape resembling Q(x − θn) 
after trial n. Assuming the cue plus delay time during trial n was +T TC D

n and the intertrial interval is TI
n, slow 

dynamics will reshape the amplitude of q(x, t) so = − τ τ− + −T( ) (1 e )en
n T T T( )/ /C D

n
I
n

  ( = + +T T T Tn
C D

n
I
n is the 

total time block of each trial) and so  θ≈ ⋅ −q x t T Q x( , ) ( ) ( )n
n

n  at the beginning of trial n + 1. A lengthy cal-
culation of Eq. (18) combined with the relation Eq. (19) yields:

α
θ

θ

β

β
θ θ ω θ θ ω θ θ=

+
− − − − −θ +

f q T

a
a

d ( )

d

( )

2(1 ) tan( )
[sign( ) (1 cos( ( ))) tan( )sin( ( ))],n

n

n n n1 1
n



for |θ − θn| < 2a, and ≡
θ

θ
θ 0

fd ( )

d
n  otherwise. Integrating, we find this implies

θ θ θ θ θ θ θ∝ | − | − | − | + −θf a( ) sin tan( )cos( ),n n nn

for |θ − θn| < 2a, and θθf ( )
n

 constant otherwise. Thus, the STF dynamics allows the network architecture to repre-
sent a predictive distribution that is peaked at the previous target location (Fig. 3). The amplitude of the 
θ-dependent portion of the predictive distribution during trial n + 1 is then controlled by cue, delay, and intertrial 
times ( + +T T T, ,C D

n
I
n1 1) and the facilitation parameters (β, q+, τ).

To derive a coupled pair of equations (Fig. 4) describing the dynamics of the bump location θ(t) and the slow 
evolution of the nonlinearity K(θ, t), we focus on the limit F(u) → H(u − κ). We approximate q(x, t) by summing 
the contributions from each of the n + 1 trials. This yields

∑ θ θ≈ − + + + −
=

+q x t t Q x t T T t Q x t( , ) ( ) ( ( )) ( ) ( ( ))
(20)j

n

j q j C D
n

n q
1

1 

where the slowly evolving function  t( )n  defines the rising and falling kinetics of the facilitation variable origi-
nating in trial n:

τ =






− < < + +
− > + +

 t
t t t t T T

t t t T T
( )

1 ( ) ,
( ) ,n

n n n C D
n

n C D
n




increasing towards saturation ( → 1n ) during the cue and delay-period + +t t T T[ , )n n C D
n  and decaying after-

ward ( → 0n ). The variable θq(t) describes the slow movement of the center-of-mass of the saturating portion of 
the facilitation variable q(x, t) due to the drift of the neural activity u(x, t) described by θ(t). However, since typi-
cally � � � �t t t( ) ( ) ( )n1 2   , we only keep the terms t( )n  and  + t( )n 1  in Eq. (20). It is possible that the 
memory of previous cues could persist for multiple trials, but the probability of this is exponentially small, since 
it would require many stochastic perturbations of the bump in the tail of the noise amplitude distribution. 
Therefore, we exclude a consideration of these cases from our linear perturbation approximation. Furthermore, 
since  t( )n  becomes much smaller than + t( )n 1  for most times t > tn+1 in trial n + 1, we approximate 
θ θ+ + ≈t T T( )q n C D

n
n. This provides intuition as to why it is sufficient to only consider the previous target rather 

than the response in trial n as the variable influencing the bias in Papadimitriou et al.13. Therefore, we start with 
the following ansatz for the evolution of the facilitation variable during trial n + 1:

 θ θ= − + − .+q x t t Q x t Q x t( , ) ( ) ( ) ( ) ( ( )) (21)n n n q1

A bump centered at θ(t), U(x − θ(t)), attracts the STF variable to the same location q → Q(x − θ(t)), but the 
dynamics of q are much slower (τ  1). Thus, we model the evolution of θq(t) by linearizing the slow dynamics of 
Eq. (15b) about (u, q) = (U(x − θ(t)), Q(x − θ(t))) + (0, φ(x, t)) (with φ| |  1) to find

τφ φ β θ φ= − − − . x t x t F U x t x t( , ) ( , ) ( ( ( ))) ( , ) (22)
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The perturbation φ(x, t) describes the displacement of the variable q away from its equilibrium position. We 
now introduce the field ∫ φ θΦ = − −

−
x t w x y y t F U y t y( , ) ( ) ( , ) ( ( ( )))d

180

180 92, which reduces Eq. (22) to

τ βΦ = − + Φ x t x t( , ) (1 ) ( , ),

so separating variables Φ = Φ λx t x( , ) ( )e t we see that perturbations of the facilitation variable’s center-of-mass 
θq(t) away from θ(t) should relax at rate λτ = −(1 + β)/τ.

Therefore, the slow evolution of the potential gradient function K(θ, ts) in Eq. (17) can be described by inte-
grating Eq. (18) using the ansatz Eq. (21) for q(x, t). Our low-dimensional system for the dynamics of the bump 
location θ(t) and leading order facilitation bump θq(t) during the delay-period of trial n +  1 
( ∈ + + ++ +
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where we have defined a parametrized time-invariant potential gradient  θ θ
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profile of the facilitation variable centered at θ′: Q(x − θn). For our specific choices of weight function and firing 
rate nonlinearity, we find the potential gradient is:
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calculates the shorter difference on the periodic domain. As in our recurrent network, we use the parameters 
κ = 0.1; q+ = 2; β = 0.01; and τ/τu = 100 to compare with network simulations in Fig. 5.

Numerical simulations of the neuronal network model.  Numerical simulations of the recurrent net-
work Eq. (15) were done in MATLAB using an Euler-Maruyama method with timestep dt = 0.1 ms and spatial 
step dx = 0.18° with initial conditions generated randomly by starting u(x, 0) ≡ q(x, 0) ≡ 0 and allowing the sys-
tem to evolve in response to the dynamic fluctuations for t = 2 s prior to applying the sequence of stimuli I(x, t) 
described for each numerical experiment in Figs 5, 6 and 7. Numerical simulations of Eq. (6) were also performed 
using an Euler-Maruyama method with timestep dt = 0.1 ms. The effects of the target θn on each trial n were 
incorporated by holding θ(t) = θn during the cue period t ∈ [tn, tn + TC). Otherwise, the dynamics were allowed 
to evolve as described.

Data analysis.  MATLAB was used for statistical analysis of all numerical simulations. The bias effects in 
Fig. 5 were determined by identifying the centroid of the bump at the end of the delay-period. Means were com-
puted across 105 simulations each, and standard deviations were determined by taking the square root of the var 
command applied to the vector of endpoints. Histograms in Fig. 6 were computed for 105 simulations using the 
hist and bar commands applied to the vector of endpoints for each correlation condition. Bump positions were 
computed in Fig. 7 by determining the centroid of the bump at each timepoint, and 105 simulations were then 
used to determine the standard deviation and variance plots (using var again).
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