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Coupling layers regularizes wave propagation in stochastic neural fields
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We explore how layered architectures influence the dynamics of stochastic neural field models. Our main focus
is how the propagation of waves of neural activity in each layer is affected by interlaminar coupling. Synaptic
connectivities within and between each layer are determined by integral kernels of an integrodifferential equation
describing the temporal evolution of neural activity. Excitatory neural fields, with purely positive connectivities,
support traveling fronts in each layer, whose speeds are increased when coupling between layers is considered.
Studying the effects of noise, we find coupling reduces the variance in the position of traveling fronts, as long as
the noise sources to each layer are not completely correlated. Neural fields with asymmetric connectivity support
traveling pulses whose speeds are decreased by interlaminar coupling. Again, coupling reduces the variance in
traveling pulse position. Asymptotic analysis is performed using a small-noise expansion, assuming interlaminar
connectivity scales similarly.
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I. INTRODUCTION

There is a growing experimental literature describing
the detailed functional architecture of large scale neuronal
networks [1]. Much recent development is due to innovative
techniques in neural recording such as voltage sensitive
dye [2], high capacity multielectrodes [3], and optogenetics
[4]. Modern electrophysiology reaches well beyond classic
neuroanatomical approaches, and details about the complex
organization of networks in the brain are coming to light [5].
One particular organizational motif shown to be important for
sensory processing is a layered, or laminar, architecture of
cortical connectivity, identified decades ago in visual cortex
[6]. Synaptic connections between layers typically have some
topographic organization, reflecting recurrent architecture of
each local layer [7]. Laminar architecture has now been
identified as an important part of motor [8], somatosensory
[9], and spatial memory [10] processing. This contributes to
previous findings that connectivity across multiple areas of the
brain is important for neural computations such as working
memory [11], visual processing [12], and attention [13].

The structure of network organization strongly influences
the wide variety of spatiotemporal activity patterns observed
throughout the brain [14]. Strong local recurrent excitation
can reinforce stimulus tuning of local assemblies of neurons
[15], elevating the local response to external inputs [16],
even allowing neural activity to persist seconds after a
stimulus is removed [17]. In addition, inhibition is known
to be dense in many areas of cortex [18], resulting in
sharper spatiotemporal responses to sensory stimuli [19].
In addition to relating synaptic polarity to local cortical
dynamics, the intricate spatial architecture of many networks in
cortex governs those regions’ resulting spatiotemporal activity
[20–22]. For instance, recordings from developing cerebellum
reveal that spatial asymmetries in excitatory connectivity can
lead to traveling waves of activity [23]. Propagating waves
of activity have been observed in many sensory cortices
[24–27], presumed to amplify or mark the timing of incoming
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signals. Typically, computational models assume waves arise
from a combination of recurrent excitation and negative
feedback such as spike rate adaptation [28] or short term
depression [29].

Therefore, there are a number of established principles
concerning how different architectural motifs shape the brain’s
spatiotemporal activity patterns. We will extend this work by
exploring how laminar architecture affects the propagation of
activity in stochastic neuronal networks. Layered architecture
is a generalization of having separate excitatory and inhibitory
populations since there can be many layers, each with their
own distinct synaptic polarity. Recently, we showed that
laminar architecture in models of spatial working memory
can help stabilize persistent localized activity in the presence
of fluctuations [30]. Persistent activity, in the form of localized
bumps, executes a random walk when stochastic fluctuations
are considered, but several coupled bumps can cancel much of
this noise due to the attractive force between their positions. In
this work, similar principles will be demonstrated in stochastic
neuronal networks that support traveling waves. Our interest
will be in traveling waves that arise from two different
mechanisms.

First, we will consider traveling waves in purely excitatory
neuronal networks, often used as models for disinhibited
cortical slices [31]. Here, the speed of traveling waves is
determined by the activity threshold of the network. Second,
we will consider traveling waves in asymmetric neuronal
networks, previously used as models of direction selectivity
[32]. The skew of the asymmetry in spatial connectivity
determines the speed of traveling waves in these models.
Typically, neural field models only consider a single layer
of cortical tissue, sometimes separated into distinct excita-
tory and inhibitory populations [33]. However, some recent
modeling efforts accounted for the multilaminar structure of
cortex, applying them to study interacting bumps [34] and
binocular rivalry [35,36]. Here, we will combine this approach
with a consideration of the effects of stochasticity on wave
propagation.

There are a number of recent mathematical studies consid-
ering how stochasticity affects the formation of spatiotemporal
patterns in neuronal networks. Turing patterns [37], traveling
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fronts [38], and stationary bumps [39] can all be analyzed
in stochastic neural fields with the aid of small-noise expan-
sions originally developed to analyze wave propagation in
stochastic partial differential equations [40]. Such an approach
typically results in a diffusion equation for the position of the
spatiotemporal activity, but upon considering a neural field
with multiple layers, the effective equations are multivariate
Orstein-Uhlenbeck (OU) processes instead [30]. Thus, the
perturbation expansion allows one to examine the effects
of connectivity between layers, in addition to noise. Since
recordings of cortical activity are becoming substantially
more detailed [3,4], the time is ripe for extending theories
of spatiotemporal activity patterns in cortex.

We extend our previous work from [30] in several ways.
First of all, our analysis of deterministic systems with laminar
structure analyzes the effect of arbitrarily strong coupling upon
the propagation speed of waves and the width of traveling
pulses. Interlaminar coupling increases (decreases) the speed
of waves in the case of fronts (pulses). In addition, we find
that such a shift in wave speed appears in the weak coupling
calculations we perform in the case of the stochastic neural
field. This is due to reflections and, for pulses, the synaptic
connectivity function no longer being reflection symmetric.
We also note that, in the case of traveling fronts, we explore the
effect of noise correlation lengths upon the effective diffusion
of waves. Our findings suggest noise with longer correlation
length leads to higher diffusion, and thus more irregular wave
propagation. Finally, we remark that our results show that our
perturbation analysis provides accurate asymptotic results for
propagating waves, in addition to stationary bumps.

The paper will proceed as follows. In Sec. II, we introduce
the models we explore, showing how noise and a multilaminar
structure can be introduced into neural field models [37].
One important point is that the correlation structure of
spatiotemporal noise can be tuned in the model, and changing
this has nontrivial effects on the resulting dynamics. We
proceed, in Sec. III, to show how a combination of interlaminar
connectivity along with noise affects the propagation of
traveling fronts in an excitatory neural field model. As in [30],
we are able to derive an effective equation for the position
of the front, which takes the form of a multivariate OU
process. Finally, we derive similar results for traveling pulse
propagation in asymmetric neural fields in Sec. IV.

II. LAMINAR NEURAL FIELD MODEL

We will consider two different models for wave propagation
in neural fields. They both take the form of a system of coupled
stochastic neural field equations

du1(x,t) =
[
−u1 +

2∑
k=1

w1k ∗ f (uk)

]
dt + ε1/2dW1(x,t),

(1a)

du2(x,t) =
[
−u2 +

2∑
k=1

w2k ∗ f (uk)

]
dt + ε1/2dW2(x,t),

(1b)

where uj (x,t) is the neural activity of population j at x ∈ �

at time t , and the effects of synaptic architecture are described
by the convolution

wjk ∗ f (uk) =
∫

�

wjk(x − y)f (uk(y))dy,

for j,k = 1,2, so the case j = k describes recurrent synaptic
connections within a layer and j �= k describes synaptic
connections between layers (interlaminar). The function
wjk(x − y) describes the strength (amplitude of wjk) and net
polarity (sign of wjk) of synaptic interactions from neurons
with stimulus preference y to those with preference x. For our
analysis of traveling fronts, we consider positive, even weight
functions for wjk . In particular, we will take the exponential
function

wjk(x − y) = w̄jk

2
e−|x−y|, (2)

so that w̄jk parametrizes the total strength of connections
from population k to j . Studying excitatory neural fields in
Sec. III, we extend the spatial domain to � = (−∞,∞). In our
analysis of coupled traveling pulses in Sec. IV, we presume
the modulation of the recurrent synaptic strength is given by
the shifted cosine

wjj (x − y) = cos(x − y − φj ), j = 1,2 (3)

where φj is the amplitude of the shift in the j th layer, and
the spatial domain is taken to be a periodic ring � = [−π,π ].
On the other hand, interlaminar connectivity will generally be
given by the pure cosine function

wjk(x − y) = w̄jk cos(x − y), k �= j. (4)

Presuming that (1) along with (3) is meant to model direction-
ally selective network, maintaining isotropic coupling between
layers reflects a common spatial mapping in the positions
within each layer. In order to conduct our stochastic analysis
in the limit of weak coupling between layers, we will assume
w̄jk = ε1/2w̃jk for j �= k where w̃jk = O(1).

Output firing rates are given by taking the gain function
f (u) of the synaptic input, which are typically considered to
be sigmoidal [41]

f (u) = 1

1 + e−η(u−θ)
, (5)

and we will often take the high gain limit (η → ∞), which
allows the explicit computation of quantities of interest [42]

f (u) = H (u − θ ) =
{

1 : u > θ,

0 : u < θ.
(6)

Spatiotemporal noises are described by small amplitude (ε �
1) stochastic processes ε1/2Wj (x,t) that are white in time
〈dWj (x,t)〉 = 0 and correlated in space

〈dWj (x,t)dWj (y,s)〉 = Cj (x − y)δ(t − s)dt ds, j = 1,2

〈dWj (x,t)dWk(y,s)〉 = Cc(x − y)δ(t − s)dt ds, j �= k

describing local and shared noise in either layer j = 1,2.
To demonstrate our theory, we will study different cases
of spatially correlated noise. First, we will examine the
simple case of spatially homogeneous noise Cj (x − y) =
χj and Cc(x − y) = χc. In addition, we will explore local

022706-2



COUPLING LAYERS REGULARIZES WAVE PROPAGATION . . . PHYSICAL REVIEW E 89, 022706 (2014)

spatial correlations using a cosine shaped correlation function
Cj (x) = χj cos(x/σ ), along with correlated noise component
with a cosine profile so Cc(x) = χc cos(x/σ ). In both these
cases, in the limit χc → 0, there are no interlaminar noise
correlations, and in the limit χc → max(χ1,χ2), noise in each
layer is maximally correlated.

III. DUAL LAYER EXCITATORY NETWORK

A. Coupled front propagation

To begin, we examine a network of two coupled excitatory
layers, which individually produce propagating fronts. This
analysis should be contrasted with that in [36], which explored
fronts coupled with depressing inhibition as a means of
modeling binocular rivalry waves. We will start by considering
the noise-free case and allow the interlaminar connectivity to
be arbitrarily strong, so we take ε → 0 while w̄12 and w̄21 can
be any value.

Before analyzing front solutions, it is useful to look at
spatially homogeneous solutions of the system (1) in the
presence of purely excitatory connections, as they govern the
limiting values of traveling fronts. Thus, considering constant
solutions (u1(x,t),u2(x,t)) = (Ū1,Ū2), upon plugging them
into (1), we have

Ū1 = f (Ū1)w̄11 + f (Ū2)w̄12
(7)

Ū2 = f (Ū2)w̄22 + f (Ū1)w̄21,

where w̄jk = ∫ ∞
−∞ wjk(x)dx � 0 since wjk are generally

positive, even functions. In the limit w̄12,w̄21 → 0 and f is
a sufficiently steep sigmoid (5), it can be shown that each
equation in (7) will have three roots [43]. The largest (Ū1+
and Ū2+) and smallest (Ū1− and Ū2−) of these constitute
the boundary conditions of corresponding traveling wave
solutions. Thus, as w̄12,w̄21 are increased from zero, we expect
this fact to still hold over a substantial range of parameters.

Thus, we seek to construct coupled traveling front solutions
to (1) by converting the system to the traveling coordinate
frame ξ = x − ct , where the wave speed c is yet to be
determined. Violations of this assumption will be bifurcations
from coupled traveling front solutions. Thus, traveling fronts
take the form (u1(x,t),u2(x,t)) = (U1(ξ ),U2(ξ )), which yields

− cU ′
1(ξ ) = −U1(ξ ) + w11 ∗ f (U1) + w12 ∗ f (U2), (8a)

−cU ′
2(ξ ) = −U2(ξ ) + w22 ∗ f (U2) + w21 ∗ f (U1), (8b)

where the convolution ∗ is over � = (−∞,∞) with the bound-
ary conditions limξ→±∞ U1(ξ ) = Ū1± and limξ→±∞ U2(ξ ) =
Ū2±. The set of equations (8) could be solved using shooting
methods for an arbitrary choice of nonlinearity f [28,43]
to specify the wave speed c. However, to demonstrate the
relationships between parameters, we assume the nonlinearity
is Heaviside (6). Since we are constructing coupled traveling
fronts, there should be a single threshold crossing point
for each, yielding the additional conditions U1(0) = U2(a) =
θ . We can set the threshold crossing point of U1 due to
the underlying translation invariance of (1). Note also the
threshold crossing point of U2 need not be the same. Thus,

we find Eqs. (8) become

− cU ′
1(ξ ) = −U1(ξ ) + G1(ξ ), (9a)

−cU ′
2(ξ ) = −U2(ξ ) + G2(ξ ), (9b)

where

G1(x) =
∫ ∞

x

w11(y)dy +
∫ ∞

x−a

w12(y)dy,

G2(x) =
∫ ∞

x−a

w22(y)dy +
∫ ∞

x

w21(y)dy.

Thus, we can integrate the two equations (9) and apply the
threshold conditions U1(0) = θ and U2(a) = θ to yield

U1(ξ ) = eξ/c

(
θ − 1

c

∫ ξ

0
e−y/cG1(y)dy

)
,

(10)

U2(ξ ) = eξ/c

(
θe−a/c − 1

c

∫ ξ

a

e−y/cG2(y)dy

)
.

Requiring a bounded solution as ξ → ∞, assuming c > 0, we
have the conditions

θ = 1

c

∫ ∞

0
e−y/cG1(y)dy,

(11)

θ = ea/c

c

∫ ∞

a

e−y/cG2(y)dy,

so plugging (11) into (10) implies

U1(ξ ) = 1

c

∫ ∞

0
e−y/cG1(y + ξ )dy, (12a)

U2(ξ ) = 1

c

∫ ∞

0
e−y/cG2(y + ξ )dy. (12b)

In the case that wjk are all defined as exponential weight
distributions (2) with recurrent weighting w̄11 = w̄22 = 1,
the wave speed c and crossing point a can be related
to the threshold θ and coupling parameters w̄12 and w̄21

by the implicit system

θ = 1

2(c + 1)
+ w̄12H(c, − a), (13a)

θ = 1

2(c + 1)
+ w̄21H(c, + a), (13b)

where

H(c,x) =
{

e−x

2(c+1) : x > 0,

1 + ex

2(c−1) − c2ex/c

c2−1 : x < 0.

We solve the system (13) across a range of value of coupling in
Fig. 1, showing that the layer receiving more input possesses
the leading front. Note, keeping w̄12 > 0 fixed, in the limit
w̄21 → 0, a → −∞, so when one layer receives much more
excitatory input, its front stays far ahead of that of the other
one (as in Fig. 2). In the case where w̄12 = w̄21 = w̄c, the
system simplifies to a single equation since the front solution
U1(ξ ) = U2(ξ ) exists, due to reflection symmetry of the full
system (1) here. Therefore, a = 0, so we can write

θ = 1 + w̄c

2(c + 1)
⇒ c = 1 + w̄c

2θ
− 1, (14)
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FIG. 1. (Color online) (a) Speed c and (b) position parameter a

of coupled traveling fronts (12) as determined by the implicit system
(13). Notice a = 0 when w̄21 = w̄12. Threshold θ = 0.4.

FIG. 2. (Color online) Evolution of coupled fronts (12) in space-
time. (a) When w̄12 = w̄21 = 0.1, fronts propagate at the same speed
with the same threshold crossing point xc(t) (solid line), where
u1(xc(t),t) = u2(xc(t),t) = θ . (b) When w̄12 = 0.1 and w̄21 = 0.01,
the crossing point x1(t) of the front in the first layer u1(x1(t),t) = θ

(solid line) stays ahead of the crossing point x2(t) (dashed line) of the
front in the second layer u2(x2(t),t) = θ .

so excitatory coupling (w̄c > 0) between layers increases the
speed c of both fronts. Finally, in the limit w̄c → 0, there are
two decoupled fronts, both with speed c = 1/(2θ ) − 1. This is
the limit from which we will build our theory of stochastically
driven coupled fronts.

In the limit w̄c → 0, the fronts (12) are neutrally stable
to perturbations in both directions. To see this, we consider
the perturbed front solutions uj (x,t) = Uj (ξ ) + εU ′

j (ξ )eλt ,
plugging into (1) and truncating to linear order with w11 =
w22 = w and w12 = w21 ≡ 0 to find

λU ′
j = cU ′′

j − U ′
j + w ∗ [f ′(Uj )U ′

j ]. (15)

Differentiating Eqs. (8) for w12 = w21 = 0 and integrating by
parts, we find

cU ′′
j − U ′

j + w ∗ [f ′(Uj )U ′
j ] = 0, (16)

so the right-hand side of (15) vanishes, and λ = 0 is the only
eigenvalue corresponding to translating perturbations. Thus,
either front (in layer 1 or 2) is neutrally stable to perturbations
that shifts its position in either direction (rightwards or
leftwards).

We will show in the next section that coupling stabilizes the
fronts to perturbations in the opposite directions. Yet, even with
coupling, both fronts are neutrally stable to perturbations along
the same direction. To show this, we plug the perturbed front
solutions uj (x,t) = Uj (ξ ) + εU ′

j (ξ )eλt into (1) and truncating
to linear order with w11 = w22 = w and w12,w21 �≡ 0 so

λU ′
1 = cU ′′

1 − U ′
1 + w ∗ [f ′(U1)U ′

1] + w12 ∗ [f ′(U2)U ′
2],

(17a)

λU ′
2 = cU ′′

2 − U ′
2 + w ∗ [f ′(U2)U ′

2] + w21 ∗ [f ′(U1)U ′
1].

(17b)

Differentiating Eqs. (8) and integrating by parts, we find

cU ′′
1 − U ′

1 + w ∗ [f ′(U1)U ′
1] + w12 ∗ [f ′(U2)U ′

2] = 0,

cU ′′
2 − U ′

2 + w ∗ [f ′(U2)U ′
2] + w21 ∗ [f ′(U1)U ′

1] = 0,

so the right-hand sides of (17) vanish, and λ = 0 is the only
eigenvalue, corresponding to perturbations that translate u1

and u2 in the same direction.

B. Noise-induced motion of coupled fronts

Now, we consider the effects of small noise on the propaga-
tion of fronts in the presence of weak coupling between layers
so that w12,w21 = O(ε1/2) (w̄12 = ε1/2w̃12; w̄21 = ε1/2w̃21)
and identical recurrent coupling w11 = w22 = w. To begin, we
presume the noise generates two distinct effect in the fronts
(see Fig. 3). First, noise causes both fronts to wander from their
paths, while being pulled back into place by the front in the
other layer. Each front’s displacement from its deterministic
path will be described by the time-varying stochastic variables
1(t) and 2(t). Second, noise causes fluctuations in the
shape of both fronts, described by the corrections �1(x,t)
and �2(x,t). To account for this, we consider the ansatz

u1 = U1(ξ − 1(t)) + ε1/2�1(ξ − 1(t),t) + . . . ,
(18)

u2 = U2(ξ − 2(t)) + ε1/2�2(ξ − 2(t),t) + . . . .
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FIG. 3. (Color online) (a) Uncoupled fronts u1 and u2 propagat-
ing in the dual layer stochastic neural field have leading edges (solid
and dashed lines, respectively) that spread apart due to separate
sources of noise dW1 and dW2. (b) Coupling fronts with connectivity
w̄12 = w̄21 = 0.05 keeps noise from spreading fronts very far apart.
Coupling is given by exponential weights (2); other parameters
θ = 0.4 and ε = 0.01.

This approach was originally developed to analyze front
propagation in stochastic partial differential equation (PDE)
models [40]. In stochastic neural fields, it has been modified
to analyze wave propagation [33] and bump wandering [39].
Plugging the ansatz (18) into the system (1) and expanding in
powers of ε1/2, we find that at O(1), we have the front solution
(12) when w̄12 = w̄21 ≡ 0. Proceeding to O(ε1/2), we find

d� − L� =
(

ε−1/2d1U
′
1 + dW1

ε−1/2d2U
′
2 + dW2

)
+ K(x,t)

ε1/2
, (19)

where K(x,t) is the 2 × 1 vector function

K =
(

w12 ∗ [f (U2) + f ′(U2)U ′
2 · (1 − 2)]dt

w21 ∗ [f (U1) + f ′(U1)U ′
1 · (2 − 1)]dt

)
;

� = (�1(ξ,t),�2(ξ,t))T ; and L is the linear operator

Lu =
(

cu′ − u + w ∗ [f ′(U1)u]
cv′ − v + w ∗ [f ′(U2)v]

)
, (20)

for any vector u = (u(x),v(x))T of integrable functions. The
last terms in the right-hand side vector of Eq. (19) arise to due
connections between layers. We have linearized them under the
assumption d = 1 − 2 remains small, so f (Uj (x + d)) ≈
f (Uj (x)) − (−1)j f ′(Uj (x))U ′

j (x)d, where j = 1,2. We can
Taylor expand the Heaviside function in the sense of dis-
tributions because it is being integrated against continuous
functions in (1). A solution to Eq. (19) exists if we require the
right-hand side is orthogonal to all elements of the null space

of the adjoint L∗. Computing the adjoint requires defining the
L2 inner product, which is given by

∫ ∞
−∞ gT (x)f(x)dx for any

integrable vector functions f and g, so the adjoint L∗ is then
defined as ∫ ∞

−∞
pTLu dx =

∫ ∞

−∞
uT L∗p dx

for any integrable vector p = (p(x),q(x))T . Then,

L∗p =
(−cp′ − p + f ′(U1)[w ∗ p]

−cq ′ − q + f ′(U2)[w ∗ q]

)
. (21)

We can decompose the null space of L∗ into two orthogonal
elements that take the forms (ϕ1,0)T and (0,ϕ2)T . Thus, we
can ensure Eq. (19) has a solution by taking the inner product
of both sides with the two null vectors to yield

〈ϕ1,ε
−1/2d1U

′
1 + dW1

+ ε−1/2w12 ∗ [f (U2) + f ′(U2)U ′
2 · (1 − 2)]dt〉 = 0,

〈ϕ2,ε
−1/2d2U

′
2 + dW2

+ ε−1/2w21 ∗ [f (U1) + f ′(U1)U ′
1 · (2 − 1)]dt〉 = 0,

where we define the inner product 〈u,v〉 = ∫ ∞
−∞ u(x)v(x)dx.

By separating each added term and factoring the j ’s out
of the inner products, we find the stochastic vector �(t) =
(1(t),2(t))T obeys the multivariate Ornstein-Uhlenbeck
process

d�(t) = [J + K�(t)]dt + dW(t), (22)

where connections between the two layers will slightly alter
the mean speed through the term

J =
(

γ1

γ2

)
=

⎛
⎝−〈ϕ1,w12∗f (U2)〉

〈ϕ1,U
′
1〉

− 〈ϕ2,w21∗f (U1)〉
〈ϕ2,U

′
2〉

⎞
⎠ (23)

and pull the positions of both fronts to one another according
to the coupling matrix

K =
(−κ1 κ1

κ2 −κ2

)
, (24)

with

κ1 = 〈ϕ1,w12 ∗ [f ′(U2)U ′
2]〉

〈ϕ1,U
′
1〉

, (25a)

κ2 = 〈ϕ2,w21 ∗ [f ′(U1)U ′
1]〉

〈ϕ2,U
′
2〉

. (25b)

Note that (22) differs from the effective equation in [30]
since odd components of the propagating front contribute to
the terms in J. Noise is described by the vector dW(t) =
(dW1,dW2)T with

dWj (t) = −ε1/2 〈ϕj ,dWj 〉
〈ϕj ,U

′
j 〉

, j = 1,2. (26)

The white noise term W has zero mean 〈W(t)〉 = 0 and
variance described by pure diffusion so 〈W(t)WT (t)〉 = Dt

with

D =
(

D1 Dc

Dc D2

)
, (27)

022706-5



ZACHARY P. KILPATRICK PHYSICAL REVIEW E 89, 022706 (2014)

where the associated diffusion coefficients of the variance
are

Dj = ε

∫ ∞
−∞

∫ ∞
−∞ ϕj (x)ϕj (y)Cj (x − y)dx dy[ ∫ ∞

−∞ ϕj (x)U ′
j (x)dx

]2 , (28)

for j = 1,2, and covariance is described by the coefficient

Dc = ε

∫ ∞
−∞

∫ ∞
−∞ ϕ1(x)ϕ2(y)Cc(x − y)dx dy[ ∫ ∞

−∞ ϕ1(x)U ′
1(x)dx

][ ∫ ∞
−∞ ϕ2(x)U ′

2(x)dx
] .

With the stochastic system (22) in hand, we can show how
coupling between layers affects the variability of the positions
of fronts subject to noise. To do so, we diagonalize the matrix
K = V�V−1 with right eigenvector matrix

V =
(

1 κ1

1 −κ2

)
,

and � = diag(λ1,λ2). Front positions (1,2)T are neu-
trally stable (λ1 = 0) to perturbations in the same direction
v1 = (1,1)T and stable [λ2 = −(κ1 + κ2)] to perturbations in
opposite directions v2 = (κ1, − κ2)T .

We now show how coupling leads to a time-varying mean
in �(t) as opposed to the case of bumps [30]. With the
diagonalization K = V�V−1, assuming �(0) = 0, the mean
〈�(t)〉 = ∫ t

0 eK(t−s)ds J, so

〈�〉 =
(At + Bκ1(1 − e−(κ1+κ2)t )

At − Bκ2(1 − e−(κ1+κ2)t )

)
,

where A = γ1κ2+γ2κ1

κ1+κ2
, B = γ1−γ2

(κ1+κ2)2 , and we have used the

diagonalization eKt = Ve�tV−1. Since λ2 = −(κ1 + κ2) < 0,

lim
t→∞〈�(t)〉 =

(
At + Bκ1

At − Bκ2

)
,

so the net mean effect of weak coupling is to slightly increase
the wave speed (At) and potentially alter the relative position
of the fronts (B). We would expect this, based on the speeding
up of fronts observed in our deterministic analysis. Note that
if γ1 = γ2, then B = 0 and the fronts will have the same mean
position.

To understand the collective effect that noise and coupling
has upon relative front positions, we must also study the
covariance of the front position vector �(t). The formula for
the covariance matrix is given by [44]

〈�(t)�T (t)〉 =
∫ t

0
eK(t−s)DeKT (t−s)ds, (29)

where D is the covariance coefficient matrix of white noise
vector W(t) given by Eq. (27). To compute the integral
in (29), we use the diagonalization KT = (V−1)T �VT so
eKT t = (V−1)T e�tVT . By integrating (29), we can compute
the variances

〈1(t)2〉 = D+t + 2κ1r1(t) + κ1

κ2
r2(t), (30a)

〈2(t)2〉 = D+t − 2κ2r1(t) + κ2

κ1
r2(t), (30b)

where the effective diffusion coefficients are

D+ = κ2
2 D1 + 2κ1κ2Dc + κ2

1 D2

(κ1 + κ2)2
,

Dr = κ2D1 − κ1D2 + (κ1 − κ2)Dc

(κ1 + κ2)2
,

D− = D1 − 2Dc + D2

(κ1 + κ2)2
,

so that D+ and D− are variances of noises occurring along
the eigendirections v1 and v2. The functions r1(t), r2(t) are
exponentially saturating

r1(t) = Dr

κ1 + κ2
[1 − e−(κ1+κ2)t ],

r2(t) = κ1κ2D−
2(κ1 + κ2)

[1 − e−2(κ1+κ2)t ].

The variance (30) will help us to understand how coupling
between layers affects the regularity of wave propagation in
both layers.

Now, we make a few key observations concerning how
coupling affects the position variances [see [30], where we
analyze the formulas (30) in more detail]. To start, we note
that the long-term effective diffusion of either front’s relative
position 1(t) and 2(t) will be the same, described by
the averaged diffusion coefficient D+ since

lim
t→∞

〈1(t)2〉
t

= lim
t→∞

〈2(t)2〉
t

= D+. (31)

The variances 〈j (t)2〉 will approach this limit at faster rates
as the coupling strengths κj are increased since other portions
of variance decay at a rate determined by |λ2| = κ1 + κ2.

In the case of identical coupling (w12 ≡ w21 = wr ) and
noise (D1 ≡ D2 = Dl), the mean reversion rates will be the
same (κ1 = κ2 = κ) and Dr = 0. Thus, the variances will be
identical 〈1(t)2〉 = 〈2(t)2〉 = 〈(t)2〉 and

〈(t)2〉 = Dl + Dc

2
t + Dl − Dc

8κ
[1 − e−4κt ]. (32)

Thus, increases in correlated noise (Dc) increase the long-term
variance of either front’s relative position j . When noise is
entirely shared between layers (Dl = Dc), there is no benefit
to interlaminar coupling since 〈(t)2〉 = Dlt regardless of κ .
If any noise is not shared between layers (Dc < Dl), then
variance can always be reduced by increasing coupling κ .
Thus, strengthening coupling between two noisy systems can
effectively regularize the dynamics. This has been recently
shown in the context of coupled noisy oscillators [45].

C. Calculating stochastic motion of coupled fronts

We now compute the effective variances (30), considering
the specific case of Heaviside firing rate functions (6) and
exponential synaptic weights (2) with w̄11 = w̄22 = 1. Thus,
we can compare our asymptotic results to numerical simula-
tions. First, to compute the front speed corrections γ1 and γ2,
we must calculate the front solutions of the decoupled system
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using (12) (see also [46,47]):

Uj (ξ ) =
{

θe−ξ : ξ > 0

1 − (1−2θ)2

1−4θ
e

2θξ
1−2θ + θeξ

1−4θ
: ξ < 0

(33)

and we differentiate (33) to yield

U ′
j (ξ ) =

{−θe−ξ : ξ > 0

− 2θ(1−2θ)
1−4θ

e
2θξ

1−2θ + θeξ

1−4θ
: ξ < 0.

(34)

Now, we can solve explicitly for the null vectors of L∗.
Plugging (33) and (34) into (21), and using the derivative

d

dU
H [Uj (ξ ) − θ ] = δ(ξ )

|U ′(0)| = δ(ξ )

θ
(35)

in the sense of distributions, we find that each of the two
equations in the vector system L∗ϕ = 0 is

c
dϕj

dξ
+ ϕj = δ(ξ )

θ

∫ ∞

−∞
w(y)ϕj (y)dy, j = 1,2 (36)

where ϕ = (ϕ1,ϕ2)T . We can integrate (36) to yield

ϕj (ξ ) = H (ξ )e−ξ/c (37)

since by plugging (37) into (36), we have

c = 1

2θ

∫ ∞

0
e− c+1

c
ydy ⇒ c = c

2θ (1 + c)
,

which holds due to (14). We can then evaluate the integrals in
(23) to yield

γ1 = ε1/2w̃12

2θ
, γ2 = ε1/2w̃21

2θ
, (38)

so as we might expect the fronts will speed up as the strength
of interlaminar connectivity w̄jk is increased. To compute the
strength of coupling κ1 and κ2, we must also compute

f ′(Uj )U ′
j = −δ(ξ ), (39)

using (35) in the sense of distributions, so that the coupling
terms are given by

κ1 = ε1/2w̃12

2θ
, κ2 = ε1/2w̃21

2θ
.

We first consider the effect of noise by taking the situation
where noise is uncorrelated between layers so χc = 0 and
Dc ≡ 0. Thus, we can simply compute the diffusion coeffi-
cients of the local noise in each layer. The simplest choice
for spatial correlations to start is globally correlated noise
Cj (x) ≡ χj in each layer j = 1,2. Then, by applying the
formulas (37) and (39) to (28), we have

Dj = εχj

θ2

[∫ ∞
0 e−x/cdx

]2

[∫ ∞
0 e−(1+c)x/cdx

]2 = εχj

4θ4
, j = 1,2. (40)

In addition, we can consider cosine correlations Cj (x) =
χj cos(x/σ ) so

Dj = ε
χj

∫ ∞
0

∫ ∞
0 e−x/ce−y/c cos[(x − y)/σ ]dy dx[

θ
∫ ∞

0 e−x/ce−xdx
]2

= εχjσ
2

4θ4(c2 + σ 2)
, j = 1,2. (41)

Note that the diffusion (41) increases with σ , so longer range
spatial correlations lead to more irregular front propagation.
In the limit σ → 0, Dj → 0 suggesting that very short range
spatial correlations will be insignificant, likely due to averag-
ing by the front’s profile. It is also worth considering another
nontrivial correlation function Cj (x) = χj (1 + |x|/σ )e−|x|/σ ,
so

Dj = ε
χj

∫ ∞
0

∫ ∞
0 e−(x+y)/c(1 + |x − y|/σ )e−|x−y|/σ dy dx[

θ
∫ ∞

0 e−x/ce−xdx
]2

= εχj (2σc + σ 2)(c + 1)2

(c + σ )2θ2
, j = 1,2 (42)

and again we see (42) is an increasing function of the
correlation length σ . Using (40), (41), or (42), we can then
compute the formulas in (30) directly for the case of no noise
correlations.

For symmetric connections between areas κ =
ε1/2w̄12/(2θ ) = ε1/2w̄21/(2θ ), as well as identical noise
χ1 = χ2 = 1, we have 〈1(t)2〉 = 〈2(t)2〉 = 〈(t)2〉 so that
for effective coefficients D1 = D2, we have

〈(t)2〉 = Dj t

2
+ Dj

8κ
[1 − e−4κt ]. (43)

We compare the formula (43) to results we obtain from
numerical simulations in Figs. 4, 5, and 6.

In the case of correlations between layers, so χc > 0,
meaning Dc > 0. In this case, the covariance terms in D+ and
D− are nonzero. We can thus compute the diffusion coefficient
associated with correlated noise in the case of cosine correlated
noise

Dc = εχcσ
2

4θ4(c2 + σ 2)
.

In the case of symmetric connections between layers and iden-
tical noise, we have 1 = 2 =  and for cosine correlated

FIG. 4. (Color online) Effects of spatially homogeneous noise
[Cj (x) = 1] on propagation of coupled fronts. Theory (solid lines)
given by (40) matches numerical simulations (dashed lines) reason-
ably well. As the strength of identical reciprocal coupling κ1 = κ2 =
κ is increased, the variance of front position 〈1(t)2〉 does not increase
as quickly with time. Other parameters are θ = 0.4 and ε = 0.001.
Numerical results take 1000 realizations of (1) using Euler-Maruyama
with time step dt = 0.01 and space step dx = 0.1.
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FIG. 5. (Color online) Effects of cosine correlated noise
[Cj (x) = cos(x)] on propagation of coupled fronts. Theory given
by (41). As the strength of identical reciprocal coupling κ1 = κ2 = κ

is increased, the variance of front position 〈1(t)2〉 does not increase
as quickly with time. Other parameters and numerical methods are
the same is in Fig. 4.

noise

〈(t)2〉 = (1 + χc)σ 2ε

8θ4(c2 + σ 2)
+ (1 − χc)σ 2ε

32θ4(c2 + σ 2)κ
[1 − e−4κt ],

(44)

which shows interlaminar connections do not reduce vari-
ability as much when noise correlations between layers χc

are strong. We demonstrate the accuracy of the theoretical
calculation (44) in comparison to numerical simulations in
Fig. 7. Essentially, stronger noise correlations between layers
diminish the effectiveness of interlaminar connections at
reducing front position variance.

IV. DUAL RING NETWORK

A. Coupled pulse propagation

We now study another common neural field model frame-
work, asymmetric connectivity that produces traveling pulse
solutions [32,48]. To begin, we seek coupled traveling pulse
solutions to (1) by constructing solutions in the traveling
coordinate frame ξ = x − ct in the absence of noise (ε → 0),

FIG. 6. (Color online) Effects of exponentially correlated noise
[Cj (x) = (1 + |x|)e−|x|] on propagation of coupled fronts. Theory
given by (42). As the strength of identical reciprocal coupling
κ1 = κ2 = κ is increased, the variance of front position 〈1(t)2〉 does
not increase as quickly with time. Other parameters and numerical
methods are the same as in Fig. 4.

FIG. 7. (Color online) Effect of correlations between layers, for
Cj (x) = cos(x) and Cc = χc cos(x), on the propagation of coupled
fronts. As the amplitude of noise correlations between layers
increases, the effect of reciprocal coupling κ1 = κ2 = 0.1 is reduced,
as the the variance in front position 〈1(t)2〉 scales more quickly
all time. In the limit χc → 1, the effects of reciprocal coupling on
variance vanish. Other parameters and numerical methods are the
same as in Fig. 4.

where we will determine the wave speed c self-consistently.
Thus, we assume traveling wave solutions take the form
(u1(x,t),u2(x,t)) = (U1(ξ ),U2(ξ )). The translation invariance
of the system allows us to set the leading edge of the first
pulse to be at ξ = π to ease calculations. The traveling pulse
solutions then satisfy the system

−cU ′
1(ξ ) = −U1(ξ ) + w11 ∗ f (U1) + w12 ∗ f (U2), (45a)

−cU ′
2(ξ ) = −U2(ξ ) + w22 ∗ f (U2) + w21 ∗ f (U1), (45b)

where the convolution ∗ is over � = [−π,π ] with the periodic
boundary conditions Uj (−π ) = Uj (π ) for j = 1,2. As the
system lies on a bounded, periodic domain, we could use
Fourier methods to solve it for general weights wjk and
nonlinearities f [49]. For purposes of demonstration, we
proceed assuming the nonlinearity is a Heaviside (6). Since
we presume we are constructing coupled traveling pulse
solutions, their profiles must cross above and below threshold,
yielding the additional conditions U1(π ) = U1(π − a1) =
U2(b) = U2(b − a2) = θ . Accounting for the periodicity of
the functions U1 and U2 beyond domain [−π,π ], we note that
if b − a2 < −π , the last threshold condition will essentially
ensure U (b − a2 + 2π ) = θ . We can set the leading edge
crossing point of U1 to be at π due to the underlying translation
invariance of the system (1), which we will verify in our linear
stability calculations. In addition, note that the leading edge of
U2 and width a2 need not be the same as in U1. Therefore, we
have the system (45) become

−cU ′
1(ξ ) = −U1(ξ ) + G1(ξ ), (46a)

−cU ′
2(ξ ) = −U2(ξ ) + G2(ξ ), (46b)

where

G1(x) =
∫ π

π−a

w11(x − y)dy +
∫ b

b−a2

w12(x − y)dy,

G2(x) =
∫ b

b−a2

w22(x − y)dy +
∫ π

π−a

w21(x − y)dy.
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Thus, we can integrate the two equations (46) and ap-
ply the threshold conditions U1(π ) = θ and U2(b) = θ to
yield

U1(ξ ) = eξ/c

(
θe−π/c − 1

c

∫ ξ

π

G1(y)e−y/cdy

)
, (47a)

U2(ξ ) = eξ/c

(
θe−b/c − 1

c

∫ ξ

b

G2(y)e−y/cdy

)
. (47b)

Requiring periodicity Uj (−π ) = Uj (π ) for j = 1,2, we
have

2cθ sinh
π

c
=

∫ π

−π

G1(y)e−y/cdy,

2cθe−b/c sinh
π

c
= eπ/c

∫ π

b

G2(y)e−y/cdy

− e−π/c

∫ −π

b

G2(y)e−y/cdy.

Now, we can generate implicit expressions for the wave speed
c, widths a1 and a2, and the position b by applying the remain-
ing threshold conditions U1(π − a1) = θ and U2(g(a2)) = θ ,
we have

cθ (e(a1−π)/c − e−π/c) =
∫ π

π−a1

G1(y)e−y/cdy,

cθ (e(a2−b)/c − e−b/c) =
∫ b

b−a2

G2(y)e−y/cdy,

which can be solved using numerical root finding for a general
choice of wjk (j,k = 1,2).

We can compute these expressions in the case where the
weight functions are specified by (3) and (4), so that

θ = P(a1) + w̄12Q(a2,b)

c2 + 1
,

θ = R(a1) + w̄12S(a1,a2,b)

c2 + 1
,

(48)

θ = P(a2) + w̄21Q(a1, − b)

c2 + 1
,

θ = R(a2) + w̄21S(a2,a1, − b)

c2 + 1
,

where

P(x) = sin φ − c cos φ + c cos(x − φ) − sin(φ − x),

Q(x,y) = sin(y − x) + c cos y − sin y − c cos(x − y),

R(x) = sin(x + φ) − sin φ + c cos φ − c cos(x + φ),

S(x,y,z) = c cos(x + z) + sin(x − y + z)

− sin(x + z) − c cos(x − y + z).

We can solve the system of Eqs. (48) numerically to show the
effects of varying the coupling w̄21 while keeping w̄12 fixed. As
shown in Fig. 8, increasing the strength w̄12 leads to a decrease
in wave speed c and a decrease in the position b of the second
pulse. In the case of symmetric connectivity w̄12 = w̄21 =
w̄c, the system will simplify to a pair of equations specifying

FIG. 8. (Color online) (a) Speed c and (b) position parameter b

of coupled traveling pulses (47) as determined by the implicit system
(48) in the a case of asymmetric reciprocal connectivity w̄12 �= w̄21,
in general. Other parameters φ = π/8 and θ = 0.4.

the symmetric solution with U1(ξ ) = U2(ξ ), b = π , and a1 =
a2 = a given

θ = [cos φ + c sin φ + w̄c] sin a

c2 + 1
, (49)

0 = (1 − cos a)(sin φ − c cos φ − cw̄c)

c2 + 1
. (50)

We can exclude the solution cos a = 1 to (50) since this will
not satisfy the other equation. Thus, we use the other solution
to (50) to find that

c = sin φ

cos φ + w̄c

will be the wave speed. Thus, as opposed to the case of coupled
traveling fronts, strengthening connectivity w̄c here decreases
the wave speed. Plugging this into (49), we find that sin a =
θ/ cos φ + w̄c, so

as = π − sin−1 θ

cos φ + w̄c

, (51)

au = sin−1 θ

cos φ + w̄c

(52)

defines the widths of a coexistent pair of stable (51) and
unstable (52) coupled traveling pulse solutions. Note that these
two branches will coalesce in a saddle-node bifurcation (see
[47] for analysis in a single layer network). This bifurcation
point is determined by where θ = cos φ + w̄c, as shown in
Fig. 9.

In the limit w̄c → 0, the pulses are decoupled, both then
having speed c = tan φ. Pulses will then be neutrally stable
to perturbations in both directions. This can be seen by
using the same analysis we performed for the excitatory
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FIG. 9. Pulse width a1 = a2 = a as a function of the asymmetry
φ of the local weight functions w1(x) = w2(x) = cos(x − φ) for
varying amplitudes of reciprocal symmetric strength w̄12 = w̄21 =
w̄c. Increasing the strength w̄c shifts the saddle-node bifurcation,
at which the stable (solid) and unstable (dashed) branches of pulse
solutions, to the right in φ. Other parameter θ = 0.4.

neuronal network that supported fronts. Essentially, pertur-
bations must obey (15), which has an eigenvalue λ = 0
associated with the eigenfunction U ′

j for each layer j = 1,2.
As in the case of traveling fronts, coupled pulses are still
neutrally stable to perturbations that move them in the same
direction. However, we will now show that coupling layers
stabilizes pulses to perturbations that pull them in opposite
directions.

B. Noise-induced motion of coupled pulses

Now, we analyze the effects of weak noise on the
propagation of pulses in the presence of reciprocal coupling
that is weak [w12,w21 = O(ε1/2)] and local coupling that
is identical (w11 = w22 = w). To start, we presume noise
causes each pulse’s position to wander, described by stochastic
variables 1(t) and 2(t), and each pulse’s profile fluctuates,
described by the stochastic variables �1(x,t) and �2(x,t).
As in the case of coupled traveling fronts, this is described
by the expansion given by the ansatz (18). Plugging this
into (1) and expanding in powers of ε1/2, we find the
pulse solution at O(1) where w̄12 = w̄21 ≡ 0. At O(ε1/2),
we find the system (19) with associated linear operator
L given by (20), as we found for the excitatory network
with fronts. Next, we apply a solvability condition to (19),
where the inhomogeneous part must be orthogonal to the null
space of

L∗p =
(−cp′ − p + f ′(U1)[w(−x) ∗ p(x)]

−cq ′ − q + f ′(U2)[w(−x) ∗ q(x)]

)
, (53)

where p = (p(x),q(x))T . It is important to note that an
asymmetric weight function w(x), like (3), leads to a slightly
different form for L∗, now involving terms such as w(−x) ∗
p(x) = ∫ π

−π
w(y − x)p(y)dy. Again, we can decompose the

null space of L∗ into two orthogonal elements that take
the forms (ϕ1,0)T and (0,ϕ2)T . Rearranging the resulting
solvability condition shows that the stochastic vector �(t) =
(1(t),2(t))T obeys the multivariate Ornstein-Uhlenbeck
process (22) where connections between the two layers will
slightly alter the mean speed through a vector term J, given

by (23), and pull the positions of both fronts to one another
according to a coupling matrix K, given by (24) and (25),
defining the inner product 〈u,v〉 = ∫ π

−π
u(x)v(x)dx. Noise is

described by the vector dW(t) = (dW1,dW2)T , along with
(26), having mean 〈W(t)〉 = 0, variance 〈W(t)WT (t)〉 = Dt

with covariance matrix (27). As before, we can diagonalize
the system to compute the covariance matrix 〈�(t)�(t)T 〉,
and specifically the variances 〈1(t)2〉 and 〈2(t)2〉 given by
(30). As in the excitatory network with fronts, we can note that
the long-term effective diffusion of both 1 and 2 is D+, and
in the case of a symmetric network, variances will be identical
and given by (32). Therefore, the main differences will arise in
how the particular weight functions (3) and (4) as well as the
shape of the traveling pulses (47) affects the transfer of noise
between layers.

C. Calculating stochastic motion of coupled pulses

Now, we will compute the variances (30) considering the
specific case of Heaviside firing rate functions (6) and cosine
synaptic weights (3) and (4). In particular, we will take
w11 = w22 to compare our asymptotic results to numerical
simulations. To compute the pulse speed corrections γ1 and
γ2, we must first calculate the pulse solutions of the decoupled
system [32,47]

Uj (ξ ) = cos φ[sin ξ − sin(ξ + a)], (54)

where a = π − sin−1[θ sec φ] for the stable pulse. The spatial
derivatives

U ′
j (ξ ) = cos φ[cos ξ − cos(ξ + a)]. (55)

We can now solve explicitly for the null vectors of L∗. First,
we must compute

d

dU
H [Uj (ξ ) − θ ] = δ(ξ + a − π )

|U ′(π − a)| + δ(ξ − π )

|U ′(π )| (56)

in the sense of distributions. Plugging (54)–(56) into (53) to
find each of the two equations in the vector system L∗ϕ = 0
is

c
dϕj

dξ
+ ϕj = C(−π )δ(ξ + π ) + C(π − a)δ(ξ − π + a),

(57)

C(ξ ) =
∫ π

−π
cos(y − ξ − φ)ϕj (y)dy

| cos φ|[1 − cos a]
.

Using the 2π periodicity along with a self-
consistency argument, we can solve (57) explicitly to
yield [47]

ϕj (ξ ) =
[
H (ξ + π ) + coth(π/c) − 1

2

]
e−(π+ξ )/c

−
[
H (ξ + a − π ) + coth(π/c) − 1

2

]
e(π−a−ξ )/c.

We then evaluate the integrals in (23) on [−π,π ] to yield

γ1 = −ε1/2w̃12c

cos φ
, γ2 = −ε1/2w̃21c

cos φ
,

so as predicted by our nonlinear analysis, the pulses will
slow down as the strength of interlaminar connectivity w̄jk
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FIG. 10. (Color online) Effects of cosine correlated noise
[Cj (x) = cos(x)] on propagation of coupled pulses. Theory (solid
line) computed using (58) matches numerical computations (dashed
line) fairly well. As the strength of identical reciprocal coupling
κ1 = κ2 = κ is increased, the variance of pulse position 〈1(t)2〉
does not increase as quickly with time. Other parameters are θ = 0.4
and ε = 0.001. Numerical results take 1000 realizations of (1) using
Euler-Maruyama with time step dt = 0.01 and space step dx = 0.1.

is increased. We now compute κ1 and κ2, first using (56) to
find

f ′(Uj )U ′
j = δ(ξ + a − π ) − δ(ξ − π )

in the sense of distributions, so that the coupling terms (25)
are given as

κ1 = ε1/2w̃12

cos φ
, κ2 = ε1/2w̃21

cos φ
.

Now, to consider the effects of noise, we will begin by
considering the case where noise is uncorrelated between
layers so χc = 0 and Dc ≡ 0. Thus, we only need to compute
the diffusion coefficients in each layer. Starting with the
simplest case, globally correlated noise Cj (x) = χj for j =
1,2, we find

Dj = εχj

[∫ π

−π
ϕj (x)dx

]2

4 cos4 φ sin2 φ(1 − cos a)2
= 0, j = 1,2

so globally correlated noise does not affect pulse position.
Thus, we move to considering spatially structure noise corre-
lations given by the cosine Cj (x) = χj cos(x) so

Dj = εχj

[∫ π

−π
ϕj (x) cos x dx

]2 + [∫ π

−π
ϕj (x) sin x dx

]2

4 cos4 φ sin2 φ(1 − cos a)2

= εχj

2 cos4 φ(1 − cos a)
. (58)

Using (58) to compute the formulas in (30), we can compare
them with the results obtained for numerical simulations in
Fig. 10, specifically using symmetric connectivity κ1 = κ2 =
κ and noise χ1 = χ2 = 1.

When there are noise correlations between layers (χc > 0),
covariances in D± are nonzero and

Dc = εχc

2 cos4 φ(1 − cos a)
.

As was the case for the excitatory network with coupled
fronts, by introducing noise correlations between layers, the

FIG. 11. (Color online) Effects of cosine correlated noise
[Cj (x) = cos(x)] on propagation of coupled pulses when there are
noise correlations between layers [Cc = χc = cos(x)]. Increasing the
amplitude of correlations χc mitigates the effect of coupling on
variance 〈1(t)2〉, so that it scales linearly in time in the limit χc → 1.
Other parameters and numerical methods are the same as in Fig. 10.

effects of coupling on variance reduction are lessened. We
demonstrate the accuracy of the resulting calculations of
symmetric variances 〈2

1〉 = 〈2
2〉 for symmetric connectivity

κ1 = κ2 and noise χ1 = χ2 in Fig. 11.

V. DISCUSSION

We have demonstrated that reciprocal coupling between
layers in multilayer stochastic neural fields has two main
effects on the propagation of neural activity. First, it can alter
the mean speed of traveling waves, whether they are fronts
or pulses. Second, coupling serves to reduce the variance in
wave position in the presence of noise. To demonstrate this,
we have derived a multivariate Ornstein-Uhlenbeck process
for the position of waves in each layer, under the assumption
that the amplitude of noise and connectivity between layers
is weak. Variance reduction arises because perturbations that
force waves to go in opposite directions decay away due
to coupling. Such noise cancellation may arise in various
sensory regions in the brain that encode external stimuli
with propagating waves and possess multilaminar structure
[50,51].

There are a number of possible extensions of this work. First
of all, we could consider a nonlinear analysis of the laminar
stochastic neural field (1) that would account for some of the
higher order effects in the variances. This may provide for
an even better fit between theory and numerical simulations,
especially as the strength of coupling is increased beyond the
limit where our linear theory holds. In addition, one common
paradigm for generating waves in neural tissue is to provide
an external stimulus either in slice [26,31] or in vivo [25,27].
One interesting direction would be to examine how external
stimulation propagates through a multilaminar network, such
as in the networks without space analyzed in [52]. Finally,
there is a great deal of evidence that rats’ spatial navigation is
encoded by laminar networks in hippocampus and entorhinal
cortex [10]. The spatial scales encoded by each layer may
vary to generate representations that are nearly redundant, but
simply represented at different resolutions [53]. The theory
developed here could easily be extended to study laminar
networks that represent space at multiple scales and represent
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two-dimensional space. Our analysis could then lend insight
into the neural architecture that leads to the most faithful
representation of an animal’s present position.
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