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A neural correlate of parametric working memory is a stimulus-specific rise in neuron firing rate that persists long after the stimulus is
removed. Network models with local excitation and broad inhibition support persistent neural activity, linking network architecture and
parametric working memory. Cortical neurons receive noisy input fluctuations that cause persistent activity to diffusively wander about
the network, degrading memory over time. We explore how cortical architecture that supports parametric working memory affects the
diffusion of persistent neural activity. Studying both a spiking network and a simplified potential well model, we show that spatially
heterogeneous excitatory coupling stabilizes a discrete number of persistent states, reducing the diffusion of persistent activity over the
network. However, heterogeneous coupling also coarse-grains the stimulus representation space, limiting the storage capacity of para-
metric working memory. The storage errors due to coarse-graining and diffusion trade off so that information transfer between the initial
and recalled stimulus is optimized at a fixed network heterogeneity. For sufficiently long delay times, the optimal number of attractors is
less than the number of possible stimuli, suggesting that memory networks can under-represent stimulus space to optimize performance.
Our results clearly demonstrate the combined effects of network architecture and stochastic fluctuations on parametric memory storage.

Introduction
Persistent neural activity occurs in prefrontal (Fuster, 1973; Fu-
nahashi et al., 1989; Romo et al., 1999) and parietal (Pesaran et
al., 2002) cortex during the retention interval of parametric
working memory tasks. Model networks of stimulus-tuned
neurons that are connected with local slow excitation (Wang,
1999) and broadly tuned inhibitory feedback (Compte et al.,
2000; Goldman-Rakic, 1995) exhibit localized and persistent
high-rate spike train patterns called “bump” states (Compte et
al., 2000; Renart et al., 2003). Bumps have initial locations that
are stimulus-dependent, so population activity provides a
code for the remembered stimulus (Durstewitz et al., 2000).
These models relate cortical architecture to persistent neural
activity, and are a popular framework for studying working
memory (Wang, 2001; Brody et al., 2003).

Neural variability is present in all brain regions and limits
neural coding in many sensory, motor, and cognitive tasks (Stein
et al., 2005; Faisal et al., 2008; Laing and Lord, 2009). In paramet-
ric working memory networks, dynamic input fluctuations cause
bump states to wander diffusively (Compte et al., 2000; Laing and
Chow, 2001; Wu et al., 2008; Polk et al., 2012; Burak and Fiete,

2012; Kilpatrick and Ermentrout, 2013), degrading stimulus
storage over time. Psychophysical data show that the spread of
the recalled position increases with delay time (White et al.,
1994; Ploner et al., 1998), consistent with diffusive wandering
of a bump state. While several results examine how bump
formation depends upon neural architecture, little is known
about how cortical wiring affects the diffusion of persistent
neural activity.

The response properties of cells are often heterogeneous
(Ringach et al., 2002), a feature that can improve population-
based codes (Chelaru and Dragoi, 2008; Shamir and Sompolin-
sky, 2006; Marsat and Maler, 2010; Osborne et al., 2008;
Padmanabhan and Urban, 2010). In particular, there is a large
degree of variation in synaptic plasticity and cortical wiring in
prefrontal cortical networks involved in persistent activity during
working memory tasks (Rao et al., 1999; Wang et al., 2006). Het-
erogeneity in excitatory coupling quantizes the neural space used
to store inputs, reducing the network’s overall storage capacity
(Renart et al., 2003; Itskov et al., 2011). On the other hand, sta-
bilizing a discrete number of network states improves the robust-
ness of working memory dynamics to parameter perturbation
(Rosen, 1972; Koulakov et al., 2002; Brody et al., 2003; Goldman
et al., 2003; Miller, 2006). In this study, we investigate how stabi-
lization introduced by synaptic heterogeneity affects the tempo-
ral diffusion of persistent neural activity.

We show that spatial heterogeneities in the excitatory archi-
tecture of a spiking network model of working memory reduce
the rate with which bumps diffuse away from their initial posi-
tion. However, the same heterogeneities limit the number of sta-
ble network states used to store memories. A tradeoff between
these consequences maximizes the transfer of stimulus informa-
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tion at a specific degree of network heterogeneity. For a large
number of stimulus locations and long retention times, we show
that network architectures that under-represent stimulus space
can optimize performance in working memory tasks.

Materials and Methods
Recurrent network architecture. We used for our network a ring architec-
ture commonly used for generating persistent activity to represent direc-
tion between 0 and 360° (Ben-Yishai et al., 1995; Compte et al., 2000)
with NE � 256 pyramidal cells ( E) and NI � 64 interneurons ( I). Each
leaky integrate-and-fire neuron (Laing and Chow, 2001) was distin-
guished by its cue orientation preference �j, where �j( E) � �E � j( j �
1, …, NE) and �j(I) � �I � j( j � 1, …, NI) for �E � 360/256 and �I � 360/64,
respectively. The subthreshold membrane potential of each neuron, V�(�j, t)
(� � E, I), obeyed the following equation:

dV���j,t�

dt
� �V���j,t� � I� � Iext,���j,t� � Isyn,�� j,t� � In,��t�,

where IE � 0.6 and II � 0.6 are bias currents that determine the resting
potential of E and I neurons. The external current, expressed in the
following equation:

Iext,E�� j,t� � I0 exp ����j � �ext

Id
�2�, t � �TON,TOFF�;

Iext,E��j,t� � 0, otherwise,

represents sensory input received only by pyramidal neurons, where I0 �
2 is the input amplitude, Id � 3 determines input width, and �ext is the cue
position. The stimulus was turned on at TON � �1 s and off at TOFF � 0 s.
Interneurons received no external input, so Iext,I � 0. Voltage fluctua-
tions were represented by the white noise process In,�(t) with variance
�V,�

2 (�V,E � 0.5 and �V,I � 0.3). We scaled and nondimensionalized
voltage so the threshold potential Vth � 1 and the reset potential Vres � 0
for all neurons.

Synaptic currents were mediated by a sum of AMPA, NMDA, and
GABA currents:

Isyn,�� j,t� � IAMPA,�� j,t� � INMDA,�� j,t� � IGABA,�� j,t�

each modeled as

IAMPA,�� j,t� � AAMPA,��
K�1

NE

WAMPA,��� j,�k�sAMPA,E��k,t�,

INMDA,�� j,t� � ANMDA,��
K�1

NE

WNMDA,��� j,�k�sSNMDA,E��k,t�,

IGABA,�AGABA,��
K�1

NE

WGABA,��� j,�k�sGABA,I��k,t�,

where AAMPA,E � 1, ANMDA,E � 2, AGABA,E � 0.81, AAMPA,I � 1,
ANMDA,I � 1, and AGABA,I � 0. Orientation preference was introduced

Figure 1. Spiking network model with spatially homogeneous synaptic connectivity. A, Strength of connections from pyramidal neurons to pyramidal neurons (red) and synapses from
interneurons to pyramidal neurons (blue). A neuron of preferred stimulus angle �j receives synaptic inputs from all neurons spanning preferred stimulus angles indexed by �k (see Materials and
Methods). B, Voltage of the pyramidal cell with stimulus preference 170° before, during (green bar), and after cue presentation. C, Formation of a bump of spiking activity in the pyramidal neurons
(red) following cue presentation (green bar). D, Spike rate, locally averaged across space and time (see Materials and Methods), Plot shows that the position of the bump’s peak (�(t), magenta)
diffuses in space due to voltage and synapse noise. E, Bump position (�(t)) plotted for 32 realizations. The resulting probability density of bump positions from 1000 realizations after 10 s is
approximately Gaussian. F, Variance of the bump’s position (	�(t) 2
), across 1000 realizations, scales approximately linearly as a function of time.
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into synaptic conductance by the spatially decaying functions (Fig. 1A)
expressed:

W�,��� j,�k� � exp �cos�	��j � �k�/180� � 1

d�,�
�, (1)

where dAMPA,E � 0.32, dNMDA,E � 0.32, dGABA,E � 5, dAMPA,I � 5, and
dNMDA,I � 5. Equation 1 was used for excitatory (AMPA and NMDA)
synapses between pyramidal ( E) cells in the case of spatially homoge-
neous connectivity. In the case of spatially heterogeneous synaptic
strength (Fig. 2), the strength of AMPA and NMDA connections between
pyramidal cells ( E) was given by

W�,E�� j,�k� � �1 � h cos �	n�k/180��


 exp �cos �	��j � �k�/180� � 1

d�,E
�,

where h � 0.025 represents the strength of the heterogeneity and n is the
frequency of the heterogeneity, which must be integer valued.

Synaptic gating variables of type � � AMPA, NMDA, or GABA asso-
ciated with a neuron at location �j were instantaneously activating and
exponentially decaying as described by

ds���j,t�

dt
� �

s���j,t�

��
� ��V���j,t� � 1� � Is,��t�,

where � � E for � � AMPA and NMDA while � � I for � � GABA.
Instantaneous activation is represented here using the delta function �, so
s�(�j, t) increments by 1 when V�(�j, t) attains the spike threshold Vth �
1. Decay time constants for each synapse type are �AMPA � 5 ms, �NMDA

� 100 ms, and �GABA � 20 ms. Fluctuations in conductance were intro-
duced into each synapse with the term Is,�(t), which is white noise with
variance �s,�

2 (�s,AMPA � 0.1, �s,NMDA � 0.45, and �s,GABA � 0.05). We
take the variance of noise to NMDA synapses to be high, �s,NMDA � 0.45,
because it leads to high variances in the spike times, as commonly ob-

served in prefrontal cortical neurons during the delay period of working
memory tasks (Compte et al., 2003). In addition, this generates an error
of a few degrees in the recall of cue position for delay periods of 2–10 s, as
observed in psychophysical experiments (White et al., 1994).

Numerical simulations were done using an Euler–Maruyama method
with timestep dt � 0.1 ms and normally distributed random initial con-
ditions. Spike time rastergrams were smoothed to generate population
firing rates as a function of degree and time, whose maximum at each
time were used to calculate the centroid of the bump (Figs. 1 D, E, 2).
Variances (Figs. 1F, 3) and probability densities (Figs. 1E, 2) were com-
puted using 1000 values for the bump centroid across 10 s. Linear fits of
variance in the case of spatially homogeneous synapses and spatially
heterogeneous synapses with n � 8 and n � 4 (Fig. 3) were performed
using linear regression.

Figure 2. A, Distance-dependent synaptic connections lead to a spatially homogeneous system. Bump dynamics lie on a line attractor, so bumps diffuse with ease. B, Periodically breaking the
spatial homogeneity of synaptic connections with n � 8-fold heterogeneity leads to bump dynamics evolving on a chain of n � 8 attractors (red) each separated by repelling states (blue). Bumps
do not wander away from their initial position as easily (position plot), which tightens the resulting probability density after 10 s. C, Effect of synaptic heterogeneity is more noticeable for a n�4-fold
break in homogeneity. Bump position rarely strays from 180°, as shown by the very tight probability density.

Figure 3. Variance of bump position as a function of time, averaged across 1000 real-
izations for spatially heterogeneous structure of pyramidal-to-pyramidal synapses with
frequency n � 4 and n � 8, as well as spatially homogenous structure. We fit each curve
to straight lines to generate an approximation of the effective diffusion coefficient D (see
Materials and Methods).
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Diffusion in the potential well model. To analyze the diffusive dynamics
of the bump, we studied an idealized model of bump motion. In this
model, the bump position (t) obeys the stochastic differential equation,
(Lifson and Jackson, 1962; Lindner et al., 2001):

d�t� � �h sin �n�t��dt � �dW�t�. (2)

Here (t) was restricted to the periodic domain  � �� 	,	� and dW
was a standard white noise process. The first term in Equation 2 models
the periodic spatial heterogeneity that is responsible for attractor dynam-
ics. Heterogeneity is parametrized by its strength h and spatial frequency
n. In this framework, the dynamics of (t) is a diffusive process occurring
on an energy landscape defined by the periodic potential

Un�� �
h

n
cos�n�, (3)

producing n attractors (Fig. 4A). These attractors occur at the minima of
Equation 3, given by  � 2j	/n where j � 1, …, n. They are separated
from one another by repellers or saddles at the maxima of Equation 3.

To analyze the model, we reformulated Equation 2 as an equivalent
Fokker–Planck equation (Risken, 1996),

�p�,t�

�t
�

�

�
�h sin�n�p�,t�� �

�2�2p�,t�

�2 , (4)

where p(, t) is the probability density of finding the bump at a given
value  at time t. For ease of analytic calculations, we let  evolve on an
infinite domain. Since we worked in parameter regimes where the result-
ing spread of probability densities was relatively narrow, this did not
considerably alter the results. Also, experimentally measured errors in
cue recall are typically not large enough to span more than a quarter of
the possible stimulus space (Ploner et al., 1998).

For large times and sufficiently high-frequency n, the variance of the
stochastic process Equation 2 can be quantified using an effective diffu-
sion coefficient (Lindner et al., 2001)

Deff �
1

2
lim
t3�

���t�2

t
�

1

2
lim
t3�

���t� � ��t��2

t
. (5)

The density �(, t) tends asymptotically:

pasy�,t� �
p0��

�4	Defft
exp ��

2

4Defft
�, (6)

where p0() is the stationary, periodic solution, Equation 4, given by

p0�� � � exp �2h cos�n�

�2n �,

where � is a normalization factor. The approximation, Equation 6,
matches realizations of the full stochastic process Equation 2 very well
(Fig. 4C). Clearly, the frequency of the probability distribution’s mi-
croscale is commensurate with that of the periodic potential Equation 3.
We were mainly concerned with computing the effective diffusion of
the stochastic process defined by Equation 2. Remarkably, second-
order statistics are still well approximated by ignoring the microperi-
odicity of the density in Equation 6, just using:

pgauss�,t� �
1

�4	Defft
exp ��

2

4Defft
�, (7)

(Fig. 4C). Previous authors have used asymptotic methods for comput-
ing the associated effective diffusion coefficient Deff inherent in the for-
mula Equation 6 (Lifson and Jackson, 1962; Lindner et al., 2001). The
long-standing result is (Lifson and Jackson, 1962)

Deff �
�2/2

�
0

2	/n �
0

2	/n

e2h�cos�n��cos�n���/�n�2�d�d

,

and we can compute the integrals in the denominator to find:

Deff �
�2

2I0� 2h

n�2�, (8)

where I0(x) is the modified Bessel function of the zeroth kind. Equation 8
demonstrates the monotone increasing dependence of the effective dif-
fusion upon the number of potential wells n.

Figure 4. A, Particle diffusing in periodic potential well Equation 3 is an idealized model of the bump diffusing over the network with spatially heterogeneous synapses, given by the stochastic
process Equation 2. B, Probability density p(�, t) of particle position � spreads diffusively in time (n � 8; h � 1; noise variance � 2 � 0.16). C, Profile of p(�, t) computed from 10,000 realizations
(red); effective diffusion theory Equation 6 (black); and effective diffusion theory with periodic correction Equation 7 (blue). D, Effective diffusion theory using Deff in Equation 8 matches variance
scaling from simulations of stochastic equation. Variance increases monotonically with the well frequency n. E, An effective diffusion coefficient Deff can be computed by treating well hopping as a
jump Markov process (Lifson and Jackson, 1962; Lindner et al., 2001), yielding formula Equation 8.
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To calculate the probability density p(, t), we simulated 10,000 real-
izations of Equation 2 using an Euler–Maruyama integration scheme
with a timestep dt � 0.001 from t � 0 to t � 10 s (Fig. 4 B, C). The effective
diffusion coefficient was calculated as the gradient of the variance across
the time window and converted to degrees with the change of variables
� � 180( � 	)/	 yielding:

Deff��� �
1802Deff��

	2 � �1802

	2 �	
�2

2I0� 2h

n�2�
. (9)

Adding unstructured heterogeneity. Effects of unstructured heterogeneity
were studied by perturbing the potential in Equation 2 with a combina-
tion of random periodic functions,

d�t� � ��h sin�n�t�� � �
dUp��

d �dt � �dW�t�. (10)

The unstructured heterogeneity was given by the random potential

Up�� � �
j�1

Nh

�aj cos� j� � bj sin� j��, (11)

where aj, bj ( j � 1, …, Nh) are randomly drawn from normal distri-
butions. Here � scales the amplitude of the random potential and the
maximal frequency of the unstructured components is given by Nh.
We take the rounded integer Nh � [0.05(1 � 0.1�)/(� � 0.0005) � 1],
� is a normally distributed random variable, so larger � values reduce
the number of modes added to the potential, decreasing the maximal
number of attractors in the system, as in other studies of unstructured
heterogeneity in bump attractor networks (Zhang, 1996; Renart et al.,
2003; Itskov et al., 2011; Hansel and Mato, 2013). To calculate an
effective diffusion coefficient Dh, we initialized 10,000 simulations
of Equation 10 at (0) � 0 and computed Dh � 	( T)2
/T for
T � 10 s.

Information measures. To measure the performance of the network on
a working memory task, we used a Shannon measure of mutual informa-
tion for a noisy channel (Cover and Thomas, 2006). We considered a
channel receiving one of m possible stimuli ( X), storing an input as one
of n � m possible states (Y(t)), and reading out the remembered stimulus
as one of the original m possible values ( Z). The stored variable Y(t)
evolves during storage time t � [0, T] due to degradation of the initially
loaded signal Y(0) by dynamic noise. The stimuli were presented with
equal probability pj � 1/m ( j � 1, …, m), so that the stimulus entropy
was as follows:

H�X� � ��
j�1

m

pj log2 pj � log2 m.

The network represented a stimulus as the bump position at one of the
system’s n attractors. If m was a multiple of n (m � qn with q an integer)
then the mapping from stimulus to loaded representation was straight-
forward with Y(0) � ceil(X/q). When m was not a multiple of n, we
allowed the potential well structure of the system to guide the loaded state
to the nearest attractor. This led to slightly nonuniform distributions of
loaded stimuli. However, the effects of diffusion made this slight nonuni-
formity insignificant, especially as the length of storage time T was in-
creased. In our theoretical calculations, we assumed that the loading
algorithm maximized the entropy of the neural representation Y(0); this
sometimes involved random assignments from X to Y(0). In fact, we
found our numerical results did not stray too far from this approxima-
tion (see Figs. 7, 8).

If n � m, then Y(0) � X and the loaded representation had the same
entropy as the stimulus H(Y(0)) � H( X). If n 	 m, then the representa-
tion entropy was smaller than the stimulus entropy H(Y(0)) 	 H( X),
since the space into which the stimulus is represented is smaller than the
original stimulus space. Since the stimulus X has a uniform distribution,
then so does Y, with the probability that attractor j loaded as pj � 1/n ( j �
1, …, n) and the entropy of the representation as H(Y(t)) � log2 n (this

holds for all t). The readout of the neural representation required an
expansion from Y( T) to Z. If m was a multiple of n, then the expansion
was straightforward with Z having probability 1/q for Z � q(Y( T) � 1) �
1, …, qY( T) and zero otherwise. In this case H( Z) � log2 m. If m was not
a multiple of q, we subdivided the domain into m evenly spaced sub-
domains and assigned Z accordingly, and for theoretical calculations we
again assumed H( Z) � log2 m.

While H( Y) � H( Z), H( Y) nevertheless set an upper limit for the
mutual information between the stimulus X and readout Z, expressed as:

I�X;Z� � I�Y;Z� � H�Y� � H�Y�Z�, (12)

To compute the conditional entropy H(Y�Z) we first calculated the prob-
ability of transition between one state and another during the diffusion
phase (0 � t � T ). A direct estimate of the transition probabilities was
obtained by numerically simulating many realizations of the model and
estimating p((0)�Z) where (0) is the center of mass of the bump at time
t � T. We subdivided  into n subdomains of equal width, and the area
of each subdomain is pj3k, the transition probability from the loaded
state X � j to another state (k � j) or itself (k � j), where k � 1, … n. Due
to discrete translation symmetry in both systems, we expected pj3k �
pj�l3k�l. The conditional entropy can then be computed as follows
(Cover and Thomas, 2006):

H�Y�Z � j� � ��
k�1

n

pj3k log2 pj3k. (13)

Our second method of computing the conditional entropy employed the
effective diffusion coefficient Deff associated with the probability density
for locations of the bump or particle. Deff depends upon n, ultimately
introducing this further n dependence into the mutual information (Eq.
12). Using the associated pure Gaussian probability (Eq. 7), we com-
puted transition probabilities analytically for the case j � 1, so, as Equa-
tion 14 states:

p13k �
1

�4	DeffT
�

a�k�

a�k��2	/n

exp � x2

4	DeffT
� dx

�
1

2�erf
a�k� � 2	/n

�4DeffT
� erf

a�k�

�4DeffT
�, (14)

for a set delay time T, where a(k) � (2	k � 1)/n is the lower boundary of
the kth subdomain and k � 1, …, ceiling(n/2). Due to reflection
symmetry of the Gaussian, we expected p13k � p13n�k. For even n, the
(n/2 � 1)th subdomain is (�	, 	/n � 	) � (	 � 	/n, 	), which would
lead to two integrals in Equation 14. As mentioned, the transition prob-
abilities pj3k for j � 2, …, n were easily computed as
pj3k � p13k�j�1 (see Fig. 6 B, C, insets). We then plugged each pj3k

value into our formula for conditional entropy, Equation 13. The ana-
lytic and numeric calculation of pj3k led to similar results for I(X; Z), the
calculated value of mutual information (Eq. 12; see Fig. 7).

Results
Diffusion of bumps in a spatially homogeneous network
The neural mechanics of parametric working memory has a long
history of theoretical investigation (Amari, 1977; Camperi and
Wang, 1998; Compte et al., 2000; Laing and Chow, 2001; Wang,
2001; Brody et al., 2003; Renart et al., 2003). Motivated by the
working memory of visual cue orientations, we consider a net-
work of spiking model neurons where each neuron has a pre-
ferred orientation in its feedforward input. Persistent neural
spiking within the network is due to a combination of assump-
tions about synaptic connectivity (Goldman-Rakic, 1995; Rao
et al., 1999; Lewis and Gonzalez-Burgos, 2000). First, the
strength of pyramidal-to-pyramidal connectivity decreases as
the distance between the tuning peak of each neuron increases
(Fig. 1A, red line). Second, excitatory synaptic currents involve
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both fast-acting AMPA and slow-acting NMDA components
(see Materials and Methods). Third, feedback connections
from interneurons are broadly tuned (Fig. 1A, blue line). With
these architectural features, neurons in the network respond
to a transient stimulus (Fig. 1, green bar) with an elevated rate
of spiking that persists long after the stimulation ceases (Fig.
1B). Short-range excitation leads to high-rate pyramidal spik-
ing across a short range of orientations, while wide-range in-
hibition localizes this spiking (Fig. 1C); we refer to this pattern
of activity as a “bump.” The position of the bump encodes the
initial stimulus position in working memory (Compte et al.,
2000; Wang, 2001; Brody et al., 2003).

We model the inherent trial-to-trial variability of neural re-
sponse with an orientation-independent fluctuating input to
each neuron, as well as a stochastic component of the recurrent
synaptic feedback (see Materials and Methods). These fluctua-
tions degrade the storage of the orientation cue by causing the
bump to stochastically wander away from its initial position (Fig.
1C,D). Spatiotemporal averaging of the spike time raster plots
identifies the maximal firing rate at each time point, and visual-
izes the bump wandering across the network (Fig. 1D, magenta
line). We fix the stimulus orientation and perform many trials of
the network simulation, with the only difference between trials
being the realization of the stochastic forces in the network. The
bump’s position after a delay period of 10 s can be described by a
probability density having an overall Gaussian profile (Fig. 1E),
and the variance in bump position increases linearly as a function
of time (Fig. 1F). These last two properties suggest the bump
position behaves as a diffusion process (Risken, 1996).

Diffusive dynamics in working memory networks have been
studied in several different frameworks (Compte et al., 2000;
Miller, 2006; Wu et al., 2008; Burak and Fiete, 2012; Polk et al.,
2012; Kilpatrick and Ermentrout, 2013). The intuition for the
diffusive character of these networks is best gained from an anal-
ysis of the deterministic network. A bump can be formed with its
center of mass located at any orientation, allowing for the storage
of a continuum of stimuli (Amari, 1977; Camperi and Wang,
1998). However, perturbations that change the bump’s position
will be integrated and stored as if they were another input. Sto-
chastic inputs lead to a continuous and random displacement of
the bump, without the bump relaxing back to its original loca-
tion. Over time, the position of the bump effectively obeys
Brownian motion and recall error increases with the delay period.
This diffusion-based error is consistent with psychophysical
studies that show the spread of recalled continuous variables
scales sublinearly with time (White et al., 1994; Ploner et al.,
1998).

Reduced diffusion in a spatially heterogeneous network
Previous models of working memory have considered networks
that use neuronal units with bistable properties (Rosen, 1972;
Koulakov et al., 2002; Brody et al., 2003; Goldman et al., 2003;
Miller, 2006). These networks lack the homogeneity required for
a continuum of neutrally stable stimulus representations, and
rather have a discrete number of stable states. One advantage of
this network heterogeneity is a “robustness” of representation
with respect to parameter perturbation, a feature that is absent in
homogeneous networks (Brody et al., 2003; Goldman et al.,
2003). We consider spatially periodic modulation of excitatory
coupling (Fig. 2, left), where the period of the modulation is
360/n degrees, so that n cycles cover orientation space. We as-
sume such an architecture would not be biased to favor one par-
ticular cue location because errors reported in recalling cues are

approximately the same for each cue location (White et al., 1994).
Such an architecture may develop from Hebbian plasticity rules
during training in working memory tasks, since orientation cues
are typically chosen at fixed and evenly spaced locations around
the circle (Funahashi et al., 1989; White et al., 1994; Goldman-
Rakic, 1995; Meyer et al., 2011). In this situation, some neuron
pairs are activated more than other pairs, leading to relative
strengthening of their recurrent connections (Clopath et al.,
2010; Ko et al., 2011). Alternatively, reward-based plasticity
mechanisms could also set up spatial heterogeneity in synapses if
it improved a subject’s performance during a task (Schultz, 1998;
Wang, 2008; Klingberg, 2010).

Spatial biases introduced to network architecture shift the
smooth continuum of stable states to a chain of discrete attrac-
tors, each separated by a repeller (Fig. 2, compare A, B, C, middle
column). This discrete attractor structure occurs because some
pyramidal neurons receive stronger excitatory projections than
others (Zhang, 1996; Itskov et al., 2011; Hansel and Mato, 2013).
Spatial heterogeneity in the strength of excitatory connections
(decreasing n) stabilizes bump positions to perturbations by
noise (Fig. 2, compare A, B, C, right column). For all n tested, the
probability density of bump positions retains an approximately
Gaussian shape with periodic modulation, so the variance of
bump positions still grows nearly linearly with time (Fig. 3), and
it is well approximated by Dt where D is the diffusion coefficient
(see Materials and Methods). The coefficient D drops consider-
ably for a network with spatially heterogeneous synapses, com-
pared with the bump diffusion measured with the homogenous
network. In total, spatial heterogeneity of excitatory coupling
helps stabilize bump position in models of working memory with
fluctuating stochastic inputs.

Potential well model for bump diffusion
To analyze the relationship between network heterogeneity and
bump diffusion more deeply, we now study an idealized model
for parametric working memory. Briefly, a noise-driven particle
on a periodic potential landscape retains the essential effects of
noise and spatial heterogeneity in our spiking network model (see
Materials and Methods). Our simplified model treats the bump
position as a particle moving in a landscape of peaks, from which
it is repelled (Fig. 4A, maxima), and wells, to which it is attracted
(Fig. 4A, minima). In the potential well model, the memory of the
stimulus location is tracked by the particle’s position �(t) obeying
the following stochastic differential equation,

d� �t� � ��h sin �180

	
n� �t��� dt � dW�t�. (15)

Here h is the amplitude of the periodic potential and W(t) is a
Wiener process (Risken, 1996). The sine function determines the
�-dependent drift of the particle, which ultimately affects its dif-
fusive motion. The positive integer n determines the number of
stable attractors. Similar reduced neural models have been ex-
plored (Renart et al., 2003; Itskov et al., 2011), and the general
problem of noise-induced behavior in periodic potentials has
been well studied (Lifson and Jackson, 1962; Risken, 1996; Lind-
ner et al., 2001).

Diffusive behavior occurs in periodic potentials, yet the me-
chanics are different than diffusion on a free potential landscape
(h � 0). In periodic potentials, a particle typically undergoes
small variance dynamics confined within a well. However, rare
but large noise kicks eventually push the particle to a neighboring
well. These noise-induced well transitions continue indefinitely,
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and diffusion over the potential landscape occurs in a punctuated
fashion. Across many trials, the probability p(�, t) of finding the
particle at position � at time t evolves like a Gaussian kernel
modulated by a periodic function (Fig. 4B; see Materials and
Methods). The maxima of p(�, t) are centered at the minima of
the potential, indicating a higher likelihood of finding the particle
at the bottom of a well than in transition between wells.

Treating the transitions between wells as a jump process, we
can approximate the diffusion of the sine potential model, Equa-
tion 15, with the following Brownian walk:

d� �t� � �2Deff �n�dW�t�. (16)

The effective diffusion coefficient Deff(n) is derived using stan-
dard approaches (see Materials and Methods, Eq. 9). Under this
approximation, �(t) obeys a Gaussian distribution with variance
Deff(n)t, and p(�, t) does not possess the periodic microstructure
of the actual probability density (Fig. 4C, compare blue and black
curves). Despite these differences, the approximation agrees very
accurately with the variance in the particle’s position in the peri-
odic potential (Fig. 4D). In this framework we can directly relate
the frequency of heterogeneity n to the overall diffusivity of the
particle through Deff(n). As with bumps in the spiking network,
increasing the frequency n of the spatial heterogeneity increases
the effective diffusion Deff (Fig. 4D). This is true across the entire
range of frequencies n, and as n3 � the particle’s variance satu-
rates to that of a system with a flat potential (Fig. 4E). Thus,
despite the simplicity of the potential well framework, it can qual-
itatively explain the diffusivity observed in the spiking network.
In both Figure 3 and Figure 4D, the variance in bump position is
fit well by a linear function whose slope decreases with the num-
ber of attractors n.

Impact of unstructured heterogeneity
As we have shown, a structured heterogeneity of cortical archi-
tecture that generates evenly spaced attractors (Figs. 2, 4A) cur-
tails the rate of diffusion (Figs. 3, 4D). However, synaptic
architecture may also have random components that are neither
related to task specifics nor optimized to any specific computa-
tion (Wang et al., 2006). In principle, such perturbations in ar-
chitecture could degrade the performance of working memory
networks that require a fine-tuned architecture. Renart et al.
(2003) demonstrated that the deleterious effects of such unstruc-
tured heterogeneity in bump attractor networks can be mitigated
by homeostatic plasticity, which spatially homogenizes network
excitability. In our model, considering such a process would bar
the system from establishing spatially structured heterogeneity,
which we have shown improves storage accuracy. Thus, we next
study how a combination of structured and unstructured spatial
heterogeneity affects the diffusive dynamics in working memory
networks. We show that the system is still robust to noise, even
when the potential is altered in this way.

Specifically, we modify the shape of the potential in Equation
15, so that,

d� �t� � ��h sin �180

	
n� �t�� � �

dUp���

d� �dt � dW�t�,

(17)

where Up(�) is an unstructured perturbation of the underlying
cosine potential function (see Materials and Methods). Briefly,
Up(�) is a component of the potential that is randomized from
trial to trial (two realizations of the full potential are shown in Fig.

5A,B). Adding a small component of unstructured heterogeneity
(� 
 0) to a network with an initially flat potential function (h �
0) substantially alters the attractor structure (Fig. 5A). The net-
work shifts from having a continuum of preferred locations to
having a small number of preferred locations at disordered posi-
tions. This is analogous to the drastic collapse in the number of
possible stable bump locations observed in bump attractor mod-
els whose synaptic structure is randomly perturbed (Zhang, 1996;
Renart et al., 2003; Itskov et al., 2011; Hansel and Mato, 2013).
On the other hand, a network that possesses structured hetero-
geneity (h 
 0) retains the original positions of its stable attrac-
tors after unstructured heterogeneity is added, even though the
profile of the potential is distorted (Fig. 5B). When the severity of
heterogeneity is increased (larger �), the number of attractors is
considerably reduced in the network without structured hetero-
geneity, while remaining the same in the network with structured
heterogeneity (Fig. 5C). Last, the effective diffusion Dh (see Ma-
terials and Methods) of the network containing structured heter-
ogeneity increases only gradually as the degree of unstructured
heterogeneity is increased (Fig. 5D), contrasting the distinct rise
in the effective diffusion Dh in the network without structured
heterogeneity.

Therefore, the spatial organization of attractors in the net-
work with structured heterogeneity is robust to random pertur-
bations of the underlying potential landscape. Recent studies
have shown that parametrically perturbed spiking network mod-
els of bumps retain dynamics whose spatial profile is bump-
shaped (Brody et al., 2003; Itskov et al., 2011; Hansel and Mato,
2013; Kilpatrick and Ermentrout, 2013). Brody et al. (2003)
showed the effective dynamics of the resulting system can then be
numerically approximated by a potential well model like Equa-
tion 17. Thus, the low-dimensional dynamics of the spiking net-
work model can still be described by the potential well model, so
we believe the spiking network will also be robust to unstructured
perturbations in its spatial architecture. This robustness allows
the reduction of diffusion due to structured heterogeneity to be
relatively unaffected by sources of unstructured heterogeneity
that undoubtedly exist in most cortical networks (Wang et al.,
2006).

Memory storage as a noisy channel
Structured spatial heterogeneity in recurrent excitatory coupling
has two distinct influences on response fidelity in working mem-
ory networks. First, it produces a finite set of attractors with
which to store stimuli. Second, as we have shown, heterogeneity
reduces the diffusion of persistent bump states across the net-
work. These two influences have consequences for the overall
storage performance by the network. We next characterize the
working memory network as a noisy information channel (Cover
and Thomas, 2006) and show how spatial heterogeneity of excit-
atory coupling mitigates a tradeoff between errors due to these
two influences.

Consider a stimulus that chosen from m equally likely values
and is to be stored by a working memory network. The network
has n attractors and must store the stimulus value for T seconds
before being read out. From a coding perspective, we have a chain
where random input X � [1, m] is loaded into attractor Y(0) �
[1, n] and remains in storage until Y(T) � [1, n], after which it is
finally read out as response Z � [1, m] (Fig. 6A). If n 	 m then
the transition X3 Z involves a compression (X3 Y(0)) and
expansion (Y( T)3 Z) of data, causing errors in transmission
due to the quantization of the neural representation (Materi-
als and Methods).
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The transition Y(0) 3 Y(T) involves
diffusion across the network, which also
degrades storage. To compute the proba-
bility of transitioning from one attractor
to another during the storage phase, we
need only integrate the Gaussian approx-
imation with variance Deff(n)T over the
appropriate domain (Fig. 6B,C). In this
way, we calculate the matrix of transition
probabilities from one attractor to an-
other during the retention interval. With
this matrix, we can calculate the informa-
tion lost due to diffusion (Materials and
Methods). Naturally, as the product Deff

(n)T increases, diffusion becomes more
prominent (Fig. 6B,C), and information
loss due to diffusion increases.

In total, an increase in n has the dual
effect of reducing quantization error, yet
increasing diffusion error. Thus, we pre-
dict that spatial heterogeneity (measured
by n) causes a tradeoff between quantiza-
tion and diffusion-based error, and an op-
timal heterogeneity will maximize the
overall information flow across the chan-
nel. We explore this prediction in the next
section.

Optimizing information flow with
heterogeneous network coupling
Delay time T and the number of possible
stimuli m can be easily controlled in work-
ing memory experiments (Funahashi et
al., 1989). By fixing the protocol in work-
ing memory tasks, it has been shown ani-
mals can improve their performance
through extensive training, and boost
their average reward rate (Meyer et al.,
2011). Performance improvements are
likely caused by modifications to the
structure of networks underlying working
memory, so we presume the spatial heter-
ogeneity of the network, parametrized by
n, evolves internally through reward-
based plasticity mechanisms (Schultz,
1998; Wang, 2008; Klingberg, 2010). To
measure the overall success of storage, we
consider the mutual information I be-
tween X and Z for both the potential well
model and the full spiking network (Ma-
terials and Methods). Mutual information measures the reduc-
tion in uncertainty in stimulus X when response Z is known.
Furthermore, mutual information allows for a clean dissection of
the information loss due to quantization-based and diffusion-
based errors.

The stimulus space compression involved in X 3 Y (0) in-
volves a loss of log2(m/n) bits, a quantity that decreases with n.
Calculating information loss due to diffusion (Y (0) 3 Y (T))
requires that we compute the effective diffusion coefficient
Deff(n). To obtain Deff(n) for the potential well model, we use our
analytical approach (see Materials and Methods, Eq. 9), while for
the spiking model we use a numeric fit to Deff(n) (Fig. 3). Infor-
mation loss due to diffusion increases with Deff(n), which in turn

increases with n (Figs. 3, 4E). Given both sources of information
loss, we compared the channel theory prediction for I(X, Z) to
direct estimates of I(X, Z) based on the joint density p(X, Z);
Materials and Methods), for both the spiking and potential well
models.

For a fixed m and very short delay time T the information I(X,
Z) monotonically increases with n and is maximized when n � m
(Fig. 7A,B; T � 0.1 s). This is expected, since recall is near imme-
diate, so that diffusion-based error is negligible and quantization
error dominates the information loss. This error vanishes when
n � m and I(X, Z) approaches the stimulus entropy (log2(m)
bits). As the delay time is increased, information loss due to quan-
tization error does not change, but errors due to diffusion in-
crease. For sufficiently long T, information peaks at a value of

Figure 5. Storage in potentials with structured heterogeneity resists degradation from unstructured heterogeneity. A, Adding
unstructured heterogeneity to a flat potential function drastically alters the state space of attractors. B, When structured hetero-
geneity is already present, adding unstructured heterogeneity does not change the number of attractors or their positions. C, The
number of attractors n is strongly influenced by the severity of unstructured heterogeneity � in the homogeneous potential.
Starting with n � 8 attractors, adding unstructured heterogeneity does not alter n. D, Effective diffusion increases more for the
homogeneous potential as a function of � than for the potential containing structured heterogeneity.
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nmax 	 m in both the potential well model and the spiking model
(Fig. 7A,B; T � 10 s). The value nmax marks a compromise be-
tween quantization and diffusion errors. For the potential well
model, the optimal heterogeneity nmax decreases as the delay time
T increases (Fig. 7C), since diffusion error grows as T increases. In
total, we find that for sufficiently long delay times the degree of
heterogeneity n should be less than the stimulus size m to opti-
mize information transfer.

For a fixed delay time T, varying the number of possible inputs
m also shifts nmax. Diffusion error is independent of the number
of possible inputs m; however, the total possible information
increases with the number of inputs m. For small m, we have that
nmax � m since when n � m, the quantization error is always zero
and network diffusion increases with n (Fig. 8A,B; m � 4). How-
ever, for larger m, we find nmax 	 m, due to a compromise be-
tween quantization error and diffusion (Fig. 8A,B; m � 16).
These results hold for the potential well model over a wide range
of m (Fig. 8C). Overall, we highlight that a combination of vary-
ing T and m uncovers the effect of diffusion and quantization

error on mutual information in a working memory network. In
particular, for many combinations of T and m, an optimal spatial
heterogeneity for information transfer can be found.

The information I(X, Z) measures the general relation be-
tween X and Z, one that is decoder independent. However, in
psychophysical experiments, a reward is only given when the
recall is correct, i.e., X � Z. Thus, it is important to consider how
the probability of correct recall depends on the spatial heteroge-
neity of excitatory connections. In both the potential well and
spiking network models, the probability of correct recall is max-
imized for a fixed n 	 m when T is sufficiently long (Fig. 9A,B),
consistent with observations of I(X, Z) (Fig. 7A,B). The n that
maximizes the probability of correct recall decreases as storage
time increases (Fig. 9C), also in agreement with results using I(X,
Z) (Fig. 7C). The probability of correct recall provides a quanti-
fication of error that weights all incorrect responses the same. To
use knowledge of the spatial organization of the cue set in deter-
mining error, we also measure the impact of the number of at-
tractors on the angular difference between the recalled and cued

Figure 6. Noisy channel description of memory storage. A, Loading m possible initial conditions into n possible wells initially reduces information. After the storage period ( T), information may
have been lost due to hops between wells. B, Purely Gaussian probability density with the effective diffusion coefficient Deff calculated when n � 4 and � 2 � 0.16. The area of each filled portion
represents the probability of recalling the cue angle associated with that color. Each area corresponds to the probability of transitioning from the original state to that state pj3k. C, For n � 8, the
effective diffusion coefficient Deff is larger, leading to faster spreading.
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stimulus position. Specifically, we compute the variance of the
difference between the recalled and input cue location X � Z. The
magnitude of the recall error is minimized for a fixed n 	 m (Fig.
9D,E), corroborating our findings for I(X, Z) and proportion
correct. Thus, our core finding that information transfer across
the memory network is maximized for a specific degree of spatial
heterogeneity also holds for a measure of task performance.

Discussion
We have outlined how both neural architecture and noisy fluctu-
ations determine error in working memory codes. In working
memory networks, the position of a bump in spiking activity
encodes the memory of a stimulus, and input fluctuations cause
diffusion of the bump position, which degrades the memory.
Spatially heterogeneous recurrent excitation reduces the diffu-
sion of bumps by stabilizing a discrete set of bump positions.
However, this also introduces memory quantization, limiting the
capacity of information transfer. By analyzing the information
loss incurred by both error sources, we can maximize the transfer

Figure 7. An optimal number of attractors nmax 	m emerges as the delay time T grows with
m fixed. A, Mutual information I(X; Z) between input particle position X and output recalled
position Z varies with n in the sine model for delay (storage) times T � 0.1, T � 1, and T � 10;
input number m � 16; well height h � 1; and noise variance � 2 � 0.16. B, Mutual informa-
tion I(X; Z) calculated between initial X and final Z position of the bump in the spiking
network for delay times T � 0.1 and T � 10 with m � 16 inputs. C, Keeping the number
of possible initial positions m � 16 fixed reveals that nmax decreases monotonically with
delay time T.

Figure 8. An optimal number of attractors nmax 	 m emerges as m is increased with T fixed.
A, I(X; Z) in sine model for input numbers m � 4, m � 8, and m � 16 with delay time T � 1
fixed. B, I(X; Z) in spiking model for input numbers m � 4 and m � 16 with delay time T � 5 s
fixed. C, As the delay time T increases, nmax reaches an optimum at smaller cue numbers m.
Noise variance � 2 � 0.16.
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of information between the stimulus and the memory output by
tuning the spatial heterogeneity of recurrent excitation. We
found that the ideal heterogeneity gives a number of attractors in
the network nmax, which can be less than the number of possible
inputs to the network m.

Robust bump dynamics through quantization
Networks whose dynamics lie on a continuum attractor have
steady-state activity that can be altered by arbitrarily weak noise
and input (Bogacz et al., 2006). The advantage of this feature is
that two stimuli with an arbitrarily fine distinction can be reliably
stored and distinguished upon recall. However, this structure
requires fine-tuning of network architecture, since any paramet-
ric jitter will destroy a continuum attractor. Previous work has
shown how spatial heterogeneity in recurrent excitatory coupling
quantizes the continuum attractor and stabilizes persistent net-
work firing rates to perturbations in model parameters (Koula-
kov et al., 2002; Brody et al., 2003; Goldman et al., 2003; Cain and
Shea-Brown, 2012) and fluctuations (Fransén et al., 2006). We
believe our results apply to these models and have extended this
previous work in two major ways.

First, we have shown that quantizing
the state space of a spatially structured
network into a finite number of attractors
stabilizes bump position to dynamic
noise. Second, we have shown that there is
an optimal number of attractor positions
for storing stimuli when dynamic noise is
present. The optimal number can be
lower than the actual quantization of pos-
sible stimuli, so that under-representing
stimulus space can lead to more reliable
coding. Studies of networks encoding the
memory of eye position show individual
neurons exhibit bistability in their firing
rates (Aksay et al., 2003), which motivated
modeling their firing rate to input rela-
tions as quantized, staircase-shaped func-
tions (Goldman et al., 2003). This
provides an example of a working mem-
ory network thought to provide a discrete
delineation of a continuous variable. Our
results also suggest parametric working
memory networks should coarsen the
stored signal to guard against diffusion
error.

The advantage of spatial heterogeneity
Past work has suggested spatial heteroge-
neity in working memory networks is a
barrier to reliable memory storage (Zhang,
1996; Renart et al., 2003; Itskov et al.,
2011; Hansel and Mato, 2013). In these
studies, parameters of single neurons (Re-
nart et al., 2003) or synaptic architecture
(Itskov et al., 2011; Hansel and Mato,
2013) change throughout the network in a
spatially aperiodic way. Substantial quan-
tization error results since the bump drifts
toward one of a finite number of attractor
positions that may not be evenly spread
over representation space. Renart et al.
(2003) show this effect can be overcome

by considering homeostatic mechanisms that balance excitatory
drive to each neuron in the network, halting drift of bumps alto-
gether. On the other hand, both Itskov et al. (2011) and Hansel
and Mato (2013) show drift can be slowed by including short-
term facilitation in the network. Rather than exploring ways to
remove the effective drift introduced by spatial heterogeneity, we
have shown spatial heterogeneity can improve network coding.
As long as quantization error is outweighed by a reduction in
diffusion error, heterogeneous networks make less overall error
in recall tasks than spatially homogeneous networks.

Our model represents the space of possible oriented cues as
evenly distributed in space with uniform probability of presentation,
a protocol often used in experiments (Funahashi et al., 1989; White
et al., 1994; Goldman-Rakic, 1995; Meyer et al., 2011). Thus, we
reason that the ideal covering of stimulus space by the network will
have a uniform distribution. This translates into network spatial
heterogeneity that is exactly periodic. The periodicity allows for a
compact derivation of the effective diffusion coefficient Deff(n).
Were the stimulus set to have an asymmetric probability distribu-
tion, we would expect the ideal spatial heterogeneity would not pro-
duce evenly spaced attractors. In this case, approximating bump

Figure 9. The proportion of correct responses depends on the number of possible outputs, n. Blue curves are computed using
theoretical probability densities and red dots employ numerically computed probability densities (see Materials and Methods). A,
Proportion p(Z � X ) of correct responses Z varies with n in the sine model for delay (storage) time T � 10 s. B, Proportion of correct
responses p(Z � X ) as a function of n in the spiking model for delay (storage) time T � 10 s and input number m � 16. C, The
number of outputs nmax that maximizes the proportion of correct responses as the storage time T is varied in the sine model. D, Error
magnitude (in degrees squared) varies with n in the sine model for delay (storage) time T � 10 s. E, Error magnitude (in degrees
squared) varies with n in spiking model for delay (storage) time T � 10. Input number m � 16. In the sine model, well height h �
1 and noise variance � 2 � 0.16.
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position is possible, but motion between attractors will depend on �
and will be difficult to interpret as a simple diffusion process. Nev-
ertheless, we expect that the specifics of spatially uneven heteroge-
neous coupling will significantly impact both the attractor
quantization and stochastic drift across the network, and control the
information transfer from stimulus to recall.

Mechanisms that produce structured heterogeneity
We conceive of two main biophysical processes that could pro-
duce structured spatial heterogeneity in a working memory net-
work. First, Hebbian plasticity may operate at locations in the
network that are driven by common external cues. Such cues will
consistently activate neurons of similar orientation preference, so
clusters of similarly tuned cells will tend to strengthen recurrent
excitation between each other (Goldman-Rakic, 1995; Clopath et
al., 2010; Ko et al., 2013). Recent experiments show training does
increase the delay period firing rates of neurons with a prefer-
ence for the encoded cue (Meyer et al., 2011), which may occur
due to reinforcement of recurrent excitation. This mechanism
would create attractors only at locations in the network that
consistently receive feedforward input during training. Neu-
rons that are never directly stimulated by cues would be de-
prived of continual reinforcement of their excitatory inputs,
allowing broadly tuned inhibition to decrease their delay pe-
riod firing (Wang, 2001). In the framework of our models, a
network trained on n cue locations would form n attractors.
Depending on the length of delay, this might not be the opti-
mal number of attractors, but it would improve coding com-
pared with the network without quantization.

Second, reward-based plasticity mechanisms signaled by do-
pamine may supervise the reinforcement of synaptic excitation to
form a network with the optimal number of attractors. Many
studies have verified that dopamine can carry reward signals back
to the network responsible for a correct action (Schultz, 1998).
Selectively acting on specific subsets of neurons, dopamine can
prompt plasticity in network architecture to improve future
chances of rewards (McNab et al., 2009; Klingberg, 2010). Such
supervisory mechanisms could seek an optimal architecture in
the network to maximize reward yields for a fixed retention time
and number of possible cues. As we have demonstrated, this re-
sulting structured heterogeneity will improve coding, even if
there is unstructured heterogeneity present (Wang et al., 2006).

Relating diffusion of neural activity to behavior
Our results (and those of many other past studies) assume that
neural activity has a diffusive component. However, how exactly
neural variability drives behavioral variability is largely unknown
(Britten et al., 1996; Churchland et al., 2011; Brunton et al., 2013;
Haefner et al., 2013). Psychophysical studies of spatial working
memory tasks reveal that subjects typically respond with nonzero
error. In particular, Ploner et al. (1998) show that the midspread
of memory-guided saccades in humans scales sublinearly with
delay time over 0.5–20 s. This scaling is consistent with a diffusion
of neural activity involved in the storage of memory, giving sup-
port to our modeling assumptions.

In contrast to these data, recent psychophysiological work in
rodents and humans performing decision-making tasks lasting
0.5–2 s suggests that models with sensory noise, rather than in-
ternal diffusion, best capture these behavioral data (Brunton et
al., 2013). However, this study ultimately considers a two-
alternative forced-choice task, and does not consider the storage
and recall of inputs over a large stimulus space. When there are
only two attractors in our network, the diffusion coefficient is

near zero, consistent with Brunton et al. (2013). In addition, the
timescale of tasks studied by Brunton et al. (2013) may not be
long enough to substantially reveal the effects of internal diffu-
sion. These differences between the diffusive nature of working
memory and decision integrator networks suggest that more
work needs to be done to link variability of neural and behavioral
response.

Implications for multiple object working memory
We emphasize that we did not study network encoding of multi-
ple object working memory. Added complications arise when
several items must be remembered at once (Luck and Vogel,
1997). For instance, the error made in recalling the value of a set
of multiple continuous variables increases with the set size
(Wilken and Ma, 2004). Recently, it has been shown that a spik-
ing network model can recapitulate many of these set size effects
(Wei et al., 2012). Interestingly, there is an optimal spread of
pyramidal synapses that minimizes errors due to set size. How-
ever, reduction of the effects of dynamic noise on the accuracy of
memories has yet to be studied. Our ideas could be extended to
analyze how networks that encode multiple object memory could
be made more robust, applying network quantization to the stor-
age of multiple bump attractors.
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