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Stochastic synchronization of neural activity waves
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We demonstrate that waves in distinct layers of a neuronal network can become phase locked by common
spatiotemporal noise. This phenomenon is studied for stationary bumps, traveling waves, and breathers. A weak
noise expansion is used to derive an effective equation for the position of the wave in each layer, yielding a
stochastic differential equation with multiplicative noise. Stability of the synchronous state is characterized by a
Lyapunov exponent, which we can compute analytically from the reduced system. Our results extend previous
work on limit-cycle oscillators, showing common noise can synchronize waves in a broad class of models.
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Introduction. Nonlinear waves arise in many physical,
biological, and chemical systems, including nonequilibrium
reactions [1], shallow water [2], bacterial populations [3],
epidemics [4], and cortical tissue [5]. Phase synchronization
of multiple waves can occur when their dynamics are coupled.
For example, spiral waves in chemical systems become
entrained when coupled diffusively through a membrane [6].
Experiments on amoeba populations have also demonstrated
entrainment via interactions between wave-emitting centers
and spiral waves of cell density [7]. Common forcing can also
synchronize waves at distinct spatial locations. Spatiotemporal
analysis of epidemics reveals that both seasonality and
vaccination schedule can entrain the nucleation of outbreak
waves across geographical space [8]. Furthermore, activity
recordings from the primary visual cortex show that triggering
switches during binocular rivalry leads to synchronized wave
initiation [9]. In total, experimental studies demonstrate a
wide array of mechanisms for synchronizing the onset and
propagation of waves.

Our goal in this Rapid Communication is to show that
stochastic forcing can also entrain the phases of distinct
waves. We focus on neural activity waves that arise due
to distance-dependent synaptic interactions [5,10]. Waves
of neural activity underlie sensory processing [11], motor
action [12], and sleep states [13]. Proposed computational
roles of neural activity waves include heightening the re-
sponsiveness of specific portions of a network and labeling
incoming signals with a distinct phase [10]. Thus, it may
be advantageous for waves to be coordinated across multiple
brain areas, and we propose that correlated fluctuations may
underlie such coordination. Many theoretical and experimental
studies have identified ways noise correlations can degrade
neural information encoding [14], but recent work has shown
correlated noise can reliably synchronize activity across
populations of neurons [15].

Our analysis extends previous work which showed common
noise can synchronize the phases of limit-cycle oscilla-
tors [16,17]. A key observation of these studies is that the
synchronous state, where all oscillators have the same phase,
is absorbing when each oscillator receives identical noise.
Stability of the phase-locked state can then be determined
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by computing an associated Lyapunov exponent, which is
negative for nontrivial phase response curves [17]. As we show
in this Rapid Communication, these principles can be applied
to waves forced by common spatiotemporal noise. Waves are
driven to an attracting synchronous state, where the waves’
phases are identical.

Synchronization of neural activity waves across distinct
network locations can be important in several behavioral and
sensory contexts. For instance, waves of activity in the visual
cortex may function as a “barcode scanner,” ensuring a portion
of the network is always maximally sensitive to external
inputs [10]. Since locations in visual space are represented
by multiple layers of a network, coordinating background
waves across layers could ensure the network is always
sensitive at the same visual location in each layer. Thus, our
findings implicate an important potential role for large-scale
correlations in nervous system fluctuations, which are often
deemed a nuisance to cognitive performance [14].

In this Rapid Communication, we analyze the stochastic
dynamics of waves in a pair of uncoupled neural field
models driven by common noise. Neural fields are nonlinear
integrodifferential equations whose integral term describes
the connectivity of a neuronal network [18,19]. Recent
studies have considered stochastic versions of neural field
equations, formulating the dynamics as Langevin equations
with spatiotemporal noise [19,20],

duj (x,t) = [−uj (x,t) + w ∗ f (uj )]dt + εdW (x,t), (1)

where uj (x,t) is the neural activity of population j = 1,2 at
x ∈ [−π,π ] at time t , synaptic connectivity is described by the
convolution w ∗ f (u) = ∫ π

−π
w(x − y)f [u(y,t)]dy, and f (u)

is a nonlinearity describing the fraction of active neurons.
Small amplitude (ε � 1) spatiotemporal noise dW (x,t) is
white in time and correlated in space, so 〈dW (x,t)〉 = 0
and 〈dW (x,t)dW (y,s)〉 = 2C(x − y)δ(t − s)dtds. As noise
correlations must thus be even and 2π periodic, we write
C(x) = ∑∞

k=0 ak cos(kx).
Stationary bumps. We begin by demonstrating noise-

induced wave synchronization for a single realization of the
system Eq. (1) in Fig. 1(a) [21]. Here w(x − y) = cos(x − y)
is an even symmetric lateral inhibitory weight function, known
to lead to stable stationary bump solutions in the unperturbed
system (ε ≡ 0) [18]. Additive spatiotemporal noise causes
each bump to wander diffusively about the spatial domain.
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FIG. 1. (Color online) Common noise-induced phase locking of
bumps evolving in two uncoupled stochastic neural fields, Eq. (1) with
w(x) = cos(x), and C(x) = cos(x). (a) In a single realization, noise
eventually drives the bump positions �1(t) (solid line) and �2(t)
(dashed line) to the absorbing state �1(t) = �2(t). Here, f (u) =
H (u − 0.5) and ε = 0.01. (b) Realizations of the log phase difference
ln |φ| = ln |�1 − �2| (thin lines) compared to theory ln |φ(t)| =
ln |φ(0)| + λt (thick line) given by Eq. (14). (c) Numerically
calculated Lyapunov exponents λ (circles) are well approximated
by Eq. (14) (line), increasing in amplitude |λ| as θ moves toward the
saddle-node bifurcation of bumps [21].

Once both the waves’ positions �1 and �2 meet, they are
phase locked for the remainder of the simulation, since both
layers receive identical noise and obey the identical governing
Eq. (1).

To analyze this behavior, we first note that the unperturbed
system, ε → 0 in Eq. (1), has stationary bump solutions
uj (x,t) = U (x − xj ) (j = 1,2) satisfying U (x) = ∫ π

−π
w(x −

y)f [U (y)]dy [22,23]. There is a degeneracy in the position
of each bump’s center of mass xj , since the waves are
neutrally stable to translating perturbations [23], and noise
will cause the waves to stochastically wander about their mean
position [24,25].

We now derive effective equations for the bumps’ response
to noise (ε > 0) by utilizing a perturbation expansion that
tracks the stochastically varying position �j (t) of each bump
and fluctuations in the wave profiles 	j (x,t), so uj (x,t) =
U (x − �j (t)) + ε	j (x − �j (t),t) + O(ε2). Bumps in each
layer may begin at distinct locations �j (0) = xj , but we
will show that when receiving common noise, their locations
become synchronized in the long time limit limt→∞ |�1(t) −
�2(t)| = 0.

Plugging this ansatz into Eq. (1) and expanding to O(ε),
we have the linear stochastic equations

d	j − L	jdt = ε−1d�jU
′ + dW (x + �j,t), (2)

for j = 1,2, where Lu = −u + w ∗ [f ′(U ) · u] is a linear
operator defined for integrable functions u(x). Both layers
j = 1,2 receive identical noise, so we must keep track of each

wave’s relative phase �j . A solution to Eq. (2) exists if we
require the right-hand side to be orthogonal to the null space
of the adjoint operator L∗p = −p + f ′(U ) · w ∗ p. Define V

to be a one-dimensional basis of N (L∗). Taking the inner
product of Eq. (2) with V , we find

〈V (x),ε−1d�jU
′
j (x) + dW (x + �j,t)〉 = 0, (3)

so �j obeys a Langevin equation with multiplicative noise,

d�j = ε

∫ π

−π
V (x)dW (x + �j,t)dx∫ π

−π
V (x)U ′(x)dx

, j = 1,2. (4)

We can represent W (x,t) using the Fourier expansion

W (x,t) = a0X0 +
∞∑

k=1

ak[Xk cos(kx) + Yk sin(kx)], (5)

where Xk and Yk are white noise processes 〈Xk(t)〉 =
〈Yk(t)〉 = 0 and 〈Xk(t)Xl(t)〉 = 〈Yk(t)Yl(t)〉 = δklδ(t − s); δkl

is the Kronecker delta function. Using trigonometric identities,
we can express

d�j =
√

2εdW(�j,t), j = 1,2, (6)

where W(�,t) = ∑∞
k=1[b+k cos(k�)Xk + b−k sin(k�)Yk],

and the X0 vanishes since
∫ π

−π
V (x)dx ≡ 0 and

b±k = ak

∫ π

−π
V (x)[cos(kx) ± sin(kx)]dx∫ π

−π
V (x)U ′(x)dx

.

Thus, we have reduced Eq. (1) to a system describing two phase
oscillators perturbed by weak noise, Eq. (6). The coefficients
b±k describe the relative contributions of each term of the
Fourier series, Eq. (5), to the phase-dependent sensitivity of
the oscillators to noise.

The synchronized solution �1(t) = �2(t) to Eq. (6) is
absorbing since the right-hand sides of both equations (j =
1,2) will subsequently be identical. To assess the stability
of the absorbing state, we compute the associated Lyapunov
exponent λ. Proper calculation requires translating Eq. (6) into
its equivalent Ito formulation [26],

d�j = ε2R(�j )dt +
√

2εdW(�j,t), j = 1,2, (7)

where the Ito Eq. (7) introduces the drift term

R(�) =
∞∑

k=1

[
b2

−k − b2
+k

]
k sin(k�) cos(k�), (8)

accounting for the fact that the correlation between state
variables and noise terms, present in the Stratonovich Eq. (6),
subsequently vanishes. We proceed by formulating the vari-
ational equation for the perturbative phase difference φ(t) =
�1(t) − �2(t) (|φ| � 1), which can be derived from Eq. (7),
so

dφ = ε2R′(�)φdt +
√

2εφdY(�,t), (9)

where Y(�,t) = ∑∞
k=1 k[b−k cos(k�)Xk − b+k sin(k�)Yk]

and � obeys Eq. (7). Defining ψ = ln φ and appealing to Ito’s
formula, we can rewrite Eq. (9) as

dψ = ε2[R′(�) − S(�)]dt +
√

2εdY(�,t), (10)
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where

S(�) =
∞∑

k=1

k2
[
b2

+k sin2(k�) + b2
−k cos2(k�)

]
. (11)

Subsequently, we can integrate Eq. (10) to determine the mean
drift of ψ(t),

λ := ε2 lim
t→∞

∫ t

0
[R′(�(s)) − S(�(s))]ds, (12)

which is also the mean rate of growth of φ(t). The phase
difference φ(t) will tend to decay (grow) if λ < 0 (λ > 0) and
synchrony will be stable (unstable). Utilizing the ergodicity of
Eq. (10), we can equivalently compute λ with the ensemble
average across realizations of Y(�,t), so [17]

λ = ε2
∫ π

−π

Ps(�)[R′(�) − S(�)]d�, (13)

where Ps(�) is the steady state distribution of �. Since noise is
weak (ε � 1), we can approximate the distribution as constant,
Ps(�) = 1/(2π ). Applying this to Eq. (13), we find the first
term of the integrand vanishes since R(π ) = R(−π ) according
to Eq. (8), so the Lyapunov exponent is approximated by the
formula

λ = − ε2

2π

∫ π

−π

S(�)d� = −ε2

2

∞∑
k=1

k2[b2
+k + b2

−k

]
. (14)

Note that as long as b+k �= 0 or b−k �= 0 for some k < ∞, we
expect λ < 0, so the phase-locked state �1(t) = �2(t) will be
linearly stable.

We now compare the analytical result Eq. (14) to results
from numerical simulations of Eq. (1). Explicit calculations
are straightforward in the case of a Heaviside nonlinearity
f (u) = H (u − θ ), cosine weight function w(x) = cos(x),
and cosine spatial noise correlations C(x) = cos(x). Stable
stationary bump solutions are given by the formulas U (x) =
2 sin a cos(x) and U (±a) = θ , and the null vector V (x) =
δ(x − a) − δ(x + a) [23]. Coefficients of the noise Fourier
components in Eq. (5) are ak = δk1, so b±1 = ∓1/[

√
1 + θ +√

1 − θ ] and b±k ≡ 0, k �= 1. Finally, utilizing Eq. (11) along
with Eq. (14), we have

λ = −ε2

2

[
b2

+1 + b2
−1

] = − ε2

2 + 2
√

1 − θ2
. (15)

Results from numerical simulations in Figs. 1(b) and 1(c)
corroborate with Eq. (15), showing the Lyapunov exponent’s
magnitude |λ| increases with noise intensity ε2 and threshold
θ . We note that our theoretical approximation breaks down as
θ increases and the system nears a saddle-node bifurcation at
which the stable and unstable. branches of the bump solutions
annihilate in the noise-free system [18,22,23]. Furthermore,
the amplitude |λ| increases as the parameter θ is increased
towards this bifurcation.

We show the robustness of these results by studying
the impact of independent noise [Fig. 2(a)]. To do
so, we consider a modified version of Eq. (1), duj =
[−uj + w ∗ f (uj )]dt + εdW̃j , where W̃j has an independent
component in each layer j = 1,2 (see the Appendix).
Extending the analysis of limit-cycle oscillators [27], we

FIG. 2. (Color online) Independent noise prevents complete
phase locking (see the Appendix). (a) Noise correlations drive the
bumps close to one another [�1(t) ≈ �2(t)], but independent noise
prevents their remaining in the phase-locked state. (b) Stationary
density M0(φ) widens for χ < 1 in Eq. (16) theory (line) and
numerics (circles). Parameters are θ = 0.5, ε = 0.01, χ = 0.95, and
Cj (x) = cos(x) (j = 1,2,c).

derive an expression for the stationary density

M0(φ) = m0

g(0) − χ2g(φ)
(16)

of the phase difference φ = �1 − �2. Here, χ ∈ [0,1] is
the degree of noise correlation, g(�) = ∑∞

k=1 b2
k cos(k�)

(bk = |b±k|), and m0 is a normalization constant. As χ

is decreased from unity, the stationary density widens,
representing the effects of independent noise in each layer.
However, the density will still tend to be peaked at φ = 0 (see
the Appendix). Indeed, our theory, Eq. (16), is corroborated
by numerical simulations [Fig. 2(b)].

Traveling waves. Our results for stationary bumps can be
extended to address stochastic synchronization of traveling
waves in networks with asymmetric weights [w(x) �≡ w(−x)],
as in Fig. 3(a). Thus, the unperturbed system, ε → 0 in Eq. (1),
will have traveling wave solutions uj (x,t) = U (ξ − xj ), ξ =
x − ct , with wave speed c (j = 1,2), so −cU ′(ξ ) = −U (ξ ) +
w ∗ f (U ) [22,28]. Furthermore, waves will be neutrally stable
to translating perturbations, so spatiotemporal noise will cause
an effective diffusion of their phases. For ε > 0, we apply the
ansatz uj (x,t) = U (ξ − �j (t)) + ε	j (ξ − �j (t),t) + O(ε2)

FIG. 3. (Color online) Noise-induced phase locking of traveling
waves evolving in Eq. (1) with w(x) = cos(x − ϕ). (a) Noise
perturbations drive wave phases to the phase-locked state �1(t) =
�2(t). Here ϕ = 0.2, while other parameters are as in Fig. 1. (b) The
Lyapunov exponent λ calculated from numerical simulations (circles)
is approximated by Eq. (17) (line), increasing in amplitude |λ| with
the skewness ϕ of the weight function [21].
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with �j (t) = xj and will show limt→∞ |�1(t) − �2(t)| = 0.
At O(ε), we find Eq. (2) with a corresponding linear operator
Lu = cu′ − u + w ∗ [f ′(U ) · u]. Solvability is enforced by
ensuring the right-hand side of Eq. (2) is orthogonal to the null
space V of the adjoint L∗p = −cp′ − p + f ′(U ) · w(−ξ ) ∗
p(ξ ), yielding the Langevin equation, Eq. (4). The Lyapunov
exponent λ associated with the stability of the absorbing state
�1(t) = �2(t) is then approximated by Eq. (14).

To compare our analytical results for traveling
waves with numerical simulations, we compute λ from
Eq. (14) when f (u) = H (u − θ ), w(x) = cos(x − ϕ), and
C(x) = cos(x). Stable traveling waves have a profile U (ξ ) =
cos ϕ[sin ξ − sin(ξ + a)], width a = π − sin−1[θ sec ϕ]
defined by thresholds U (ξ1) = U (ξ2) = θ where ξ1 = π − a

and ξ2 = −π , and speed c = tan ϕ [28]. The null vector can
also be computed explicitly:

V (ξ ) =
2∑

k=1

(−1)k
[
H (ξ − ξk) + coth(π/c) − 1

2

]
e(ξk−ξ )/c.

Fourier coefficients of W(�,t) in Eq. (6) are thus given
b±1 = (1 ∓ c)/2 − (c ± 1) sin a/[2(1 − cos a)] and b±k ≡ 0,
k �= 1, so we compute Eq. (14), finding

λ = −ε2

2

[
b2

+1 + b2
−1

] = −ε2(1 + cos a)

2θ2
, (17)

comparing with the numerical results in Fig. 3(b).
Breathers. Lastly, we show that uncoupled oscillatory

waves can also become phase locked due to a common noise
source. We extend Eq. (1) by incorporating linear adaptation as
an auxiliary variable qj (x,t) (j = 1,2) and a spatially varying
external input I (x) [29–31],

duj = [−uj − βqj + w ∗ f (uj ) + I ]dt + εdW, (18a)

q̇j = α[uj − qj ], j = 1,2, (18b)

where α and β are the rate and strength of adaptation. A
detailed analysis of the onset of breathers in Eq. (18), via a
Hopf bifurcation, can be found in Refs. [30,31].

Our main interest is the rate at which breathers in a pair
of uncoupled neural fields synchronize their phases when
subject to common noise as in Eq. (18). An example of this
phenomenon is shown in Fig. 4(a). Note, we must take care in
interpreting how the centers of mass of each oscillating bump
relate to the phase of the underlying oscillation. In the case of
bumps and waves, there was a one-to-one mapping between
the wave positions �j and the phase of the stochastically
driven oscillator. Here, we must track the activity uj and
adaptation qj variables to resolve the phases ϑj of the
underlying oscillations. Assuming breathers have period T ,
uj (x,t) = uj (x,t + T ) and qj (x,t) = qj (x,t + T ), so ϑj (t) =
ϑj (t + T ), and there is a mapping (uj ,qj ) �→ ϑj for all values
(uj ,qj ) along the trajectory of a breather. We save a more
detailed analytical determination of this mapping for future
work. Here, we numerically determine ϑj (t), average, and
compute the rate of decay λ using the approximation A + λt ≈
1
N

∑N
k=1 ln |ϑ1(t) − ϑ2(t)| using least squares [Fig. 4(b)]. Note,

as in the case of bumps, the Lyapunov exponent increases in
amplitude as it nears the pattern-generating (Hopf) bifurcation.

FIG. 4. (Color online) Noise-driven synchronization of breather
phases in a pair of adapting stochastic neural fields, Eq. (18) with
w(x) = cos(x) and I (x) = I0 cos(x). (a) Noise drives breather phases
to the absorbing state where ϑ1(t) = ϑ2(t) (see text); I0 = 0.1.
(b) Numerically computed Lyapunov exponent λ describing the
stability of phase-locked breathers increases in amplitude |λ| with
stimulus strength I0. Parameters are α = 0.1, β = 0.2, ε = 0.04.
Other parameters are as in Fig. 1.

Discussion. Our results demonstrate that common spa-
tiotemporal fluctuations in neuronal networks can synchronize
the phases of waves. We have shown this for stationary bumps,
traveling waves, and breathers. Since our derivations mainly
rely on our ability to derive an effective equation for the relative
position of a noise-driven wave, we suspect we could extend
them to the case of traveling fronts [25] or Turing patterns [20]
in stochastic neural fields. Patterns on two-dimensional (2D)
domains could also be addressed by deriving multidimensional
effective equations for each pattern’s position. For instance, a
bump’s position would be represented with a 2D vector [32],
so there would be two Lyapunov exponents associated with
the bumps’ phase-locked state. On the other hand, spiral
waves would be characterized by a 2D position vector and a
scalar phase [33], and phase- and position-locked states would
then have three Lyapunov exponents. We could also consider
interlaminar coupling [34], exploring the competing impacts
of common noise and coupling on phase synchronization as
in Ref. [35]. Furthermore, these results should be applicable
to nonlinear partial differential equation (PDE) models
of reaction-diffusion systems [24,36]. Overall, our results
suggest a mechanism for generating coherent waves in
laminar media, presenting a testable hypothesis that could be
probed experimentally.

Acknowledgment. Z.P.K. was funded by NSF-DMS-
1311755. We thank Oliver Langhorne for helpful conversa-
tions.

Appendix. Here, we analyze the stochastic dynamics of
bumps in a pair of uncoupled neural field models driven
by both common and independent noise sources, extending
previous work on limit-cycle oscillators [27]. We incorporate
an independent noise term into each layer of the stochastic
neural field model [34]:

duj (x,t) =
[
−uj (x,t) +

∫ π

−π

w(x − y)f [uj (y,t)]dy

]
dt

+ ε[χdWc(x,t) +
√

1 − χ2dWj (x,t)]. (A1)

Small amplitude (ε � 1) spatiotemporal noise terms dWj (x,t)
(j = 1,2,c) are white in time and correlated in space,
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so 〈dWj (x,t)〉 = 0; 〈dWj (x,t)dWj (y,s)〉 = 2Cj (x − y)δ(t −
s)dtds (j = 1,2,c) with Cj (x) = ∑∞

k=0 ak cos(kx). The de-
gree of correlation between layers is controlled by the
parameter χ .

Our analysis proceeds by considering stationary bumps in a
network with even symmetric connectivity [w(x) = w(−x)].
As in the main text, we characterize stochastic bump motion
by applying the ansatz uj (x,t) = U (x − �j (t)) + ε	j (x −
�j (t),t) + O(ε2), and �j (0) = xj . Plugging this ansatz into
Eq. (A1), expanding to O(ε), and applying a solvability
condition, we find that each �j (j = 1,2) obeys the Langevin
equation

d�j = εχ

∫ π

−π
V (x)dWc(x + �j,t)dx∫ π

−π
V (x)U ′(x)dx

+ ε
√

1 − χ2

∫ π

−π
V (x)dWj (x + �j,t)dx∫ π

−π
V (x)U ′(x)dx

,

j = 1,2, where the first and second terms correspond
to correlated and independent noise. Here, V is a one-
dimensional basis of N (L∗), where L∗p(x) = −p(x) +
f ′[U (x)]

∫ π

−π
w(x − y)p(y)dy. Since U (x) is even symmetric,

all components of the null space of L∗ are necessarily odd
symmetric [23]. Note, we can represent Wj (x,t) = a0X

(j )
0 +∑∞

k=1 ak[X(j )
k cos(kx) + Y

(j )
k sin(kx)] (j = 1,2,c), where X

(j )
k

and Y
(j )
k are normalized white noise processes. We can thus

use trigonometric expansions to express

d�j =
√

2ε[χdWc(�j,t) +
√

1 − χ2dWj (�j,t)], (A2)

j = 1,2, where Wj are multiplicative noise terms defined as

Wj (�,t) =
∞∑

k=1

[
b

(j )
+k cos(k�)X(j )

k + b
(j )
−k sin(k�)Y (j )

k

]
,

and since V (x) is odd symmetric, X0 vanishes, and

b±k = ±ak

∫ π

−π
V (x) sin(kx)dx∫ π

−π
V (x)U ′(x)dx

.

Equation (A2) can be reformulated as an Ito equation d�j =
Bj (�)dt + dζj (�j,t), where ζj (�j,t) = √

2ε[χWc(�j,t) +√
1 − χ2Wj (�j,t)] (j = 1,2) has correlations defined as

〈dζj (�j,t)dζk(�k,t)〉 = Cjk(�)dt (j,k = 1,2), and the drift
Bj (�) = 1

4
∂

∂�j
Cjj (�) (j = 1,2). Components of the correla-

tion matrix are given as

Cjk(�) = 2ε2(χ2 + δjk(1 − χ2))
∞∑

m=1

b2
m cos[m(�j − �k)],

where � = (�1,�2) and bk = |b±k|, so it is straightforward
to compute Bj (�) ≡ 0 (j = 1,2).

The corresponding Fokker-Planck equation, describ-
ing the coevolution of the position variables (�1,�2),

is thus

∂P (�,t)

∂t
= ε2g(0)

[
∂2P (�,t)

∂�2
1

+ ∂2P (�,t)

∂�2
2

]

+ 2ε2χ2 ∂2

∂�1∂�2
[g(�1 − �2)P (�,t)] , (A3)

where g(�) = ∑∞
k=1 b2

k cos(k�). Note, since b2
k � 0,∀k, then

g(0) � g(�) for � ∈ [−π,π ]. We can write Eq. (A3) as a
separable equation by employing a change of variables that
tracks the average ρ = (�1 + �2)/2 and phase difference φ =
�1 − �2 of the phase variables �1 and �2,

∂P (�̃,t)

∂t
= ε2

[
g(0)

2
+ χ2g(φ)

]
∂2P (�̃,t)

∂ρ2

+ 2ε2 ∂2

∂φ2
[[g(0) − χ2g(φ)]P (�̃,t)], (A4)

where �̃ = (ρ,φ). Equation (A4) can be decoupled by plug-
ging in the ansatz P (�̃,t) = S(ρ,t) · M(φ,t) and noting the
equation will be satisfied by the system

∂S(ρ,t)

∂t
= ε2

[
g(0)

2
+ χ2g(φ)

]
∂2S(ρ,t)

∂ρ2
,

(A5)
∂M(ρ,t)

∂t
= 2ε2 ∂2

∂φ2
[[g(0) − χ2g(φ)]M(φ,t)].

Thus, we can solve for the stationary solution of the system,
Eq. (A5), by setting St = Mt ≡ 0 and requiring periodic
boundary conditions. The stationary distribution for the posi-
tion average is S0(ρ) = 1/(2π ). Furthermore, we can integrate
the stationary equation for M(φ,t) to find that the stationary
density of the phase difference is

M0(φ) = m0

g(0) − χ2g(φ)
, (A6)

where m0 = 1/
∫ π

−π
[g(0) − χ2g(x)]−1dx is a normalization

factor. When noise to each layer is independent (χ → 0,
uncorrelated), then M0(φ) = 1/2π is constant in space. Since
no common noise source entrains the phase of each bump,
the bumps diffuse independently of one another. However,
when noise is totally correlated between layers (χ → 1), then
M0(φ) = δ(φ). Thus, all initial conditions eventually result in
the phase-locked state �1 = �2. The stationary distribution
M0(φ) broadens as χ is decreased, with a peak still remaining
at φ = 0.

To compare our results to numerical simulations, we
compute the stationary density M0(φ) explicitly by using
f (u) = H (u − θ ), w(x) = cos(x), and Cj (x) = cos(x) (j =
1,2,c). Stable stationary bumps U (x) = 2 sin a cos(x) satisfy
the threshold condition U (±a) = θ , with half width a. We
can thus compute the null vector V (x) = δ(x − a) − δ(x + a)
and find b±1 = ∓1/[

√
1 + θ + √

1 − θ ] and b±k ≡ 0, k �= 1.
Therefore,

M0(φ) =
√

1 − χ4

2π [1 − χ2 cos(φ)]
. (A7)
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