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Abstract

Gamma rhythms (30–100 Hz) are an extensively studied synchronous brain state responsible for a number of sensory,
memory, and motor processes. Experimental evidence suggests that fast-spiking interneurons are responsible for carrying
the high frequency components of the rhythm, while regular-spiking pyramidal neurons fire sparsely. We propose that a
combination of spike frequency adaptation and global inhibition may be responsible for this behavior. Excitatory neurons
form several clusters that fire every few cycles of the fast oscillation. This is first shown in a detailed biophysical network
model and then analyzed thoroughly in an idealized model. We exploit the fact that the timescale of adaptation is much
slower than that of the other variables. Singular perturbation theory is used to derive an approximate periodic solution for a
single spiking unit. This is then used to predict the relationship between the number of clusters arising spontaneously in the
network as it relates to the adaptation time constant. We compare this to a complementary analysis that employs a weak
coupling assumption to predict the first Fourier mode to destabilize from the incoherent state of an associated phase model
as the external noise is reduced. Both approaches predict the same scaling of cluster number with respect to the adaptation
time constant, which is corroborated in numerical simulations of the full system. Thus, we develop several testable
predictions regarding the formation and characteristics of gamma rhythms with sparsely firing excitatory neurons.
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Introduction

Synchronous rhythmic spiking is ubiquitous in networks of the
brain [1]. Extensive experimental evidence suggests such activity is
useful for coordinating spatially disparate locations in sensory [2],
motor [3], attentional [4], and memory tasks [5]. In particular,
network spiking in the gamma band (30–100 Hz) allows for
efficient and flexible routing of neural activity [6]. Groups of
neurons responding to a contiguous visual stimulus can synchro-
nize such fast spiking to within milliseconds [7]. The processing of
other senses like audition [8] and olfaction [9] has also been shown
to employ synchronized gamma rhythms, suggesting this fast
synchronous activity is indispensable in solving perceptual binding
problems [10]. Aside from sensation, gamma band activity has
been implicated in movement preparation in local field potential
recordings of macaque motor cortex [3] and electroencephalo-
gram recordings in humans [11]. Also, there is a boost in power of
the gamma band in both sensory [12] and motor [13] cortices
during an increase in attention to related stimuli, which may serve
as a gain control mechanism for downstream processing [4]. Short
term memory is another task shown to consistently use gamma
rhythms in experiments where humans must recall visual stimuli
[14]. Thus, there are a myriad of studies showing gamma band
synchrony appears in signals of networks performing neural
processing of a variety of tasks and information. This suggests an
understanding of the ways in which such rhythms can be
generated is incredibly important to understanding the link

between single neuron activity and network level cognitive
processing.

Many theoretical studies have used models to generate and
study fast, synchronous, spiking rhythms in large neuronal
networks [15–17]. One common paradigm known to generate
fast rhythms is a large network of inhibitory neurons with strong
global coupling [16]. Periodic, synchronized rhythms are stable
because all cells must wait for global inhibition to fade before they
may spike again. This observation lends itself to the theory that
gamma rhythms can be generated solely by such mutual
inhibition, the idea of interneuron network gamma (ING)
oscillations [18]. Of course, this idea can be extended to large
networks where excitatory neurons strongly drive inhibitory
neurons that in turn feedback upon the excitatory population for
a similar net effect [19,20] (see also Fig. 5 of [21]), known as
pyramidal–interneuron network gamma (PING) oscillations
[18,22]. Even when coupling is sparse and random, it is possible
for large networks with some inhibitory coupling to spontaneously
generate a globally synchronous state [19,23]. The primary role of
inhibitory neurons in gamma rhythms has been corroborated in
vivo by [24], using optogenetic techniques. Light-driven activation
of fast-spiking interneurons serves to boost gamma rhythms,
whereas driving pyramidal neurons only increases the power of
lower frequencies. Depolarization of interneurons by activating
channelrhodopsin-2 channels has also been shown to increase
gamma power in local field potentials [25]. Still, no conclusive
evidence exists to distinguish between PING or ING being more
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likely, and [26] suggests that weak and aperiodic stimulation of
interneurons is the best protocol to make this distinction.
Nonetheless, it is clear that recent experiments have verified
much of the extensive theory developed regarding the mechanism
of gamma rhythms.

One particularly notable experimental observation of the PING
mechanism for gamma rhythms is that constituent excitatory
neurons fire sparsely and irregularly [12,27], while inhibitory
neurons receive enough excitatory input to fire regularly at each
cycle. Due to their possessing slow hyperpolarizing currents,
pyramidal neurons spike more slowly than interneurons [28], so
this partially explains their sparse participation in a fast rhythm set
by the interneurons. Modeling studies have accounted for the wide
distribution of pyramidal neuron interspike intervals by presuming
sparse random coupling in network connections [29] or by
including some additive noise to the input drive of the population
[30]. From this standpoint, the excitatory neurons are passive
participants in the generation of fast rhythms, so their statistics
have no relation cell to cell. The requirement, in these cases, is a
high level of variability in the structure and drive to the network.
However, an alternative explanation of sparse firing might suggest
that excitatory neurons assemble into subpopulations, clusters, that
fire in a more regular pattern for a transient period of time. This
may be accomplished without the need for strong variability
hardwired into a network.

One cellular mechanism that has been largely ignored in
network models of fast synchronous spiking rhythms is spike
frequency adaptation [30,31]. Slowly activated hyperpolarizing
currents known to generate spike frequency adaptation have been
shown in many different populations of regular spiking cells within
cortical areas where gamma rhythms arise. In particular,
pyramidal neurons in visual cortex exhibit slow sodium and
calcium activated afterhyperpolarizing current, proposed to play a
major role in generating contrast adaptation [32]. Regular spiking
cells in rat somatosensory cortex also have adaptive currents.
Furthermore, they exhibit a type 1 threshold, where they can fire
regularly at very low frequencies [33]. Also, recent experiments in
primate dorsolateral prefrontal cortex reveal significant increases
in interspike intervals due to spike frequency adaptation [34].
Synchronous spiking in the gamma range has been observed in
visual [2,12], somatosensory [35,36], and prefrontal [14] cortex,
all areas with neurons manifesting adaptation. Also, adaptation

may promote a low resonant frequency in regular spiking neurons
that participate in gamma rhythms, as revealed by optogenetic
experiments [24]. Therefore, adaptation not only slows the spike
rate of individual regular spiking neurons, but can play a role in
setting the frequency of network level spiking rhythms.

Thus, we propose to study a paradigm for the generation of a
network gamma rhythm in which excitatory neurons form clusters.
This accounts for the key observation that excitatory cells do not
fire on every cycle of the rhythm. The essential ingredients of the
network are spike frequency adaptation and global inhibitory
coupling. Spike frequency adaptation produces the slow firing of
individual cells. The restrictions on the sparsity of coupling and the
level of noise in the network are much looser than [30]. After
identifying these properties of the network, we can extract several
relationships between parameters of our model and attributes of
the resulting clustered state of the network. One result of
considerable interest is the relationship between the time constant
of adaptation and the number of clusters that can arise in the
network. Using two different methods of analysis, we can predict
the cluster number Nc to scale with adaptation time constant ta as
Nc!t2=3

a .
The paper employs both a detailed biophysical model as well as

an idealized model that we study for the formation of cluster states.
Our results begin with a display of numerical simulations of cluster
states in the detailed model. The main point of interest is that
excitatory neurons possess a spike frequency adaptation current
whose timescale appears to influence the number of clusters that
can arise. To begin to understand how this happens, we analyze
the periodic solution of a single adapting neuron, in the limit of
large adaptation time constant, for an idealized model of adapting
neurons. Using singular perturbation theory, we can derive an
approximate formula for the period of a single neuron and thus an
estimate of the number of clusters in a network of neurons. Then,
an exact expression is derived for the periodic solution of an
equivalent quadratic integrate and fire model with adaptation as
well as its phase-resetting curve. Next, we employ a weak coupling
assumption to predict the number of synchronized clusters that
will emerge in the network as the amplitude of additive noise is
decreased. The number of clusters in the predicted state is directly
related to a Fourier decomposition of the phase-resetting curve.
Our main result is that both the singular perturbation theory and
weak coupling analysis predict the same 2=3 power law relating
cluster number to adaptation time constant. Finally, we compare
our predictions made using singular perturbation theory and the
weak coupling approach to numerical simulations of the idealized
model and the detailed biophysical model.

Methods

Traub model of an excitatory-inhibitory network with
adaptation

For our initial numerical simulations, we use a biophysical
model developed by Traub for a network of excitatory and
inhibitory spiking neurons [37]. Parameters not listed here are
given in figure captions. The membrane potentials of each
excitatory neuron and each inhibitory neuron satisfy the dynamics:
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with synaptic currents

Author Summary

Fast periodic synchronized neural spiking corresponds to a
variety of functions in many different areas of the brain.
Most theories and experiments suggest inhibitory neurons
carry the regular rhythm while being driven by excitatory
neurons that spike more sparsely in time. We suggest a
simple mechanism for the low firing rate of excitatory cells
– spike frequency adaptation. Combining this mechanism
with strong global inhibition causes excitatory neurons to
group their firing into several clusters and, thus, produce a
high frequency global rhythm. We study this phenomenon
in both a detailed biophysical and an idealized model that
preserves these two basic mechanisms. Using analytical
tools from dynamical systems theory, we examine why
adaptation causes clustering. In fact, we show the number
of clusters relates to a simple function of the adaptation
time scale over a broad range of parameters. This allows us
to develop several predictions regarding the formation of
fast spiking rhythms in the brain.

Cluster States in Adapting Neuronal Networks
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where Gee, Gei, Gie, and Gii are random binary matrices such that
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where gating variables evolve as
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where q[ m,n,hf g. The biophysical functions associated with the
gating variables are

am(V )~
0:32(54zV )

1{ exp ({(Vz54)=4)
,

bm(V )~
0:28(Vz27)

exp ((Vz27)=5){1
,

ah(V )~0:128 exp ({(50zV )=18),

bh(V )~
4

1z exp ({(Vz27)=5)
,

an(V)~
0:032(Vz52)

1{ exp ({(Vz52)=5)
,

bn(V )~0:5 exp ({(57zV )=40):

Calcium concentration associated with the hyperpolarizing
current responsible for spike frequency adaptation in excitatory
neurons follows the dynamics

dcj

dt
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Bias currents to both excitatory and inhibitory neurons have a
mean and fluctuating part

Ie
j ~Ie
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where fluctuations are given by a white noise process such that

Sje
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j(t)j
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Finally, the fixed parameters associated with the network model
are

Ve
syn~0 mV, Vi

syn~{80 mV

VK~{100 mV, VNa~50 mV,

VL~{67 mV, VCa~120 mV,

Vshp~2:5 mV, Vlth~{25 mV,

Vsshp~2 mV, Vthr~{10 mV,

gL~0:2 mS=cm2, gK~80 mS=cm2,

gNa~100 mS=cm2, gahp~0:5 mS=cm2,

gCa~1 mS=cm2, aCa~0:005 mC:cm=mol,

ae~2 ms{1, be~0:4,

ai~5 ms{1, bi~1,

C~1 mF=cm2:

Cluster States in Adapting Neuronal Networks
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Random initial conditions are used for the simulations of the

model, and we wait until the system has settled into a steady state
to make calculations of the statistics. We evolve this model
numerically, using the Euler-Maruyama method, with a time step
of dt = 0.0001.

Idealized model network with adaptation
The majority of our analysis uses an idealized spiking neuron

model to study the mechanism of clustering associated with a
network of adapting neurons. The Traub model for a single neuron
exhibits a saddle-node on an invariant circle (SNIC) bifurcation. It is
possible to exploit this fact to reduce the Traub model to a theta
neuron model with adaptation, if the system is close to the
bifurcation and the adaptation is small and slow [38]. In [39], an
alternative conductance based model with an afterhyperpolarizing
(AHP) current was reduced using phase reduction type techniques,
where the AHP gating variable was taken to evolve slowly. In
particular, Fig. 3(c) of [39] shows that the associated phase-resetting
curve has a characteristic skewed shape. We also eliminate the
inhibitory cells from the idealization of this section by slaving their
synaptic output to the total firing of the excitatory cells. To our
knowledge, there is no rigorous network level reduction that would
allow us to reduce the excitatory-inhibitory conductance based
network to the idealized one we present here. We do not provide a
meticulous reduction from the Traub network model to the network
analyzed from here on. We do wish to preserve the essential aspects
of the biophysical model described in the previous section, spike
frequency adaptation and inhibitory feedback.

Therefore, we consider a system of N spiking neurons, each
with an associated adaptation current, globally coupled by a
collective inhibition current

_hhj~1{ cos hjz(1z cos hj)(Izsjj{bzj{cs), ð1aÞ

ta _zzj~{zjztad(p{hj), ð1bÞ

ts _ss~{sz
1

N

XN

j~1

d(p{hj), ð1cÞ

for j~1,:::,N. Equation (1a) describes the evolution of a single

spiking neuron hj with input Izsjj , in the presence of spike

frequency adaptation with strength b and global inhibition with
strength c. Each neuron’s input has the same constant component
I and a unique noisy component with amplitude s where jj

is a white noise process such that Sjj(t)T~0 and

Sjj(t)jj(s)T~d(t{s) for j~1,:::,N. The adaptation current

associated with each neuron j is discretely incremented with each
spike and decays with time constant ta, according to equation (1b).
Global inhibitory synaptic current is incremented by 1=N with
each spike and decays with time constant ts. Notice, in the limit of
pulsatile synapses (ts?0), the equation (1c) for inhibitory synaptic
current becomes

s~
1

N

XN

j~1

d(p{hj):

We will make use of this reduction for some calculations relating
cluster number to model parameters. The membrane time constant
of neurons is usually approximated to be between 1–5 ms,
so even though time t has been nondimensionalized, its units could
be deemed to be between 1–5 ms. In addition, experimental results
suggest that the hyperpolarizing currents that generate spike
frequency adaptation decay with time constants roughly
40–120 ms [40,41], indicating that ta&1. This observation will
be particularly helpful in calculating a number of results.

Note, we consider this model as an idealization of adapting
excitatory spiking neurons coupled to a smaller population of
inhibitory neurons that then collectively connect to the excitatory
population. Our approximation is reasonable, considering inhibitory
neurons evolve on a faster timescale than the adapting excitatory
neurons, as they did in the more detailed biophysical Traub model.
For our numerical simulations of this model, we employ the Euler-
Maruyama method, with a time-step of dt = 0.0001.

Calculating spike statistics of the Traub model
To display the spikes from our simulations of the Traub model

(see Figs. 1 and 2), we employ the following sorting technique.
First, to better illustrate the formation of clusters, we sort the
simulations displayed in Fig. 1 in order of increasing voltage Ve

j at
the end of the simulation using MATLAB’s sort function.
Similarly, we sort the neurons in Fig. 2a in decreasing order,
according to their spike time closest to t~10000 ms also using the

Figure 1. Clustering in numerical simulations of a network of 200 excitatory and 40 inhibitory Traub neurons. Plots of excitatory
neuron spike times with neural index sorted according the value of Ve at time t~8000ms. A Three clusters providing a total network rhythm of 50 Hz
for tCa~50ms, se~0:4mA=cm2 , si~0:05mA=cm2 . B Four clusters providing a total network rhythm of 45 Hz for tCa~80ms, se~0:4mA=cm2,
si~0:05mA=cm2 . C Five clusters providing a total network rhythm of 25 Hz for tCa~180ms, se~0:25mA=cm2 , si~0:05mA=cm2 . Connectivity
parameters are gee~0:02, gei~0:8, gie~0:8, gii~0:1 (see Methods for other parameters).
doi:10.1371/journal.pcbi.1002281.g001

Cluster States in Adapting Neuronal Networks
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sort function. We do not resort the neurons between the left and
right panel, which displays the mixing effects of cycle skipping.

We use standard techniques for computing the interspike interval
(ISI) and correlation coefficient (CC) for the population of spike
trains. Calculations of the ISI take spike times of each neuron
t1,t2,t3,::: (i~1,:::,L) and compute their difference ki~tiz1{ti

(i~1,:::,L{1). Interspike intervals of all N excitatory neurons are
then combined into one vector and a histogram is then computed
with MATLAB’s hist function for a bin width of Dt~0:5. We

compute the CC for all possible pairs of excitatory neurons to ensure
the best possible convergence. We first digitize two neurons’ (i and j)
spike trains into bins of Dt~1 and then use MATLAB’s xcorr
function to compute an unnormalized correlation function. This is
then normalized by dividing by the geometric mean

ffiffiffiffiffiffiffi
ninj
p

of both
neuron’s total firing ni and nj over the time interval. For the
calculations displayed in Fig. 2, we use a total run time of
Ti~100000ms.

Least squares fits to cluster number–adaptation time
constant relations

The extensive singular perturbation theory analysis we carry out
on the idealized network suggests that there is a clear cut scaling
Nc!t2=3

a for the relationship between the number of clusters Nc

arising in a network and the adaptation time constant ta (We also
use the following least squares method to fit data relating Nc to tCa

attained from numerical simulations of the Traub model). To
compare this result with the relations between Nc and ta derived
using a weak coupling assumption, we consider the function
N#c (ta) determined by (23). This gives the number of clusters
associated with a particular ta and so must be an integer number.
Since (6) is a continuous function, we wish to remove the stepwise
nature of N#c (ta) to make a comparison. Thus, we first generate
the vector and matrix

Nc~

Nc

Ncz1

..

.

!NNc{1
!NNc

2

66666664

3

77777775

; Ap~

(ta(Nc))p 1

(ta(Ncz1))p 1

..

. ..
.

(ta( !NNc{1))p 1

(ta( !NNc))p 1

2

66666664

3

77777775

,

Figure 2. Neurons switch clusters via cycle skipping in a network of 200 excitatory and 40 inhibitory Traub neurons. A network of 200
excitatory and 40 inhibitory neurons with tCa~80ms supports four clusters here for a population rhythm of about 45 Hz. A Spike times of neurons
where index is sorted according to their spike times soonest after t~10000ms. After 60 s, neurons have become thoroughly mixed with other
clusters. B Histogram showing frequency of interspike interval (ISI) for all excitatory neurons in network. Large peak is just above the calcium time
constant tCa~80ms, but smaller peak occurs at a higher ISI. C By zooming the scale of the frequency into 10{3 , the small peak at larger ISIs is more
visible. This suggests neurons switch clusters by skipping one cycle of the fast rhythm. D Correlation coefficient plotted over the domain of
{4|104ms to 4|104ms ({40s to 40s). Over long time intervals, correlations degrade, due to noise-induced cycle skipping or (rarer) early spiking.
E For a tighter lag domain, {200ms to 200ms ({0:2s to 0:2s), the ringing at discrete lag intervals due to consistent cluster time intervals is apparent.
Same parameters are used here as in Fig. 1.
doi:10.1371/journal.pcbi.1002281.g002

Figure 3. Inner and outer layers of the singular perturbative
approximation to periodic solution of idealized model. Singular
perturbative approximation to (h(t), z(t)), the periodic solution of a
single, idealized, spiking neuron model with adaptation (2). See Text S1
for more details on singular perturbative calculation.
doi:10.1371/journal.pcbi.1002281.g003

Cluster States in Adapting Neuronal Networks
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where Nc and !NNc are the minimum and maximum number of

clusters attained in the given range of N#c (ta). The function ta(Nc)
gives the minimal value of ta such that N#c (ta)~Nc; in other
words

ta(Nc)~ min ta : N#c (ta)~Nc

" #
:

Note that Nc[Zm and Ap[Rm|2. Now, we solve for the coefficients
of the power function fit N#c (ta)~c1tp

azc2 by solving

Apc~Nc

as an overdetermined least squares problem for the coefficient

vector c~½c1,c2%T . We find the points (ta(Nc),Nc) are well fit by
the specific case p~2=3. To generate the inset plot, we simply
compute the L1 residual

R(p)~jjNc{c1(ta(Nc))p{c2jj1

for p[(0,1%. This shows the global minimum is in very close
proximity to p~2=3.

Simulating the idealized model
As a means of comparison with our theory, we perform

simulations of the idealized model by starting the system (1) at
random initial conditions

hj(0)~{pQj , zj(0)~z0 exp ({yj), j~1,:::,N,

where Qj ,yj are uniformly distributed random variables on ½0,1%,
z0 is given in Text S1, and s(0)~0. As suggested by our weak
coupling analysis, we start the system with high amplitude noise
(s~0:2), where clusters are not well defined, and incrementally
decrease s as the system evolves until noise is relatively weak
(s~0:02). For low noise, each cluster is particularly well defined,
especially when there are fewer clusters present.

Minimal adaptation time constant corresponding to
cluster number

We now describe the attainment of the data points correspond-
ing to minimal ta (tCa for our calculations of the Traub model) to
attain Nc clusters for numerical simulations. These are com-
puted by, first, simulating 20 realizations for each value of
ta~0,0:1,0:2,:::: (tCa~0,0:1,0:2,:::ms for the Traub model),
starting with random initial conditions (2) and high noise, reducing
noise and stopping after 20000 time units (20000 ms for the Traub
model), and finally recording the number of clusters in the network
for each realization. The points we then plot correspond to the first
value of ta whose median cluster number is larger than the median
for the previous ta (tCa) value. Increments in Nc between
neighboring ta (tCa) values are always no more than one.

Results

Clustering in a network of spiking neurons
Clustering of spiking activity in a network of neurons is the

phenomenon in which only neurons belonging to the same cluster
spike together, and two or more clusters spike each period of the
population oscillation. The emergence of cluster states has been
studied in globally coupled networks of phase oscillators with
additive noise [42], where clusters can be identified using stability
analysis of an associated continuity equation. Phase oscillator

networks may also develop clustering in the presence of
heterogeneous coupling [43] or time delays [44,45]. Golomb
and Rinzel extended early work in phase oscillators to show cluster
states can arise in biologically-inspired networks of Wang–Rinzel
spiking neurons [46]. They employed a stability analysis of
periodic solutions to their network, using Floquet multipliers to
identify which cluster state could arise for a particular set of
parameters. Networks of leaky integrate-and-fire neurons can also
exhibit clustering if coupled with fast inhibitory synapses [47] or
there is sufficient heterogeneity in each neuron’s intrinsic
frequency [48]. In Hodgkin-Huxley type networks clustering has
been witnessed due to a decrease in the amplitude of a delayed
rectifier current [16] or by simply including a delay in synaptic
coupling [44]. The addition of a voltage dependent potassium
current to an excitatory-inhibitory network has also been shown to
form two cluster states in detailed simulations [49].

In this section, we show clustering can arise in a detailed
biophysical model network of spiking neurons developed by Traub
(see Methods). The network consists of excitatory and inhibitory
neurons, but only excitatory neurons possess a slow calcium
activated hyperpolarizing current, representative of spike frequen-
cy adaptation. The connectivity structure is dense but random,
where each pair of neurons has a set probability of being
connected to one another, according to their type. Here, we
present the results of numerical simulations of this model, showing
the behavior of cluster states in the network. More specifically, we
are interested in the way that spike frequency adaptation helps to
generate these states. In later sections, we look at cluster states in
an idealized network model in order to analytically study the role
of adaptation in the onset of clustering.

We first present spike times of a model network of 200
excitatory and 40 inhibitory Traub neurons in Fig. 1 for two
different time constants of the calcium-induced hyperpolarizing
current. In particular, we find that, for slower adaptation, there is
an increase in the number of clusters, but the overall frequency of
the network decreases. This relationship persists over a wide range
of model parameters, like network connectivity, synaptic strength,
and input to neurons. To aid in the visualization of the clusters, we
sort the neurons according to their voltage’s value at the end of the
simulation (see Methods).

Although the size of the clusters is fairly invariant over time,
neurons do not remain in the same clusters indefinitely. In fact, by
examining the state of neurons at times significantly before of after
the time we sort them according to spike times (see Methods), we
find that units of clusters begin to mix with one another, shown in
Fig. 2(a). Neurons jump from one cluster to another. The
mechanisms by which this can occur are that either a neuron
fails to fire with its current cluster and fires with the next cluster or
the neuron fires with the previous cluster. This is exemplified by
the additional peaks in the interspike interval distribution shown in
Fig. 2(c). The correlation coefficient is relatively low on short time
scales and decreases significantly over long time scales since
neurons skip cycles or spike early due to fluctuations in drive to the
network (see Fig. 2(d)). As pictured in Fig. 2(e), on short timescales,
excitatory neuron spike times are weakly correlated between
clusters, before cycle hopping takes effect. We have found that
higher amplitude noise leads to more frequent switching of
neurons between clusters. In addition, as the number of clusters
increases, each individual cluster appears to be less stable and
neurons also hop from one cluster to the next more frequently. We
have considered architectures for which the cross correlations
between neurons decay more quickly due to sparser connectivity.
The main goal of our study, though, is to examine clustering as a
complementary mechanism to irregular input and random
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connectivity for generating sparse firing. This can be contrasted
with the degradation of correlations between excitatory neurons
on fast timescales in [30], due to strong fluctuations and sparse
connectivity in their excitatory-inhibitory network.

Thus, the cluster state that arises in this biophysically based
network of spiking neurons appears to be a stable state that exists
over a large range of parameters. The essential ingredients are a
slow adapting current and inhibitory neurons that only fire when
driven by excitatory neurons.

Analysis of clustering mechanism in an idealized network
The key feature of the detailed biophysical model that makes

excitatory neurons susceptible to grouping into clusters is spike
frequency adaptation. Few studies have examined the effects of
adaptive mechanisms on the dynamics of synchronous states in
spiking networks. In a study of two coupled adapting Hodgkin-
Huxley neurons, their excitatory synapses transitioned from being
desynchronizing to synchronizing as the strength of their spike
frequency adaptation was increased [50]. In a related study, spike
frequency adaptation was shown to shift the peak of an idealized
neuron’s phase-resetting curve, creating a nearly stable synchro-
nous solution [51]. The effects of this on network level dynamics
were not probed, and, in general, studies of the effects of
adaptation on dynamics of large scale neuronal networks are fairly
limited. A large excitatory network with adaptation can exhibit
synchronized bursting, followed by long periods of quiescence set
by the adaptation time constant [52]. Spike adaptation must build
up slowly and be strong enough to keep neurons from spiking at
all. More aperiodic rhythms were studied in populations of
adapting neurons by [53], who showed the population frequency
could be predicted by the preferred frequency of a single adapting
cell. Adaptation has also been posed as a mechanism for disrupting
synchronous rhythms in [54], where increasing the conductance of
slow hyperpolarizing currents transitions a network to an
asynchronous state. There remain many open questions as to
how the strength and timescale of adaptive processes in neurons
contribute to synchronous modes at the network level.

We therefore proceed by studying several characteristics of the
cluster state as influenced by spike frequency adaptation. First, we
study how the period of a single neuron relates to the strength and
time scale of adaptation. Then, we find how these parameters bear
upon the number of clusters arising in the network of adapting
neurons with global inhibition. Approximate relations are derived
analytically and then compared to the results of simulations of (1)
as well as the Traub model.

Approximating the periodic solution and cluster number
with singular perturbation theory

We first present a calculation of the approximate period T of a
single adaptive neuron, uncoupled from the network. The singular
perturbation theory we use relies upon the fact that the periodic
solution is composed of three different regions in time: an initial
inner boundary layer; an intermediate outer layer; and a terminal
inner boundary layer. In this case, the initial and terminal
boundary layers correspond to what would be the back and front
of an action potential in a biophysical model of a spiking neuron,
such as the Traub model. The intermediate layer corresponds to a
refractory period imposed by the strong slow afterhyperpolarizing
current. An asymptotic approximation to the periodic solution is
pictured in Fig. 3, showing the fast evolution of h in boundary
layers and slow evolution in the outer layer. The slow timescale
arises due to the fact that ta&1, so we shall use the small
parameter E~1=ta in our perturbation theory. Key to our analysis
is the fact that the end of the outer layer comes in the vicinity of a

saddle-node bifurcation in the fast subsystem, determined by the h
equation (1a). It then turns out that, as a result, we must rescale
time to be t~O(E1=3) in the terminal boundary solution. Such an
approach has been studied extensively by Guckenheimer in the
Morris-Lecar and Hodgkin-Huxley neurons with adaptation, as
well as general systems that support canards of this type [55,56].
Nonetheless, we proceed by carrying out a similar calculation here
and use it to derive an approximate formula for the period of the
solution. We find that it matches the numerically computed
solution remarkably well. In addition, we can use the expression
for the period to explain why the number of clusters Nc arising in
the network (1), when compared to the adaptation time constant
ta, will scale as Nc!t2=3

a .
To initially approximate the interspike interval for a determin-

istically–driven adaptive neuron, uncoupled from the network

_hh~1{ cos hz(1z cos h)(I{bz),

_zz~{z=tazd(p{h),
ð2Þ

we shall use singular perturbation theory. In particular, we exploit
the fact that the adaptation time constant ta is large in comparison
to the membrane time constant of a spiking neuron. Guckenhei-
mer has carried out several other studies examining relaxation
oscillations and canards in the vicinity of fold singularities [55,56].
The usual approach is to decompose the full system into a fast and
slow part and then use standard methods of bifurcation analysis to
analyze constituent parts [57].

We are particularly interested in computing the approximate
form of a periodic solution. The details of this calculation are
carried out in Text S1. Our analysis exploits the fact that the fast
subsystem, defined by the h equation of the system (2), exhibits a
saddle-node on an invariant cycle (SNIC) bifurcation. Thus, we
have an approximate periodic solution that is split into two time
regions, one before the subsystem reaches the SNIC at time
t~TSN and the other after, so

h(t)~2 tan{1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I{bz0

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I{bz0

p
t{

p

2

$ %h i
z

p

2

{ cos{1 I{bz0e{t=taz1

bz0e{t=taz1{I

& '
, t[(0,TSN ),

ð3Þ

and

h(t)~
2B

t1=3
a

ffiffiffi
3
p

Ai0(B(TSN{t)=t1=3
a )zBi0(B(TSN{t)=t1=3

a )
ffiffiffi
3
p

Ai(B(TSN{t)=t1=3
a )zBi(B(TSN{t)=t1=3

a )
,

t[(TSN ,T),

where the parameters z0 and B are defined in Text S1 while Ai
and Bi are Airy functions of the first and second kind. We plot this
solution along with numerical simulations in Fig. 4. The location
of the saddle-node bifurcation point of the fast subsystem
correlates biophysically to the end of the refractory period
imposed by the afterhyperpolarizing current. Notice that there is
a cusp at the point where the outer and terminal boundary
solution come together. In addition, the perturbative solution’s
phase h arrives at zero before the actual solution’s. This suggests
that there are finer scaled dynamics arising from the phase
variable being small in the vicinity of the saddle-node bifurcation
of the fast subsystem. Such effects could potentially be explored
with higher order asymptotics. For the purposes of this study, it
suffices to truncate the expansion to two terms. The resulting
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formulae can be utilized extensively in the explanation of network
dynamics.

In deriving our approximation to the periodic solution, we were
able to calculate a relatively concise formula relating the period of
the solution to the remainder of the parameters

T&ta ln
b

I
z1

& '
z

bt1=3
a tb

bzI
, ð4Þ

where tb is the minimal solution to

ffiffiffi
3
p

Ai({Btb)~{Bi({Btb), ð5Þ

such that tbw0 (see Text S1). We illustrate the accuracy of this
approximation over a wide range of adaptation time constants ta

in Fig. 5. The approximation is fairly accurate for a substantial
region of parameter space, but improves appreciably as ta and b
are increased.

We conclude our study of the periodic solution to (2) by using
our formula for the period (4) to roughly calculate the number of
clusters admitted by a network of adapting neurons with pulsatile
inhibitory coupling. This also provides us with an estimate of the
population spike frequency. Any inputs delivered to the neuron
during the initial or the outer layer stage of the solution, equation

(3), will have little or no effect on its firing time. During this
interval, the adaptation variable constrains the phase h so that it
simply relaxes back to the same point on the trajectory following a
perturbation. Once the terminal layer begins, the input is above a
threshold such that the phase can increase at an accelerating rate.
However, it is possible to hold the phase back with a negative
perturbation. A neuron that has already begun its terminal phase
when another cell spikes will always be forced to delay its own
spike. As a result, over time, in a network, clusters of neurons
would be forced apart to about the time length of the terminal
layer. Therefore, the number of clusters will be roughly
determined by the length of this terminal layer as compared with
the total length of the period

Nc&
ta ln b

I z1
h i

z
bt1=3

a tb

bzI

tbt1=3
a

~ ln
b

I
z1

& '
t2=3

a

tb
z

b

bzI
:

ð6Þ

Therefore, as the adaptation time constant increases, the number

of clusters will scale as Nc!t2=3
a . While our main interest in this

formula is its relationship to the adaptation time constant, there

Figure 4. Singular perturbative theory approximates numerically evolved solution of idealized model reasonably well. Comparison
of the singularly perturbed solution (grey) and the numerically evolved solution (black) of (2) when the adaptation time constant A ta~50 and B
ta~200. Vertical grey line denotes location of cusp, where a saddle-node bifurcation occurs in fast subsystem at time t&TSN (see Text S1). Other
parameters are I~1 and b~1.
doi:10.1371/journal.pcbi.1002281.g004

Figure 5. Period of the solution to the single adaptive theta neuron model. We compare the period as calculated by evolving (2)
numerically (black stars) against the analytically computed formula for period (4), derived using singular perturbation theory (grey line). A Period T
plotted versus adaptation time constant ta . B Length of terminal layer T{TSN plotted versus adaptation time constant ta . Input parameter I~1.
doi:10.1371/journal.pcbi.1002281.g005
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are also nonlinear relationships derived here between cluster
number and other parameters. We shall compare this formula
further with the predictions we calculate using weak coupling and
the phase-resetting curve. Since the perturbative solution ceases its
slow dynamics briefly before the numerical solution (see Fig. 4), we
expect that this asymptotic formula (6) approximating cluster size
may be a slight underestimate.

Nonetheless, it allows us to concisely approximate how the
population frequency depends on the adaptation time constant ta

as well as the cluster number Nc. Since each neuron spikes with a
period T given by equation (4) and there are Nc clusters of such
neurons, the frequency of populations spikes in the network are
given by

fp~
Nc

T
~

1

tbt1=3
a

: ð7Þ

We plot this function versus ta as well as Nc in Fig. 6. Notice,
networks with neurons whose spike frequency adaptation have a
longer time constant support synchronous spiking rhythms with
lower frequencies, as in the Traub network (see Fig. 1). Also, by
our mechanism, as more clusters are added, the population
frequency decreases. This is due to the period of individual neuron
spiking scaling more steeply with adaptation time constant than
the cluster number.

We have identified general relationships between the adaptation
time constant and two quantities of the idealized spiking network
(1): the period of a single neuron and the cluster number of the
network. These relationships help characterize the behavior of the
cluster state in the adaptive network. In particular, the bifurcation
structure of the fast-slow formulation of the single neuron system
guides the identification of a t1=3

a timescale of the spike phase,
which evidently guides network level dynamics. Singular pertur-
bation theory is indispensable in making this observation.

Phase-resetting curve of an adapting neuron
As a means of studying the susceptibility of a single neuron to

synchronizing to input from the network, we shall derive the
phase-resetting curve of a neuron with adaptation. Biophysically,
the phase-resetting curve corresponds to the amount that brief
inputs to a tonically spiking neuron delay or advance the time of
the next spike. First, we make a change of variables
x~ tan (h=2) to the system (2), so the state of the neuron is
now described by the quadratic integrate and fire (QIF) model

with adaptation [58]

_xx~x2zI{bz,

_zz~{z=tazd(1=x):
ð8Þ

We show in Text S1 that by using a sequence of further changes
of variables, we are able to express the periodic solution to this
system in terms of special functions. As has been shown
previously, the solution to the adjoint equations of a system
that supports a limit cycle is the infinitesimal phase-resetting
curve (PRC) of the periodic orbit [59]. Therefore, with the
function form of x(t) in hand, we can derive the adjoint
equations by first linearizing the system (8) about the limit cycle
solution (x(t)zj(t),z(t)zf(t)) so

_jj~2x(t)j{f,

_ff~{f=ta:
ð9Þ

The adjoint equations, under the inner product

Su,vT~

ð T

0
u#(t)v(t)dt ð10Þ

will be

_pp~{2x(t)p, ð11Þ

_qq~pzq=ta: ð12Þ

Since x(t) is known, it is straightforward to integrate (11), to
solve for the first term of the adjoint

ln p~{2

ð t

0
x(s)ds:

By plugging in x~{ _yy=y (see Text S1), we find we can further
specify

p(t)~y(t)2,

where y(t) is given up to a scaling factor in Text S1.

Figure 6. Population frequency’s dependence upon cluster number. Plots showing the relationship of the population frequency fp given by
equation (7) to A the adaptation time constant ta and B the cluster number Nc for various values of input I . The frequency is given per
nondimensional unit of time.
doi:10.1371/journal.pcbi.1002281.g006
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It is now straightforward to plot the PRC of the QIF model with
adaptation. To our knowledge, this is the first exposition of an
analytic calculation of the PRC of the QIF model with adaptation.
Although, the bifurcation structure of more general QIF models
with adaptation has been analyzed in previous work by [60,61].
The exact period T can be computed using the right boundary
condition given in Text S1, which can then be used to determine
the initial condition for the adaptation variable

z0~
1

1{e{T=ta
:

We then must plot a function which involves a Bessel function of
imaginary order and imaginary argument

p(t)~A Im J2
ffiffi
I
p

i=E
2
ffiffiffi
!bb

p
i

E
e{Et=2

 !( ) !2

: ð13Þ

In Fig. 7, this is shown along with the numerically computed PRC,

where pulsatile inputs are applied at discrete points in a
simulation. Time is also normalized by the period T to yield the
phase variable w~t=T . We find an excellent match between the
two methods.

One can also derive a very accurate representation of the PRC
by numerically solving the adjoint equations (11) and (12). This is
also useful because Bessel functions with pure imaginary order and
argument are particularly difficult to approximate as the
magnitude of the order and argument become large. Accurate
asymptotic approximations for this class of special functions are
lacking, although [62] provides some useful formulae along these
lines. Thus, we compute the PRC using numerical solution of the
QIF system (8) and the adjoint equation (11), pictured in Fig. 8 for
several different ta values. Time is normalized here, as in Fig. 7, so
the phase variable w~t=T goes between zero and one. This also
eases comparison for different time constants ta. We find that, as
we would suspect from our singular perturbation theory
calculations, the region in which the neuron is susceptible to
inputs shrinks as ta increases. This skewed shape to the PRC has
been revealed previously in other studies of spiking models, where
adaptation currents were treated in alternative ways [51,63]. We
also compute the PRC for the theta model numerically using the
adjoint equations. To derive them, we linearize the system (2)
about the limit cycle solution (h(t)zh(t),z(t)zf(t)) so

_hh~( sin h(t))(1zbz(t){I)h{b(1z cos h(t))f,

_ff~{f=ta:

The adjoint equations, under the inner product (10) will be

_gg~( sin h(t))(I{1{bz(t))g, ð14Þ

_ww~b cos h(t)gzw=ta: ð15Þ

By solving (2) numerically, we can use the solution to then
numerically integrate (14) to solve for the first term of the adjoint
g, which is the PRC of the theta model. We show this alongside
the numerically calculated PRCs of the QIF model. Notice they
are quite alike, save for the theta model’s PRC being nonzero at

Figure 7. Exact phase resetting curve of quadratic integrate-
and-fire model with adaptation. Phase-resetting curve of the QIF
model calculated exactly by solving (8) for the periodic solution (grey
line) and numerically by applying pulsatile inputs to numerical
simulations of (8). Parameters are I~1, b~1, and ta~50.
doi:10.1371/journal.pcbi.1002281.g007

Figure 8. PRCs calculated numerically using the adjoint equation. PRCs calculated for the A QIF model with adaptation and B theta model
with adaptation as function of phase for various adaptation time constant ta values. For visualization purposes, the PRCs have all been normalized to
integrate to unity. Other parameters are I~1 and b~1.
doi:10.1371/journal.pcbi.1002281.g008
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w~1. In the theta model’s PRC, the change of variables

h~2 tan{1 x creates a discontinuity.
Therefore, as revealed by an analytic formula and numerical

method for computing the PRC, we find that spike frequency
adaptation creates a lengthy time window during which the
neuron is insensitive to inputs. As the time constant of adaptation
ta is increased, this window occupies more of the solution period.
With these formulations of the PRC in hand, we may carry out a
weak coupling analysis of the network to quantitatively study
predictions regarding solutions that emerge from instabilities of the
incoherent state.

Weak coupling theory predicts cluster number
Due to large scale spiking network models usually being

analytically intractable, a weak coupling assumption is commonly
used to study their resulting activity patterns. This allows the
reduction of each cell’s set of equations to a single one for the
phase [38]. Based on the averaging theorem, this reduction is valid
as long as parameters of the model are such that each unit
supports a limit cycle, their firing rates are not too heterogeneous,
and coupling between units is not too strong [15,59]. This also
allows us to place our work in the context of previous studies of
clustering in phase models [42–44].

Presuming the cells receive enough input to spontaneously
oscillate and that they are weakly coupled, we can reduce the
system to a collection of limit cycle oscillators [38]. Each oscillator
will have some constant frequency v~1=T , where we use the
period computed using the exact solution (see Text S1) for a
particular set of parameters. Thus, the network becomes

_hhj~vz
cw

N

XN

k~1

H(hj{hk)zjj ð16Þ

where H(h) is the coupling function attained by convolving the
PRC with the synaptic timecourse

H(h)~{

ð 2p

0

g(w’=2p)s(T(hzw’)=2p)dw’

~{
1

ts

ð 2p

0
g(w’=2p)e{T(hzw’)=2p=ts dw’,

ð17Þ

and j is a white noise process such that SjT~0 and
Sjj(s)jk(t)~2Ddijd(s{t). To analyze the system (16), we

consider the mean field limit N??. Mean field theory has been
used extensively to study (16) when H(h)~ sin h [64–66], but
much less so when H(h)= sin h [67,68]. Following such previous
studies, we can employ a population density approach where
oscillators are distributed in a continuum of phases r(h,t) so that
r(h,t)dh denotes the fraction of oscillators between h and hzdh at
time t. Thus, r is nonnegative, 2p-periodic in h, and normalized

ð 2p

0
r(h,t)dh~1, Vt§0:

Therefore, r evolves according to the Fokker-Planck equation
[64,65]

Lr

Lt
~D

L2r

Lh2
{

L
Lh

(rv), ð18Þ

where the instantaneous velocity v(h,t) of an oscillator is

v(h,t)~vzcw

ð 2p

0
H(h{h’)r(h’,t)dh’,

the continuum limit of vz
cw

N

X
H(hj{hk).

Now, in order to examine the effect that the phase-resetting
curve has upon the solutions to (16), the weak coupling
approximation to (1), we shall study instabilities of the uniform
incoherent state of (18), given by r0:1=(2p). It is straightforward
to check that this is indeed a solution by plugging it into (18). Since
this is always a solution, for all parameters, we can examine the
solutions that emerge when it destabilizes by studying its linear
stability. We will show that for D sufficiently large, the incoherent
state is stable, but as D is reduced, the solution destabilizes, usually
at a unique Fourier eigenmode. We begin by letting

r(h,t)~
1

2p
zEg(h,t),

where E%1. Expanding the continuity equation (18) to first order
in E, we arrive at an equation for the linear stability of the
incoherent state

Lg

Lt
~D

L2g

Lh2
{

L
Lh

1

2p
vzcw

ð 2p

0

H(h{h0)g(h0,t)dh0
) *

zg(vzcw
!HH)

& '
,

ð19Þ

where !HH~
Ð 2p

0 H(h)dh. Expressing g as a Fourier series

g(h,t)~
X?

n~{?
cn(t)einh,

and specifically taking cn(t)~elnt, we can compute the eigenvalue
ln of the nth mode of g using the spectral equation of the linear
system (19), so

(lnzDn2)einh~

{
L
Lh

1

2p
wzcw

ð 2p

0

H(h{h0)einh0dh0z(vzcw
!HH)einh

) *& '
:

Applying the change of coordinates y~h{h’, we have a general
equation for the nth eigenvalue

lnzDn2~{in
1

2p
vzcw

ð 2p

0
H(y)e{inydy

) *
zvzcw

!HH

& '
:ð20Þ

We can evaluate the integral term by considering the Fourier
series expansion

H(y)~
X?

m~0

am cos (my)z
X?

m~1

bm sin (my) ð21Þ

so that

1

2p

ð 2p

0
H(y)e{inydy~

1

2p

ð 2p

0
an cos2 (ny){bn sin2 (ny)dy

~
1

2
½an{ibn%:
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Upon plugging this into (20), we find the eigenvalue associated
with the nth mode of g is related to the Fourier coefficients am,bm

of H by

ln~{Dn2{
ncwbn

2
zin vz2pcwa0{

cwan

2

$ %
: ð22Þ

Thus, as D is reduced towards zero, the first eigenmode to
destabilize will be the one whose eigenvalue crosses from the left to
the right half of the complex plane first. Using equation (22), we
can identify this mode as the first n to have Reln~0 or

2D

cw

~{
bn

n
:

This corresponds to the n# for which {bn=n is maximal. For the
critical D value at which the first eigenvalue has positive real part,
we show plots of ln as a function of n for several different
parameters in Fig. 9. Notice that as the adaptation time constant
ta is increased, and other parameters are held fixed, the critical n
increases. As the synaptic time constant ts is increased and other
parameters are held fixed, the critical n decreases. We contrast this
with the case of excitatory coupling (cv0) in the system (1), where
the PRC is nonnegative. In this case, the critical n is fairly
insensitive to changes in the time constants, virtually always
predicting the n~1 mode becomes unstable first (not shown).
Therefore, our weak coupling calculation approximates the
number of clusters Nc for a given set of parameters using the
coupling function (17) with the Fourier expansion (21) so that

Nc~argmaxn[Zz {
bn

n

) *
: ð23Þ

To compare with our singular perturbation theory results, we
compute the approximate number of clusters using the weak
coupling assumption for pulsatile synapses. In the limit ts?0, the
coupling function becomes H(h)~{g(h=2p). Therefore, the
Fourier coefficients bn are calculated directly from the PRC of the
theta model. In Fig. 10, we plot the number of clusters Nc as a
function of ta, calculated using equation (23) along with the
asymptotic approximation to the number of clusters (see equation
(6)). Notice that the singular perturbation theory slightly

underestimates Nc as compared with weak coupling. This may
be due to the fact that the singular perturbative solution reaches
the saddle-node point slightly before the actual solution does,
underestimating the length of the quiescent phase of the PRC.
Nonetheless, both curves have a characteristic sublinear shape. We
show in Fig. 11 that the weak coupling Nc dependence upon ta

scales as a t2=3
a power law, just as predicted by singular

perturbative theory. Thus, even though our asymptotic approx-
imation (6) is an underestimate, it provides us with the correct
scaling for cluster number dependence upon adaptation time
constant. The same power law scaling is reflected in networks with
exponentially decaying synapses, as shown in Fig. 12. We plot
predictions based on our weak coupling assumption for ts=0. As
the synaptic time constant is increased, the number of clusters is
diminished, since feedback inhibitory inputs relax more slowly.
Therefore, we speculate an improved asymptotic approximation of

Figure 9. Eigenvalues associated with linear stability of incoherent state predict cluster number. Plots show real part of eigenvalues
Reln at the critical noise amplitude D at which the incoherent state destabilizes. A When the adaptation time constant is varied as ta~10,50,100,200,
the corresponding predicted number of clusters, in the weak coupling limit, is Nc~2,4,6,10 respectively given by (23). Synaptic time constant ts~1.
B When the synaptic time constant is varied as ts~0:1,1,10,100, the corresponding predicted number of clusters, in the weak coupling limit, is
Nc~7,6,4,3. Adaptation time constant ta~100. Other parameters are I~1, b~1, and cw~1.
doi:10.1371/journal.pcbi.1002281.g009

Figure 10. Weak coupling and singular perturbation approx-
imations of cluster number. Cluster number Nc approximations
comparison between that given by weak coupling (black stars) –
equation (23) – and that given by singular perturbative approximation
(grey line) – equation (6). For purposes of comparison, we use pulsatile
coupling (ts?0) for weak coupling approximation. Other parameters
are I~1 and b~1.
doi:10.1371/journal.pcbi.1002281.g010
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cluster number that accounts for synaptic timescale might include
an inverse dependence upon ts.

Comparing numerical simulations to theoretical
predictions of clustering

In this section, we present results of numerical simulations of the
idealized network (1) of theta neurons with global inhibition and
adaptation. In addition, we compare the scaling law predicted for
the idealized model to the number of clusters arising in numerical

simulations of the more detailed Traub model. We find that the
qualitative predictions of our singular perturbation theory and
weak coupling approximations are reflected in the dependence of
the state of the network on model parameters. The quantitative
relationship between adaptation time constant and cluster number
is sensitive to the strength of global inhibitory feedback c, holding
for small values only. One would expect this, since approximations
were made considering weak coupling.

In Fig. 13, we show the results of simulations for various
adaptation time constants in the case of pulsatile synapses (ts?0).
As predicted by the formulae of both our singular perturbation
theory approximation (6) and weak coupling assumption (23),
cluster number increases sublinearly with adaptation time
constant. Notice in Fig. 13(c), when there are seven clusters,
neurons of each cluster do not spike in as tight of a formation as
can be found in simulations with four and six clusters. We
conjecture that this is due to fewer neurons participating in each
cluster and so less global inhibition is recruited each time a set of
neurons fires. This smears the boundary between each cluster. In
Fig. 14, we show the results of simulations in the case of
exponentially decaying synapses with time constant ts~1. As
predicted by our weak coupling analysis, the smoothing of the
synaptic signal leads to there being fewer clusters on average for a
particular ta value. Notice in both the pulsatile and exponential
synapse cases, as the number of clusters increases, the interspike
intervals are prolonged, as predicted by our approximation of the
period (4). Therefore, the resulting frequency of population activity
decreases, on average, with ta.

To quantitatively compare our theoretical predictions with
numerical simulations of (1), we plot the minimal ta necessary to
generate the number of clusters Nc for each method. Theoretical
calculations include both the singular perturbation approach (6)
and the weak coupling approximation (23). The points we then

Figure 11. Cluster number computed using weak coupling scales as ta
2=3. Cluster number Nc computed using weak coupling formula (23)

scales as t2=3
a power law for pulsatile coupling (ts?0). Points (ta,Nc) having minimal adaptation time constant ta predicting the given cluster number

Nc (black stars) calculated with equation (23). A power law function c1t2=3
a zc2 (grey line) is fit to these points using a least squares method (see

Methods). (Inset) The L1 residual R(p) of least squares fits of the points (ta,Nc) using the function c1tp
azc2 plotted for p[(0,1% (see Methods). Notice

the minimum of R(p) is very close to p~2=3.
doi:10.1371/journal.pcbi.1002281.g011

Figure 12. Dependence of cluster number on synaptic time
constant. Cluster number Nc computed as a function of ta for various
synaptic time constants ts using (23) the weak coupling formula (black
stars) and fit to formula c1t2=3

a zc2 (grey lines) using least square
method (see Methods).
doi:10.1371/journal.pcbi.1002281.g012
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plot in Fig. 15 correspond to the first value of ta whose median
cluster number is larger than the median for the previous ta value
(see Methods). Remarkably, the theoretical calculation using the
weak coupling approach give a reasonable approximation to the
behavior of the simulations. Comparing the result of pulsatile
versus exponentially decaying synapses, the increase in Nc with ta

is clearly larger for the pulsatile synapse case. This can be
contrasted with the results of van Vreeswijk, who found in
simulations of inhibitory integrate and fire networks that median
cluster number increased with synaptic timescale [47]. One
particular aspect of simulations of the full model (1) that may
escape our theoretical formulae (6) and (23) is the effect of different
synaptic strengths. To produce fairly well resolved clusters, it was
necessary to take c~O(1), not very weak. Additionally, as the
number of clusters increases, the strength of inhibitory impulses
decreases. Both of these facts may bear upon potential cluster
number and account for the nonlinear shape of the numerically
developed relationship between Nc and ta.

Finally, we return to the original detailed biophysical model to
compare the predictions of cluster scaling made in the idealized
model. Exchanging the idealized adaptation time constant ta for
the time constant for calcium dynamics in the Traub model, tCa,
we examine how well the scaling Nc!t2=3

Ca holds in numerical
simulations of the detailed model. We use the same method as that
employed for the idealized model to identify the minimal tCa at
which a certain number of clusters appears (see Methods). Our
results are summarized in Fig. 16 and show that, in fact, cluster

number does approximately follow the adaptation time constant
scaling predicted from the idealized model. This makes sense,
since one can relate the Traub model to the idealized theta model
using a normal form reduction, so their phase-resetting properties
will be similar to a first approximation [38]. The quiescence
invoked by strong adaptation will lead to sharp narrow peaks in
the PRC for the Traub model (as shown for the idealized model in
Fig. 8(b)). Therefore, our analysis of the theta model leads to an
excellent prediction of the effects of adaptation upon the cluster
state in the network of Traub neurons.

Discussion

In this paper, we have studied the formation of cluster states in
spiking network models with adaptation. We theorize clustering
may be an alternative, or at least contributing, mechanism for the
sparse firing of pyramidal cells during gamma rhythms [12].
Sparse gamma rhythms may, therefore, not rely solely upon the
effects of input and connectivity heterogeneities [30]. Besides spike
frequency adaptation, the other essential property for the
formation of clusters in the network is feedback inhibition.
Empirically, we observe the number of clusters increases with
the time constant of adaptation in a detailed biophysical spiking
network and a more idealized model. We can carry out a number
of analytical calculations on the idealized model that help uncover
the mechanisms of clustering. Results of a singular perturbative
approximation of a single neuron’s periodic spiking solution

Figure 13. Numerical simulations of idealized network with pulsatile coupling reveal clustering. Cluster states in idealized network (1)
with pulsatile coupling (ts?0). The number of clusters increases sublinearly with adaptation time constant: A ta~30, four clusters; B ta~60, six
clusters, C ta~90, seven clusters. Other parameters are I~1, b~1, c~1, s~0:02.
doi:10.1371/journal.pcbi.1002281.g013

Figure 14. Numerical simulations of idealized network with exponentially decaying synapses reveal clustering. Cluster states in
idealized network (1) with exponentially decaying synapses with time constant ts~1. Increasing ta leads to fewer clusters than in the pulsatile
synapse case: A ta~30, three clusters; B ta~90, six clusters; C ta~150, nine clusters. Other parameters are I~1, b~1, c~1, s~0:02.
doi:10.1371/journal.pcbi.1002281.g014
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confirm that adaptation with longer timescales will shorten the
relative length of time a neuron is susceptible to inputs. This is
revealed in a compact expression (4) relating the period of the
neuron to parameters. In particular, we can estimate the number
of clusters Nc generated in the network for a particular value of
adaptation time constant ta and find they will scale as Nc!t2=3

a .
We then compare this result to a formula that can be derived in
the context of a phase model, where, incidentally, the phase-
resetting curve can be computed exactly. In the weak coupling

limit, the number of clusters is related to the Fourier modes of the
phase-resetting curve. In fact, we can fit the number of clusters to a
t2=3

a power law. These results are confirmed in simulations of the
full idealized model (1) and are well matched to simulations of the
detailed biophysical model.

Our results suggest a number of experimentally testable
predictions. We have suggested that clustered states may be an
organized synchronous state capable of generating sparse gamma
rhythms [1]. Rather than a rhythm generated by a balanced
network containing neurons with driven by high amplitude noise
[30], gamma may be a rhythm generated by slow excitatory
neurons that cluster into related groups temporarily but dissociate
from one another after some length of time. This could be probed
using multiunit recordings to look for clustering of pyramidal
neurons on short timescales. Large networks that exhibit clustering
may do so through this combination of adaptation and inhibition.
This suggests that it may be possible to identify in vitro or in vivo
clustering that depends upon spike frequency adaptation by
examining the effects of curtailing calcium dependent potassium
currents using cadmium, for example [69]. Our model suggests
weakening spike frequency adaptation should lead to a decrease in
cluster number. In addition, there are a growing number of ways
to experimentally measure the PRC of single neurons [63,70].
Since pyramidal cells are known to often possess adaptation
currents, it may be possible to study the ways in which modulation
of those currents’ effects bears on a neuron’s associated PRC. Our
analysis indicates that stronger and slower spike frequency
adaptation leads to PRCs with a steep peak at the end. Thus,
different aspects of the cluster state shown here may be studied
experimentally in several ways.

Clustering through intrinsic mechanisms may in fact be a way
for networks to generate cell assemblies spontaneously [71]. If
clustering is involved in the processing of inputs, shifting neurons
from one cluster to another might disrupt the conveyance of
some memory or sensation [10,14]. In more specific networks,
underlying heterogeneous network architecture may provide an
additional bias for certain neurons to fire together. Alternatively,
cell assemblies may be formed due to bias in the input strength to a

Figure 15. Comparison of cluster number relationship to adaptation time constant in theory and numerical simulations in idealized
model. Minimal ta value at which Nc clusters appear in network, a comparison of theory and numerical simulations. Solid grey lines denote theory
predicted by weak coupling analysis (fit using least squares approach in Methods). A Pulsatile synapses, as predicted by singular perturbation theory
(dashed grey) and weak coupling (solid grey); compared with numerical simulations (black stars). B Exponential synapses with ts~1. Other
parameters are I~1, c~1, b~1.
doi:10.1371/journal.pcbi.1002281.g015

Figure 16. Comparison of cluster number relationship to
calcium time constant in theory and numerical simulations in
Traub model. Minimal tCa value at which Nc clusters appear in the
Traub network. We fit data gathered from numerical simulations (black
stars) to two different power functions using a least square method (see
Methods). Notice, the least squares fit to c1t2=3

Ca zc2 (grey solid) is much
better than the fit to a linear function c1tCazc2 (dashed black).
Predictions of cluster scaling (Nc!t2=3

a ) derived for our idealized model
(1) carry over with impressive accuracy to simulations of a detailed
biophysical model. Connectivity parameters are gee~0:02, gei~0:8,
gie~0:8, gii~0:1 (see Methods for other parameters).
doi:10.1371/journal.pcbi.1002281.g016
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recurrent excitatory-inhibitory network, as shown in [49]. They
found that the inclusion of hyperpolarizing current could generate
slow rhythms in the excitatory neurons with increased input. Our
model does rely on a hyperpolarizing current but does not require
a heterogeneity in the input. Also, each assembly possesses its own
beta rhythm whereas the entire network possesses a gamma
rhythm.

In the future, it would be interesting to pursue a variety of the
theoretical directions suggested by our results. The singular
perturbation calculation follows along the lines of a few previous
studies of canards in the vicinity of fold singularities [55–57,72].
Carrying out an even more detailed study of the bifurcation
structure of the fast-slow system of the single neuron (2) may allow
for a more exact calculation of how the period relates to the
parameters. In particular, we may be able to compute the
dynamics of relaxation time in the vicinity of the bottleneck near
the saddle-node bifurcation of the fast system (see Fig. 3). We could
also extend this calculation to other idealized spiking models with
adaptation such as Morris-Lecar [55] or the quartic integrate and
fire model [60]. In addition, we have considered examining the
types of dynamics that may result in inhibitory leaky integrate and
fire networks with adaptation. Excitatory integrate and fire
networks have previously been shown to support synchronized
bursting when possessing strong and slow enough adaptation [52].
It has also been shown that inhibitory integrate and fire networks
without adaptation support clustering in the case of alpha function
synapses [47]. In preliminary calculations, we find that a single
integrate and fire neuron with strong and slow adaptation does not
have the same steep peaked PRC as the theta model, due to there
being no spike signature in the model. Therefore, it may not
support clustered states through the same mechanism as the

system we have studied. We have also mentioned that clustering
arises in the network (1) through the application of a homogenous
deterministic current with some additive noise. Therefore,
applying an input with more temporal structure, for example at
the frequency of the network or individual neurons, may lead to
interesting variations of the clustered state. Finally, we seek to
study other potential negative feedback mechanisms for generating
clusters. In a large competitive spiking network, it may be possible
for a subset of neurons to suppress the rest until synaptic
depression exhausts inhibition. Multistable states supported with
such mechanisms have been shown in small spiking networks
[73,74], but theory has yet to be extended to large scale
synchronous states like clustering.

Supporting Information

Text S1 Singular perturbation theory and exact calculation of
periodic solution to idealized spiking model with adaptation.
(PDF)
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dependence of pyramidal cell-interneuron synapses in the hippocampus: an
ensemble approach in the behaving rat. Neuron 21: 179–89.

28. McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative
electrophysiology of pyramidal and sparsely spiny stellate neurons of the
neocortex. J Neurophysiol 54: 782–806.

29. Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-
fire neurons with low firing rates. Neural Comput 11: 1621–71.

30. Brunel N, Wang XJ (2003) What determines the frequency of fast network
oscillations with irregular neural discharges? I. Synaptic dynamics and
excitation-inhibition balance. J Neurophysiol 90: 415–30.

31. Börgers C, Kopell N (2005) Effects of noisy drive on rhythms in networks of
excitatory and inhibitory neurons. Neural Comput 17: 557–608.

Cluster States in Adapting Neuronal Networks

PLoS Computational Biology | www.ploscompbiol.org 16 November 2011 | Volume 7 | Issue 11 | e1002281



32. Sanchez-Vives MV, Nowak LG, McCormick DA (2000) Cellular mechanisms of
long-lasting adaptation in visual cortical neurons in vitro. J Neurosci 20:
4286–99.

33. Tateno T, Harsch A, Robinson HPC (2004) Threshold firing frequency-current
relationships of neurons in rat somatosensory cortex: type 1 and type 2
dynamics. J Neurophysiol 92: 2283–94.
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Singular perturbation theory and exact calculation of periodic
solution to idealized spiking model with adaptation

The following text consists of two companion sections to the main manuscript, Sparse gamma rhythms
arising through clustering in adapting neuronal networks. The first section details an approximation of
the periodic solution of a theta model neuron with spike frequency adaptation. This makes use of the
slow timescale of spike frequency adaptation to separate the system into a fast and a slow subsystem,
which can be analyzed together using singular perturbation theory. These results are summarized in the
main manuscript section entitled Approximating the periodic solution and cluster number with

singular perturbation theory. The next section exactly calculates the periodic solution of a quadratic
integrate-and-fire model neuron with spike frequency adaptation. This is used in the main manuscript
section entitled Phase-resetting curve of an adapting neuron to compute the phase-resetting curve
of the model.

Singular perturbative approximation of periodic solution

In this section, we proceed to compute a singular perturbative approximation to the periodic solution of

θ̇ = 1− cos θ + (1 + cos θ)(I − βz), (1)

ż = −z/τa + δ(π − θ),

with period T , such that θ(0) = −π and θ(T ) = π. With these assumptions, we can solve for

z = z0e
−t/τa =

e−t/τa

1− e−T/τa
. (2)

Therefore the system (1) reduces to a single nonautonomous equation for the phase variable,

θ̇ = 1− cos θ + (1 + cos θ)(I − βz0e
−ϵt), (3)

where we have defined ϵ = 1/τa ≪ 1, since we know the adaptation time constant is large, τa ≫ 1. By
ignoring dynamics that occur on the slow timescale s = ϵt, we can consider a fast subsystem

θ̇ = 1− cos θ + (1 + cos θ)(I − βz0), (4)

which should describe initial dynamics within an initial boundary layer. It is straightforward to solve
(4), along with the boundary condition θ(0) = −π to find

θ(t) = 2 tan−1
[

√

I − βz0 tan
(

√

I − βz0t−
π

2

)]

(5)

within the initial layer. Once the dynamics of the fast subsystem (5) have settled to their limiting value,

lim
t→∞

2 tan−1
[

√

I − βz0 tan
(

√

I − βz0t−
π

2

)]

= −
π

2
,



2

they will evolve along a manifold determined by the slow subsystem

0 = 1− cos θ + (1 + cos θ)(I − βz0e
−s), (6)

where s = ϵt is a slow time variable. We can solve (6) for the outer layer’s dynamics

θ(s) = − cos−1

[

I − βz0e−s + 1

βz0e−s + 1− I

]

. (7)

Notice that this solution will vanish when βz0e−ϵTSN = I. This is related to the fact that as the total
input to the neuron passes through zero, there is a saddle-node bifurcation in the equilibria structure of
the associated fast subsystem [1]. This is a common mechanism for initiating the fast part of a relaxation
oscillation [2]. The slow solution will therefore last about

TSN =
1

ϵ
ln

βz0
I

.

When the system reaches the vicinity of the saddle-node (t ≈ TSN), it will begin to evolve according
to fast dynamics. Therefore, we must calculate the terminal dynamics of the periodic solution within a
boundary layer. To do this, we presume perturbative solutions and fast timescales with arbitrary scaling
θ = ϵpθ1 and τ = ϵq(t− TSN). Substituting these expressions into (3), we have

ϵp+q dθ1
dτ

=
1

2
ϵ2pθ21 + 2βz0e

−ϵTSN ϵ1−qτ.

Upon setting p = q = 1/3, we find the order of all terms is matched. Now, we apply the Riccati
transformation θ1 = −2ẏ/y, as well as a change of variables r = Bτ , where

B =

(

βz0e−ϵTSN

2

)1/3

=

(

I

2

)1/3

.

This yields Airy’s equation

d2y

dr2
= ry,

which has general solutions

y(r) = c1Ai(r) + c2Bi(r),

where Ai(r) and Bi(r) are the Airy functions of the first and second kind. We specify the solution θ1 by
transforming back, changing variables back to τ , and applying the initial condition θ1(0) = 0 to find

θ1(τ) = 2B

√
3Ai′(−Bτ) + Bi′(−Bτ)

√
3Ai(−Bτ) + Bi(−Bτ)

.

We can predict the point where the inner layer solution will diverge to be the minimal τb such that τb > 0
and

√
3Ai(−Bτb) = −Bi(−Bτb). (8)

The blow up of this inner solution roughly denotes the end of the solution period. Converting back to
the time variable t, we find the period will be

T = TSN +
τb
ϵ1/3

(9)

=
1

ϵ
ln

βz0
I

+
τb
ϵ1/3

.



3

Substituting (9) into (2) and requiring self-consistency, we can solve for the initial condtion

z0 = 1 +
I

β
e−ϵ2/3τb .

Therefore, the time it takes to reach the saddle-node is

TSN =
1

ϵ
ln

[

β

I
+ e−ϵ2/3τb

]

≈
1

ϵ

{

ln

[

β

I
+ 1

]

−
ϵ2/3τb
β/I + 1

}

, (10)

when we Taylor expand to first order. Plugging (10) into (9) and rewriting τa = 1/ϵ, we have the
approximation for the period of the solution

T ≈ τa ln

[

β

I
+ 1

]

+
βτ1/3a τb
β + I

,

where τb is determined by (8).
Note that the outer solution (7) becomes undefined once the saddle-node of the fast subsystem is

reached at t = TSN . Thus, we must construct the singular solution in a piecewise manner with two
regions, where one region is the sum of the initial and outer layers and another region is the terminal
layer. Using the timescale t and noting ϵ = 1/τa, we can write

θ(t) = 2 tan−1
[

√

I − βz0 tan
(

√

I − βz0t−
π

2

)]

+
π

2

− cos−1

[

I − βz0e−t/τa + 1

βz0e−t/τa + 1− I

]

, t ∈ (0, TSN),

and

θ(t) =
2B

τ1/3a

√
3Ai′(B(TSN − t)/τ1/3a ) + Bi′(B(TSN − t)/τ1/3a )

√
3Ai(B(TSN − t)/τ1/3a ) + Bi(B(TSN − t)/τ1/3a )

, t ∈ (TSN , T ).

Exact periodic solution for quadratic integrate-and-fire model
with spike frequency adaptation

In this section, we explicitly solve for a periodic solution to

ẋ = x2 + I − βz, (11)

ż = −z/τa + δ(1/x).

To do so, we require the boundary conditions x(0) = −∞ and x(T ) = ∞. We can immediately solve the
equation for the adaptation variable

z(t) =
e−t/τa

1− e−T/τa
.

Assigning the parameters ϵ = 1/τa and β̄ = β/(1− e−ϵT ), we can express the equation for x now as

dx

dt
= x2 + I − β̄e−ϵt. (12)
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Note, we use ϵ here for comparison with our singular perturbation theory results. Our next step is to
employ the transformation x = −ẏ/y to convert the Riccati equation (12) to

d2y

dt2
= [β̄e−ϵt − I]y, (13)

a second order linear equation. Now, by making the change of variables r = e−ϵt/2, we can in fact convert
(13) to

r2
d2y

dr2
+ r

dy

dr
=

4

ϵ2
[

β̄r2 − I
]

y.

Upon employing a change to imaginary variables µ = 2β̄ir/ϵ and ν = 2
√
Ii/ϵ, we find y(µ) is described

by Bessel’s equation

µ2 d
2y

dµ2
+ µ

dy

dµ
+
[

µ2 − ν2
]

y = 0,

whose general solutions are given

y(µ) = c1Jν(µ) + c2Yν(µ),

where Jν(µ) and Yν(µ) are Bessel functions of the first and second kind, respectively. Changing the
constant ν and variable µ back, we find y is given as the sum of Bessel functions with imaginary order
and argument

y(t) = c1J2
√
Ii/ϵ

(

2
√

β̄i

ϵ
e−ϵt/2

)

+ c2Y2
√
Ii/ϵ

(

2
√

β̄i

ϵ
e−ϵt/2

)

.

We find that, by requiring that the left boundary condition, x(0) = −∞ ⇒ y(0) = 0, be satisfied, the
solution y is restricted to be of the form

y(t) = c1Im

{

J
2
√
Ii/ϵ

(

2
√

β̄i

ϵ
e−ϵt/2

)}

,

so that the period T can be specified by the right boundary condition, x(T ) = ∞ ⇒ y(T ) = 0, so

y(T ) = Im

⎧

⎨

⎩

J
2
√
Ii/ϵ

⎛

⎝

2i

ϵ

√

β̄

eϵT − 1

⎞

⎠

⎫

⎬

⎭

= 0.

This fully characterizes the solution, since the remaining constant c1 is eliminated by the form of x(t) =
−ẏ(t)/y(t). In addition, since we now have a formula for the periodic solution to the system (11), we can
compute the associated adjoint, related to the phase resetting curve.
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