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Abstract We study the spatiotemporal dynamics of
neuronal networks with spike frequency adaptation.
In particular, we compare the effects of adaptation
being either a linear or nonlinear function of neural
activity. We find that altering parameters controlling
the strength of synaptic connections in the network
can lead to spatially structured activity suggestive of
symptoms of hallucinogen persisting perception disor-
der (HPPD). First, we study how both networks track
spatially homogeneous flickering stimuli, and find in-
put is encoded as continuous at lower flicker frequen-
cies when the network’s synapses exhibit more net
excitation. Mainly, we study instabilities of stimulus-
driven traveling pulse solutions, representative of vi-
sual trailing phenomena common to HPPD patients.
Visual trails are reported as discrete afterimages in
the wake of a moving input. Thus, we analyze several
solutions arising in response to moving inputs in both
networks: an ON state, stimulus-locked pulses, and
traveling breathers. We find traveling breathers can
arise in both networks when an input moves beyond a
critical speed. These possible neural substrates of visual
trails occur at slower speeds when the modulation of
synaptic connectivity is increased.
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1 Introduction

Hallucinogen persisting perception disorder (HPPD) is
a malfunction wherein past users of lysergic acid diethy-
lamide (LSD) continue to see images reminiscent of
drug induced hallucinations (Halpern and Pope 2003).
Similar conditions have been described as the result
of other hallucinogens like psilocybin, mescaline, and
cannabis. Disturbances to visual experience persist long
after the last ingestion of the hallucinogenic substance,
up to weeks, months, and years. There is no strong
correlation between the number of times a person has
taken the drug and the likelihood that they develop
HPPD, so the condition may result following a single
LSD experience or never appear despite hundreds of
LSD experiences (Abraham 1983). While the disorder
was characterized close to thirty years ago, there are
still open questions regarding its neural substrate and
most appropriate treatment.

Abnormal brain states have long been known to re-
sult from the ingestion of LSD ever since Hoffman first
synthesized the compound in 1938. In the decades that
followed, a number of psychological experiments were
carried out where subjects under the influence of LSD
were studied as a drug-induced model of psychosis.
Beginning in the 1960s, several studies of LSD users
concluded that the hallucinogen could have long term
effects on the brain like permanent visual disturbances,
pre-schizophrenia, and thought disorder (Cohen and
Ditman 1963; Rosenthal 1964; Frosch et al. 1965). As
understanding of visual pathologies began to develop,
Horowitz conducted a systematic study classifying three
types of visual flashbacks: (i) perceptual distortions (e.g.
seeing halos around objects); (ii) heightened imagery
(visual experience is much more vivid and dominant
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in one’s thoughts); and (iii) recurrent unbidden images
(subjects see objects that are not there) (Horowitz
1969).

Since these seminal studies, Abraham has character-
ized a wide range of visual pathologies arising from
LSD usage. In particular, his systematic study of 123
previous LSD users in 1983 revealed much more detail
regarding patterns in experience of patients suffering
from HPPD. Some of the most common visual distur-
bances people report are spontaneous geometric hal-
lucinations, intensification of color, trailing phenom-
ena, halos around objects, and afterimages (Abraham
1983). The spontaneous geometric hallucinations in-
clude sparkles, lattices, and other complex patterns that
are unsurprisingly similar to those seen during an actual
LSD experience (Oster 1970). Trailing phenomena are
positive afterimages left in the wake of an object as
it moves across a subject’s visual field. Abraham and
Wolf extended these results to probe the effects of LSD
on other aspects of visual function (Abraham and Wolf
1988). They found the critical frequency above which
HPPD patients perceive flickering lights as being con-
tinuously on is lower than the average person’s. In ad-
dition, adaptation to the dark takes significantly longer
for a subject suffering from HPPD. The combination of
the these symptoms seems to suggest that HPPD arises
due to alterations in synaptic connectivity involved in
visual processing (Abraham and Duffy 1996).

Experimentalists continue to have difficultly pin-
pointing the precise neural seat of HPPD. It is impor-
tant to note that HPPD subjects rarely ever believe
visual experiences that they hallucinate are actually
occurring (Abraham 1983). This suggests that the cir-
cuitry responsible for the disorder is not a higher brain
area, but a lower visual area such as primary visual
cortex (V1), the first cortical area responsible for geo-
metric processing of visual input (Hubel and Wiesel
1977). Several theoretical studies of geometric visual
hallucinations have built a remarkable case, based on
the functional architecture of V1 and the retinocortical
map, that such images are in fact generated in V1
(Ermentrout and Cowan 1979; Bressloff et al. 2001;
Chossat and Faugeras 2009). Abraham and Duffy con-
ducted an analysis comparing EEG spectra of awake
subjects with and without HPPD, finding greater EEG
coherence in visual regions for those with HPPD
(Abraham and Duffy 2001). Nichols and Sanders-
Bush found several genes are differentially expressed
upon application of LSD to neural tissue (Nichols and
Sanders-Bush 2002). They speculate that this combi-
nation of changes may be responsible for alteration
in synaptic plasticity mechanisms, glutamatergic recep-
tor expression, and cytoskeletal architecture. Together

these factors may contribute to a modulation of excita-
tory and inhibitory connections in visual areas.

A number of other phenomena induced by phar-
maceuticals, brain damage, or neurological disorders
bear resemblance to the visual disturbances of HPPD
(Dubois and VanRullen 2011). For example, some pa-
tients taking antidepressants like nefadozone (Kraus
1996) and mitrazipine (Ihde-Scholl and Jefferson 2001)
have reported palinopsia, where they see images after
an actual visual stimulus has been removed. Interest-
ingly, these and other antidepressants are known to
increase extracellular levels of serotonin (Boyer and
Shannon 2005), lending credence to the idea that sim-
ilar visual disturbances due to LSD may arise from
modulation of serotonin. Antiepileptic drugs like top-
iramate can also lead to visual trails described simi-
larly to those seen in HPPD (Fontenelle 2008). Finally,
Alzheimers patients have been recently reported the
experience of akinetopsia, where moving objects are
perceived as a series of stills (Tsai and Mendez 2009).
Thus, a firm understanding of visual disturbances due
to HPPD would be valuable since the disorder is tied to
a greater framework of visual pathologies whose neural
substrates still remain ambiguous.

Based on quantitative psychological studies of
HPPD, a number of pharmacological treatments have
been administered to patients. Subjects taking benzo-
diazepines in particular experience an overall reduc-
tion in the intensity and frequency of visual distur-
bances (Abraham 1983). Lerner and colleagues used
the benzodiazepine clonazepam, which is known to
have serotonergic properties, so it may upregulate inhi-
bition using serotonin receptors on inhibitory neurons
(Lerner et al. 2001). Other successful pharamaceuti-
cal treatments include haloperidol, an extremely po-
tent antipsychotic drug (Moskowitz 1971); seratraline,
a known selective serotonin reuptake inhibitor (Young
1997); and clonidine, which acts on adrenergic recep-
tors (Lerner et al. 1998). Conversely, phenothiazines,
compounds known to block effects of dopamine,
worsen conditions of HPPD (Abraham 1983). Thus,
it appears there are many pathways to reducing the
symptoms of HPPD, so the disorder may arise from
either excess excitation or inhibition in visual networks.

In this paper we will examine the relative role al-
terations to synaptic neurotransmitter levels in the vi-
sual system can play in a theoretical model of trailing
phenomena and halos linked to HPPD. Specifically, we
will consider a paradigm where a light spot rotating in
a circle is presented as visual input to a cortical net-
work. We picture such a stimulus along with an HPPD
subject’s potential perception of the stimulus qualita-
tively based on previous research in Fig. 1(a). Were the
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Fig. 1 (a) Snapshots of a spot of light rotating continuously on
a circle. During visual trailing phenomena, one would see this
not simply as a smoothly rotating light, but most likely discrete
afterimages in addition to the smoothly rotating light image. They
may also see a smudging out of the image, much like the tail of a
comet. Halo phenomena lead to the observer seeing the light spot

as larger than it actually is. (b) Drawing of a single snapshot of
visual experience by an HPPD patient watching an arrow rotating
counterclockwise. The blue and red arrow is the representation
of the arrow’s actual location, and the faint dark arrows are the
afterimages of the arrow left in its wake. Redrawn from H. D.
Abraham (2011, personal communication)

network accurately resolving the stimulus, only neurons
containing the light spot in their receptive field would
represent it in visual cortex at any given point in time.
Due to alterations in the neurotransmitter levels of
visual cortex due to LSD usage, we presume neurons
will represent the stimulus in regions addition to the
area of presentation in an HPPD patient. Trails are
represented by spatially discrete patches of neurons
in the wake of the stimulus that fire for a period of
time after input has been removed. A patient’s own
rendering of the discrete afterimages characteristic of
visual trails are pictured in Fig. 1(b), when the stimulus
is an arrow rotating counterclockwise (H. D. Abraham,
2011, personal communication). Halos may also appear
around the object represented by neurons around the
input being continuously on. All are potential realiza-
tions of HPPD in this simple stimulus paradigm.

Large-scale spatially structured activity such as the
rotating spot of activity suggested by the above experi-
mental setup is often modeled as a standing or traveling
pulse of activity in neural field models of cortex (Wilson
and Cowan 1972; Amari 1977). In these models, the
evolution of mean firing rate in continuous space and
time can be represented by a system of dynamical
equations (Coombes 2005). These often appear as in-
tegrodifferential equations that incorporate specifics of
the neural system in question with a particular synaptic
connectivity (or weight) function, form of firing rate
function, spatial domain, and auxiliary variables repre-
senting modifications to the mean population activity.
Such systems can be analyzed extensively to deter-
mine how model functions and parameters relate to
the existence of different solutions like traveling waves

(Pinto and Ermentrout 2001; Coombes and Owen 2004;
Folias and Bressloff 2005b; Troy and Shusterman 2007),
standing bumps (Amari 1977; Folias and Bressloff 2004;
Guo et al. 2005), and patterns (Ermentrout and Cowan
1979; Bressloff et al. 2001; Laing and Troy 2003).

In particular, studies of traveling pulse dynamics
often employ an auxiliary variable representing a neg-
ative feedback alternative other than synaptic inhibi-
tion (Pinto and Ermentrout 2001) because experiments
that show disinhibited in vitro cortical slices support
traveling pulses and spiral waves (Chervin et al. 1695;
Huang et al. 2004). A common candidate for this neg-
ative feedback is spike frequency adaptation, result-
ing from calcium-dependent hyperpolarizing currents
(Stocker et al. 1999; Benda and Herz 2003). There are
justifiable ways to implement its dynamic effects as an
additional subtractive variable in the activity equation
of a neural field (Pinto and Ermentrout 2001; Coombes
2005; Kilpatrick and Bressloff 2010b). In neural field
model studies, the auxiliary variable representing adap-
tation relates to the neural activity variable in either
a linear or nonlinear manner. Pinto and Ermentrout
introduced and analyzed the linear adaptation case on
an infinite domain and found that for strong enough
adaptation, traveling pulses exist in a neural field
with purely excitatory synapses (Pinto and Ermentrout
2001). Since then, others have examined alternative
solutions in the model like stimulus-induced breathers
(Folias and Bressloff 2004, 2005b), spiral waves (Huang
et al. 2004), multipulse solutions (Troy and Shusterman
2007), and self-sustained oscillations (Shusterman and
Troy 2008). On the other hand, starting from three
different conductance based models with an adaptation
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current, Benda and Herz derived a neural field model
where the relationship between neural activity and
adaptation was nonlinear (Benda and Herz 2003).
Hansel and Sompolinsky performed a mostly numerical
study of the generation of traveling pulses of activity in
networks in a periodic domain (a “ring” model) with
nonlinear adaptation and stationary input (Hansel and
Sompolinsky 1998). Coombes and Owen have analyzed
spatially structured solutions of such a system in an
infinite domain to find breathers, traveling pulses, and
exotic solutions are generated through the inclusion
of nonlinear adaptation (Coombes and Owen 2005).
In Kilpatrick and Bressloff (2010b), it was shown that
self-sustained oscillations also arise in a similar model.
Thus, neural field models with adaptation have been
utilized in describing a wide range of dynamics related
to experimentally observed population level activity.

In this paper, we depart from previous studies by
examining the dynamics resulting in a ring model with
adaptation subject to rotating and stationary inputs.
This is motivated by visual phenomena reported by
patients suffering from HPPD, whose disorder we pre-
sume arises as the result of an alteration in the synap-
tic connectivity of visual cortex (Abraham 1983). In
particular, we employ two different models, one with
linear adaptation and the other with nonlinear adap-
tation as a means of comparison. The paper is orga-
nized as follows. We introduce both the model with
linear adaptation and that with nonlinear adaptation in
Section 2, pointing out their different functional forms.
Then in Section 3, we carry out a detailed analysis
of the stimulus-induced states resulting in the model
with linear adaptation. Starting with a space-clamped
version of the model we can develop conditions for
when the whole network is always on in the limit of
infinitely fast moving input as well as conditions for
when the network is always on in the case of a spatially
homogeneous input flickering on and off. We follow
this with analyses of the spatially structured solutions
of the network: the strictly on state, stimulus-locked
traveling pulses, and stationary bumps. We find so-
lutions representative of visual trails arise as travel-
ing breathers, propagating pulse-like structures whose
width oscillates. Halo-type solutions arise as activity
profiles considerably wider than the stimulus input.
Then, in Section 4, we present results of analysis of the
network with nonlinear adaptation. A major difference
with the case of linear adaptation is the stability analysis
of traveling pulses in the network with nonlinear adap-
tation, whose details are presented in appendix. When
the firing rate function is a Heaviside, ambiguous terms
appear in the eigenmodes of the spectral calculation,
which we resolve by noting that the terms will depend

on the sign of the perturbation applied to the traveling
pulse. Finally, in Section 5, we show various numerical
simulations of the both spatially extended networks
along with extensions of analytic results to sigmoid and
piecewise linear firing rate functions, different weight
kernels, and different sized domains for comparison
with our analysis.

2 Neuronal networks with adaptation

We consider two neuronal network models which each
include spike frequency adaptation (Benda and Herz
2003; Madison and Nicoll 1984; Stocker et al. 1999).
These are both set on a one-dimensional periodic do-
main according to the heuristic argument presented in
the introduction regarding a possible diagnostic exper-
iment of HPPD (see Fig. 1). First, we consider a model
with negative feedback in the form of linear adaptation
(Pinto and Ermentrout 2001):

τ
∂u(x, t)

∂t
= −u(x, t) − v(x, t) + w ∗ f (u)

+ I(x − ct), (2.1a)

α
∂v(x, t)

∂t
= −v(x, t) + βu(x, t), (2.1b)

where

F ∗ G =
∫ π

−π

F(x − x′)G(x′)dx′.

Equation (2.1a) describes the evolution of the synaptic
current u(x, t), with membrane time constant τ , in the
presence of spike frequency adaptation, which takes
the form of a subtractive linear term v(x, t) evolving
according to Eq. (2.1b). The spatial domain x ∈ (−π, π)

is periodic, which restricts the set of possible solutions
u and v to have periodic boundary conditions. We
consider larger periodic domains for x in the numerical
solutions we perform in Section 5, finding most results
do extend to a reasonable range of domain sizes. The
functions f and w are the output firing rate (gain)
function and strength of connections between neurons
a distance |x − x′| apart, respectively. We will define
f , w, and I explicitly after we introduce the model
with nonlinear adaptation, as they arise in this sys-
tem as well. To specify visual input influenced by the
rotating spot stimulus, we include the term I(x − ct),
which is invariant with respect to the wave coordinate
x − ct with propagation speed c. The adaptation current
v(x, t) is activated with strength β and time constant α

(experimentally shown to be 40–120 ms (Madison and
Nicoll 1984; Stocker et al. 1999)). Neural field models
with linear spike frequency adaptation favor traveling
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waves, especially in networks with no lateral inhibition
(Hansel and Sompolinsky 1998; Pinto and Ermentrout
2001; Folias and Bressloff 2005b; Troy and Shusterman
2007; Kilpatrick et al. 2008).

In addition to the network with linear adaptation
(2.1), we pursue study of a neuronal network with non-
linear adaptation. This type of model is especially mo-
tivated by the form of the adaptation current appearing
in reduced firing rate models derived from more de-
tailed conductance based models with outward hyper-
polarizing currents (Benda and Herz 2003; Coombes
and Owen 2005; Kilpatrick and Bressloff 2010b)

τ
∂u(x, t)

∂t
= −u(x, t) + w ∗ f (u − v) + I(x − ct), (2.2a)

α
∂v(x, t)

∂t
= −v(x, t) + β f (u(x, t) − v(x, t)). (2.2b)

Equation (2.2a) describes the evolution of the synap-
tic current u(x, t), with membrane time constant τ , in
the presence spike frequency adaptation taking the
form of an outward hyperpolarizing adaptation current
v(x, t) evolving according to Eq. (2.2b). Both u and
v evolve on the periodic spatial domain x ∈ (−π, π),
but we also shall consider larger domains in Section 5.
The adaptation current v is activated with strength β

and time constant α (40–120 ms (Madison and Nicoll
1984; Stocker et al. 1999)). As derived from a universal
adaptation current by Benda and Herz (2003), spike
frequency adaptation is switched on as a linear function
of a neuron’s firing rate.

We shall take the output firing rate function f (J) to
be a nonlinear sigmoid function of the input current J.
One typical choice is the smooth sigmoidal firing rate
function

f (J) = 1

1 + exp(−η(J − κ))
, (2.3)

with gain η and input threshold κ . Some progress
has been made in analytically establishing links be-
tween model parameters and resultant solutions of
neural field models with smooth sigmoidal firing rates
(Kishimoto and Amari 1979; Faugeras et al. 2009; Pinto
and Ermentrout 2001; Coombes and Schmidt 2010;
Ermentrout et al. 2010).

In addition, we will study the effects of using a
piecewise linear firing rate function

f (J) =
⎧⎨
⎩

0, J ∈ (−∞, κ),

γ (J − κ), J ∈ (κ, κ + 1/γ ),

1, J ∈ (κ + 1/γ, ∞),

(2.4)

with slope 0 < γ < ∞ acting as a gain parameter in
simulations of the model in Section 5. Piecewise linear

firing rate functions have been employed in some pre-
vious studies of neural fields with nonlinear adaptation,
which has allowed analytic derivation of conditions for
moving pulses (Hansel and Sompolinsky 1998) and self-
sustained oscillations (Kilpatrick and Bressloff 2010b).
We shall employ the sigmoid (2.3) and piecewise linear
(2.4) functions with finite gain in simulations of the
model in Section 5.

However, more analytical progress can be made on
studying solutions of the networks (2.1) and (2.2) if the
assumption of a smooth firing rate function is relaxed
by taking f to be the high-gain limit η → ∞ of the
sigmoidal function (2.3) or γ → ∞ of the piecewise
linear function (2.4). Following Amari’s original work
on scalar networks (Amari 1977), most analytical stud-
ies of the neural fields with negative feedback take
the nonlinear firing-rate function f to be a Heavi-
side step function (Pinto and Ermentrout 2001; Folias
and Bressloff 2004, 2005b; Troy and Shusterman 2007;
Kilpatrick and Bressloff 2010b):

f (J) = H(J − κ) =
{

0, J ∈ (−∞, κ),

1, J ∈ (κ, ∞).
(2.5)

We will use such a function in order to study the
existence and stability of traveling waves, bumps, and
the ON state (see Sections 3 and 4).

The strengths of connections between neurons in the
network are specified by the weight function w(x, x′) =
w(x − x′), which is necessarily 2π -periodic in x − x′
since the domain is as well. Note that we are employing
a model akin to the previously studied “ring" model
of orientation preference in which synaptic weights are
a function of the difference in orientation preferences,
often selected as the sum of the two lowest order even
harmonics (Ben-Yishai et al. 1995; Bressloff and Cowan
2002; York and van Rossum 2009). For our studies of
trailing visual phenomena, the case that the size of the
circle traced by the rotating is relatively small allows
us to consider a periodic spatial domain x ∈ (−π, π)

and employ a function initially to study existence and
stability of solutions in the network

w(x) = w0 + w2 cos(x), x ∈ (−π, π), (2.6)

where w0 is the mean strength of connectivity (or av-
erage network excitation since we restrict w0 > 0) and
w2 is the modulation strength. To mimic alterations
in the strengths of synaptic connections, we shall vary
both of these parameters throughout our study. The
weight function (2.6) is reasonable, so long as the cir-
cle traced by the rotating spot stimulus is sufficiently
small, in other words as long as all neurons responding
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to the stimulus are close enough to communicate. In
this case, neurons that are close to one another will
excite one another and distal neurons will inhibit one
another, with lateral inhibition connectivity. Analysis
of the networks (2.1) and (2.2) is straightforward in the
case of the harmonic weight function (2.6). However, it
is conceivable that the rotating spot stimulus applied to
a subject may have a circular path that is wide enough
that connection strengths between some patches of
neurons are effectively zero. In this case, the size of
the domain would increase and we take the weight
function

w(x − x′) = e−|x−x′|/σe

− Aie−|x−x′|/σi , |x − x′| ∈ [0, L], (2.7)

where Ai parametrizes the amount of synaptic inhibi-
tion, σe (σi) the spatial scale of excitatory (inhibitory)
connections, and L the spatial size of the network. The
analysis of Sections 3 and 4 could be extended to a
system with the weight function (2.7). Resulting formu-
lae would merely be more tedious to derive and not as
straightforward to examine. Thus, we simply perform
numerical simulations of the system with a larger spatial
domain and weight function (2.7) in Section 5.

We specify the rotating input I(x − ct) as being al-
ways non-negative and periodic upon the spatial do-
main x ∈ (−L, L). A class of functions that fits this
restriction is

I(x − ct) = I0 cos2

(
x − ct

2

)
(2.8)

where I0 is the strength of this input, which we use for
our analysis of the system in Sections 3 and 4. In the
simulations of Section 5, where we extend our study to
larger networks, we use a Gaussian input stimulus

I(x − ct) = I0e−(x−ct)2/σ 2
I , (x − ct) ∈ [−L, L], (2.9)

where I0 is input strength, σI the input spatial scale, and
the domain width L > π for the simulations in which
we use this input. For the bulk of the paper, we use
stimulus strengths I0 high enough so that substantial
portions of the network operate close to saturation.
This is in light of the fact that we are modeling high
contrast visual inputs (see Fig. 1). Ben Yishai and col-
leagues examined the effects of weak inputs in a ring
model without adaptation, where they could essentially
exploit the fact that I0 � 1 to perform perturbative
analysis (Ben-Yishai et al. 1997). Our analysis will not
rely on this weak input assumption.

Finally, to restrict some parameters of both mod-
els, we make the following observations. We consider
synaptic time constants to be typically around 10 ms.

Therefore, by fixing the time constant of the u evolution
equation to τ = 1, we equate a single time unit with
10 ms. Therefore, since experimentally, the time con-
stant of adaptation is considered to be between 40 and
120 ms (Madison and Nicoll 1984; Stocker et al. 1999),
we should vary α roughly between 4 and 12.

3 Linear adaptation

We first consider the spatiotemporal dynamics arising
in the network with linear adaptation (2.1) and explic-
itly compute existence and stability of various spatially
structured solutions. In particular, we are concerned
with the effect weight function parameters have on
these solutions. First, we study spatially homogeneous
solutions of the network, where input is spatially ho-
mogeneous and either time-invariant or time-periodic.
Time-periodic stimuli are meant to model flickering
light experiments (Abraham and Wolf 1988). Then, we
proceed to studying spatially structured solutions that
arise for finite stimulus rotation speed c. For sufficiently
high speed c and input I0, we find the existence of
an ON state, where the input drive u(x, t) > κ . For
sufficiently weak excitation w0, we find there exists
a critical value of c for which the ON state fails to
exist. Then, either translationally invariant pulses or
traveling breathers exist, depending on stability condi-
tions, developed following an Evans function approach
(Zhang 2004; Folias and Bressloff 2005b). Finally, when
the stimulus speed is c = 0, we can carry out a greatly
simplified analysis of existence and stability of bumps
in the network as in Folias and Bressloff (2004) and
Coombes and Owen (2004). Results are summarized in
diagrams of parameter space which indicate transitions
such as that from the ON state to stimulus-locked state.
We find results of this network match the prediction
that for sufficiently elevated synaptic modulation w2 in
a network, trailing phenomena are induced much more
easily.

3.1 Space-clamped system

To examine fundamental effects of varying the
different parameters of the model, especially those re-
lated to adaptation, it is useful to study a space-clamped
version of the full set of equations, which essentially
assumes spatially homogeneous solutions can arise as
long as I(x, t) = I(t) is itself spatially homogeneous.
Shusterman and Troy carried out such an analysis in the
case without input, finding limit cycles arise for a critical
large value of β (Shusterman and Troy 2008). We will
study the system with linear adaptation in two different
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situations, both of which reduce the integrodifferential
equations (2.1) to a pair of ordinary differential
equations

u̇ = −u − v + w̄H(u − κ) + I(t),

αv̇ = −v + βu, (3.1)

where u and v are now only functions of t. In the first
situation, we examine Eq. (2.1) in the limit of infinite
rotation speed c → ∞ so that Eq. (2.8) becomes

I(t) = Ī = lim
c→∞ I(x − ct) = I0

∫ π

−π

cos2
( x

2

)
dx = π I0,

and the synaptic weight function’s effect can be re-
duced, in the case of the harmonic weight (2.6) and
L = π , to

w̄ =
∫ π

−π

w0 + w2 cos xdx = 2πw0.

Now in order to identify homogeneous solutions of the
full system (2.1), we need only identify fixed points
of the system (3.1), which are given by the pair of
equations

u0 = w̄

1 + β
H(u0 − κ) + Ī, (3.2)

v0 = βu0. (3.3)

We can solve explicitly for all fixed points and provide
conditions for their existence

u0 = w̄

1+β
+ Ī, v0 = βw̄

1+β
+ β Ī, exists if

w̄

1+β
+ Ī >κ,

u0 = Ī, v0 = β Ī exists if Ī < κ,

and notice a maximum of two fixed points exist in this
case. This is due to the fact that there is a jump discon-

tinuity in the firing rate function. The eigenvalues cor-
responding to the linear stability of both equilibria are

λ± = 1

2

[
−(1 + α−1) ±

√
(1 − α−1)2 − 4βα−1

]
, (3.4)

so both equilibria are always stable. There is still
a separatrix in phase space between the basins of
attraction of these two points, but there is no fixed
point upon it; this is where the system is discontinuous.
Thus, when the firing rate function is a Heaviside (2.5),
the full system (2.1) will support only the ON state
if Ī > κ (implying w̄/(1 + β) + Ī > κ , since w̄ ≥ 0),
only the OFF state if w̄/(1 + β) + Ī < κ , and both
ON and OFF states if Ī < κ but w̄/(1 + β) + Ī > κ .
In the bistable case, there is not enough drive to the
system to force activity ON from rest, but enough
recurrent excitation to keep the activity ON once
the system is switched on with a perturbation. We
illustrate these possibilities in Fig. 2. Note that it is also
possible for the system (3.1) to exhibit self-sustained
oscillations for sufficiently large β, as was shown in
Shusterman and Troy (2008). However, we are not as
concerned with this case since it is not indicative of a
particular visual symptom of HPPD. In the following
subsections, we find the state of the system undergoes
a series of bifurcations as c is reduced from infinity
so the solution goes from a homogeneous ON state,
to an inhomogeneous ON state, to a breathing and/or
stimulus-locked pulse, and finally to a stationary bump.

The second situation we study is that corresponding
to the input of a flashing light to the network (2.1).
This corresponds to a spatially homogeneous, but time-
periodic input

I(x, t) = I(t) = I0 H(sin(π t/TI)), (3.5)
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Fig. 2 Equilibria of the space-clamped system (3.1). (a) Plot of
the equilibrium values of u as the level of input to the network
Ī is varied. The net level of excitation is fixed w̄ = 0.1. As Ī is
increased from zero, the system transitions from having only the

OFF state, to being bistable, to strictly having an ON state. (b)
Phase diagram of system states in (w̄, Ī) space. Other parameters
are κ = 0.1 and β = 1
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so that I = I0 when t ∈ (2nTI, (2n + 1)TI) and I = 0
when t ∈ ((2n + 1)TI, 2(n + 1)TI) for n ∈ Z. We would
expect the system to become entrained to the input
signal I(t), resulting in a time-periodic solution with
period 2TI . Our study of this system is motivated by
experiments showing that patients with HPPD begin
seeing a fusion of light at a lower flicker frequency
than control groups (Abraham and Wolf 1988). Thus,
we will examine the effect that increasing net excitation
w̄ has upon the critical frequency ω∗ = 1/2T∗

I at which
the network is indefinitely in an ON, or superthreshold,
state. To do this, we shall first solve the system (3.1)
under the assumption that the flicker period 2TI is low
enough and the input strength I0 is high enough such
that the system is always ON. In this case, assuming the
system has settled into the attracting oscillation, we can
solve the system to find over a single period

u(t) = w̄ + I0

1 + β
+ I0

2B(1 + β)

×
[
(A − B)eλ+t

eλ+ + 1
− (A + B)eλ−t

eλ−t + 1

]
: t ∈ [0, TI],

u(t) = w̄

1 + β
+ I0

2B(1 + β)

×
[
(A + B)eλ−t

eλ−TI + 1
− (A − B)eλ+t

eλ+ + 1

]
: t ∈ [TI, 2TI],

where the eigenvalues λ± are given by Eq. (3.4), and

A = α + 2αβ − 1,

B =
√

α2 + 1 − 2α − 4αβ.

Therefore, we can find the how the critical half-period
TI , above which this fusion state will cease to exist,
as it relates to other parameters by determining the
minimum value of u and seeing where it crosses below
κ . This occurs when u((2TI)

−) = κ or

w̄

1 + β
+ I0

2B(1 + β)

[ A + B
1 + e−λ−TI

− A − B
1 + e−λ+TI

]
= κ.

(3.6)

We plot curves given by Eq. (3.6), partitioning para-
meter space into regions where fusion exists and where
flickering is actually perceived in Fig. 3, also depicting
the effect of increased net excitation on the evolution
of neural activity. Notice the network with more ex-
citation maintains fusion where the network with less
does not.

3.2 Loss of the ON state

We now proceed by studying the loss of the existence
of the ON state as the speed of the constant strength
stimulus c is reduced from infinity. In keeping with the
phenomenon we are modeling, we will be presume that
we are in a regime where the system does not support
the ON state in the case that Ī = 0, so w̄ < (1 + β)κ .
Also, we continue to consider the case of a Heavi-
side firing rate function (2.5), since we can develop
analytic expressions relating parameters to existence
regions of certain dynamics. We shall study the case of a
smooth sigmoidal firing rate in numerical simulations of
Section 5.

To start, consider the full network with linear adap-
tation (2.1) with the simple sum of harmonics weight
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Fig. 3 (a) Evolution of u in time when subject to a flicker stimu-
lus specified by Eq. (3.5) where TI = 0.5 and I0 = 0.6 for w̄ = 0
(dashed) and w̄ = 0.1 (solid). Notice that for elevated excitation
(w̄ = 0.1), the input current remains superthreshold (u > κ) for
the entirety of the stimulus period 2TI = 1, while the network
with less excitation (w̄ = 0) does not. (b) Plot of the critical value

of TI versus input strength I0 determined by Eq. (3.6) for w̄ =
0 (dashed) and w̄ = 0.1 (solid). Above these curves, the input
current u is not always superthreshold, but represents a flicker.
Below these curves the input current is always superthreshold,
representing a fusion state. Other parameters are κ = 0.1, α = 10,
and β = 1
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function (2.6), on the spatial domain x ∈ (−π, π), and
rotating input with finite speed, so

ut = −u − v +
∫ π

−π

(w0 + w2 cos(x − x′))

× H(u(x′, t) − κ)dx′ + I0 cos2

(
x − ct

2

)
,

vt = (−v + βu)/α. (3.7)

In order to check if the ON state exists for particular
choice of input, we use a constructive approach. First,
assume such a solution does exist, so that the network
is ON (u(x, t) > κ) at all values x ∈ (−π, π) for all
time t. In addition, we make a change of coordinates
to a rotating frame ξ = x − ct, so the set of Eq. (3.7)
becomes

− cU ′(ξ) = −U(ξ) − V(ξ)

+
∫ π

−π

(
w0 + w2 cos(ξ − ξ ′)

)
dξ ′ + I0 cos2 ξ

2
,

−cV ′(ξ) = (−V(ξ) + βU(ξ))/α. (3.8)

It is straightforward to solve this system by converting
it to a single second order differential equation

− c2U ′′(ξ) + c(1 + α−1)U ′(ξ) − α−1(1 + β)U(ξ)

= −2πw0

α
− I0

2

[
c · sin ξ + cos ξ + 1

α

]
. (3.9)

Along with periodic boundary conditions U(−π) =
U(π) and V(−π) = V(π), solving Eq. (3.9) for U and
using Eq. (3.8) to generate V gives

U(ξ) = 2πw0 + I0/2

1 + β
− U1 sin ξ + U2 cos ξ, (3.10)

V(ξ) = β(2πw0 + I0/2)

1 + β
− V1 sin ξ + V2 cos ξ, (3.11)

where

U1 = I0(α
2c3 + c − αcβ)

2D ,

U2 = I0(α
2c2 + 1 + β)

2D ,

with

D = c2(α + 1)2 + (αc2 − (1 + β))2,

and

V1 = β I0c(α + 1)

2D ,

V2 = β I0(1 + β − αc2)

2D .

Therefore, in order that the ON state exist for a
particular set of parameters, we require that the input
drive be superthreshold everywhere in the domain, that
is U(ξ) > κ for all ξ ∈ (−π, π). We can ensure this
restriction holds by requiring that simply the minimum
of U be superthreshold, U(ξm) > κ , which yields the
following inequality

U(ξm) = 2πw0 + I0/2

1 + β
−

√
U2

1 + U2
2 > κ,

or

2πw0 + I0/2

1 + β

− I0

√
(α2c3 + c − αcβ)2 + (α2c2 + 1 + β)2

2(c2(α + 1)2 + (αc2 − (1 + β))2)
> κ, (3.12)

constraining parameters for the ON state to exist. No-
tice that in the limit of an infinite speed stimulus, the
inequality (3.12) becomes the restriction imposed by
our calculations using the space-clamped system

lim
c→∞ U(ξm) = 2πw0 + I0/2

1 + β
> κ. (3.13)

Presuming then that the ON state exists for infinite c,
we can identify the critical stimulus speed value c∗ at
which the ON state ceases to exist as that for which the
inequality (3.12) becomes a strict equality

2πw0 + I0/2

1 + β

− I0

√
(α2c3∗ + c∗ − αc∗β)2 + (α2c2∗ + 1 + β)2

2(c2∗(α + 1)2 + (αc2∗ − (1 + β))2)
= κ.

We plot the relationship between c∗ and the strength
of the input I0 in Fig. 4 for a wide range of input
strengths, showing the boundary between an ON state
existing and not existing. Notice that this critical value
c∗ is higher in the network with less net excitation. LSD
may lead to a net increase in the strength of excita-
tory connections in networks that process visual inputs
(Nichols and Sanders-Bush 2002). Our results suggest
this may lead to excessive broadening of the network
signal representing a moving input, which could be
interpreted as a halo in the context of HPPD (Abraham
1983). To illustrate the behavior of the ON state, we
show a plot of the solution for a value of c slightly above
c∗ for a particular value of I0.
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Fig. 4 (a) The ON state plotted for stimulus speed c = 1.37,
slightly above the critical speed for the stimulus strength I0 = 0.5
and net excitation w0 = 0.02. The minimum U(ξm) lies slightly

above the threshold κ . (b) Critical value of c∗ calculated using
Eq. (3.12) plotted versus stimulus strength I0 for threshold κ =
0.1. Other parameters are α = 10, β = 0.5, and w2 = 0.5

3.3 Stimulus-locked pulses

Few studies of neural field models have examined the
effects of a propagating input. In a ring model with
nonlocal inhibition rather than local adaptation, Ben
Yishai and colleagues performed a study of the ability
of a network to lock to a propagating input (Ben-Yishai
et al. 1997). Folias and Bressloff explored the existence
and stability of stimulus-locked pulses in a network with
linear adaptation on the infinite domain with a Heavi-
side firing rate (Folias and Bressloff 2005b). Also, more
recently a similar study was carried out in a network
with a smooth firing rate function in Ermentrout et al.
(2010). Our work here diverges from those studies as it
is set on a periodic domain and operates in parameter
ranges where the leading and trailing edges of the pulse
will interact. Since we have a weight function in our
model with inhibition, we find that when instabilities of
the stimulus-locked pulses arise, the breathing solutions
that result are lurching rather than simply expanding
and contracting. This is actually more indicative of
the phenomenon of discrete afterimages seen during
visual trails (Abraham 1983; Kawasaki and Purvin 1996;
Dubois and VanRullen 2011).

3.3.1 Existence

Therefore, we proceed by looking for stimulus-locked
traveling pulse solutions to the network with linear
adaptation (2.1) and Heaviside firing rate function
(2.5). Considering traveling pulse solutions with width
�, we again employ the traveling wave coordinate ξ =
x − ct and define the superthreshold region ξ ∈ (π −
�, π), where we can arbitrarily select the leading edge’s
location due to underlying translation invariance of the
problem. Additionally, we must specify a spatial shift

for the input, such that I(x, t) = I0 cos2((ξ + �I)/2).
Thus, we have the following set of equations defining
a stimulus-locked traveling pulse solution

−cU ′(ξ) = −U(ξ) − V(ξ) +
∫ π

π−�

w0+w2 cos(ξ − ξ ′)dξ ′

+ I0 cos2

(
ξ + �I

2

)
,

−cV ′(ξ) = (−V(ξ) + βU(ξ))/α. (3.14)

We may also solve this system by first converting it to a
single second order differential equation

− c2U ′′(ξ) + c(1 + α−1)U ′(ξ) − α−1(1 + β)U(ξ)

= −w0�

α
− I0

2α
+ w2

α
(sin(� + ξ) − sin ξ)

+ cw2(cos ξ − cos(� + ξ)) − cI0

2
sin(ξ + �I)

− I0

2α
cos(ξ + �I). (3.15)

Along with the periodic boundary conditions U(−π) =
U(π) and V(−π) = V(π), solving Eq. (3.15) for U and
using Eq. (3.14) to generate V yields

U(ξ) = w0� + I0/2

1 + β

+U3

[
w2 sin ξ − w2 sin(ξ + �) + I0

2
cos(ξ + �I)

]

+U4

[
w2 cos ξ − w2 cos(ξ + �) − I0

2
sin(ξ + �I)

]
,

(3.16)
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V(ξ) = β(w0� + I0/2)

1 + β

+V3

[
w2 sin(ξ + �) − w2 sin ξ − I0

2
cos(ξ + �I)

]

+V4

[
w2 cos ξ − w2 cos(ξ + �)− I0

2
sin(ξ + �I)

]
,

(3.17)

where

U3 = α2c2 + 1 + β

D ,

U4 = α2c3 − αcβ + c
D ,

and

V3 = αc2β − β(1 + β)

D ,

V4 = βc(α + 1)

D .

Therefore, to specify the pulse width � and associated
shift to the input �I , we impose self consistency by
requiring that the input current U(ξ) specified by Eq.
(3.16) cross firing threshold κ at the leading and trailing
edge of the pulse such that U(π) = U(π − �) = κ . This
generates the following nonlinear system of equations

w0� + I0/2

1 + β
+ U3

[
w2 sin � − I0

2
cos �I

]

+U4

[
w2(cos � − 1) + I0

2
sin �I

]
= κ,

w0� + I0/2

1 + β
+ U3

[
w2 sin � − I0

2
cos(�I − �)

]

+U4

[
w2(1 − cos �) + I0

2
sin(�I − �)

]
= κ,

which can be solved numerically.
We show the dependence of pulse width � and input

shift �I on stimulus speed c in Fig. 5. Example profiles
of a stable and an unstable pulse are pictured in Fig. 6.
The results shown are representative of the qualitative
behavior of stimulus-driven traveling pulses for a wide
range of parameters. There is an intermediate range
of stimulus speeds for which a stable traveling pulse
is the attracting solution, but this branch can become
unstable for very slow stimuli. This reflects the speed of
intrinsic traveling pulses that exist in the network when
no inputs are present (Ben-Yishai et al. 1997; Folias and
Bressloff 2005b). There are two other unstable pulse
solutions as well. We present our calculation of stability
in the following subsection. As the stimulus speed is
increased, at a critical value of c, the stable branch
annihilates with an unstable branch while the other
unstable branch persists. When the stimulus speed is
beyond this critical value, there will be no translation-
ally invariant traveling pulses. Thus, we associated the
onset of trailing phenomena with this critical value of
c, as long as it is less than the speed necessary for the
ON state to exist. The location of this point depends
quite weakly on net excitation w0, and more strongly
on the overall modulation of synaptic connectivity w2,
decreasing monotonically as w2 is increased. The par-
titioning of parameter space into the stable solutions
existing is shown in Fig. 7 for both (w2,c) and (I0,c). No-
tice, for sufficiently weak synaptic strength modulation,
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Fig. 5 Dependence of the (a) pulsewidth � and (b) input shift
�I on the stimulus speed c. For sufficiently slow inputs, there
are three traveling pulse solutions, two unstable (dashed), one
stable (solid). At a critical value of c, two solutions annihilate

one another and a single unstable solution remains. Stability is
determined by the zeros of the Evans function E(λ) = |Ap − I|
where Ap is given by Eq. (3.21). Other parameters are κ = 0.1,
α = 10, β = 0.5, w0 = 0.02, w2 = 0.5, and I0 = 0.5
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Fig. 6 Profiles of the
(a) stable and (b) upper
unstable pulse solutions U(ξ)

and V(ξ) given by Eqs. (3.16)
and (3.17), respectively, when
c = 0.2. Note that the
solution remains above
threshold within the region
ξ ∈ (π − �, π). Other
parameters are κ = 0.1,
α = 10, β = 0.5, w0 = 0.02,
w2 = 0.5, and I0 = 0.5
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there are no c values for which traveling breathers
exist, and there is a region of bistability where stable
locked pulses and the ON state exist. It appears that the
lower range of w2 provides physiologically reasonable
results in our idealized model, and more unfaithful rep-
resentations of stimuli arise as modulation increases.
Therefore, our model predicts that visual trails may
arise from an overall strengthening of both excitatory
and inhibitory connections through some modulation
of neurotransmitter concentration. Numerical simula-
tions of different scenarios of stimulus-driven pulses, as
the stimulus speed increases, are pictured in Fig. 8. This
reflects the analytically predicted behavior calculated
using stability analysis in the next subsection.

3.3.2 Stability

We now calculate the stability of the above stimulus
locked pulse solutions. As was shown by Folias and
Bressloff (2005b), stimulus-locked pulses in a network

with linear adaptation can lose stability through a
Hopf bifurcation, resulting in traveling breathers. In
the context of neural substrates of visual experience,
traveling breathers would imply a subject witnessing
haloes around or afterimages behind the traveling spot
stimulus. This has been seen in several studies of ex-
hallucinogen users (Abraham 1983; Halpern and Pope
2003; Dubois and VanRullen 2011). Therefore, we pro-
ceed by examining the onset of such solutions using
a linear stability analysis of the spatially structured
solutions derived in the previous section.

We begin by examining the evolution of small,
smooth perturbations to the traveling pulse solution
(U(ξ), V(ξ)). Common to such stability calculations,
we assume the perturbations are separable in time
and the wave coordinate such that u(ξ, t) = U(ξ) +
eλtψ(ξ) and v(ξ, t) = V(ξ) + eλtφ(ξ) (Coombes and
Owen 2004; Folias and Bressloff 2005b). In addition,
we require that eλt(ψ(ξ), φ(ξ)) are sufficiently small
such that Taylor series expansions are valid. Thus, our
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Fig. 7 (a) Partition of (w2,c) parameter space, where I0 = 0.5,
into four different regimes. Very slow stimuli are not tracked
for high enough synaptic modulation w2. Above this range, slow
enough stimuli are tracked as a translationally invariant traveling
pulse. As the stimulus speed increases, there is a critical value of
c beyond which the invariant solution slips off of the stimulus,
leading to traveling breathers. This corresponds to discrete after-

images at each slip time. For very fast stimuli, the ON state exists,
corresponding to the whole domain being superthreshold. For
weak synaptic strength modulation w2, the signal is either tracked
as a locked pulse or the whole domain is superthreshold, and a
region of bistability exists. (b) Partition of (I0,c) parameter space
for w2 = 0.5. Other parameters are κ = 0.1, α = 10, β = 0.5, and
w0 = 0.02
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(a) (b)

Fig. 8 Numerical simulations of stimulus-locked pulses and trav-
eling breathers in the network with linear adaptation (2.1) for
a Heaviside firing rate (2.5), where u(x, t) is plotted. (a) For a
speed (c = 0.2) within the region of parameter space where stable
locked traveling pulses exist. (b) For a speed (c = 1) beyond the

critical speed where stable pulses cease to exist, superthreshold
activity periodically lurches, representative of a discrete afterim-
age. Other parameters are κ = 0.1, α = 10, β = 0.5, w0 = 0.02,
w2 = 0.5, and I0 = 0.5

analysis proceeds by plugging these expressions in the
system (2.1) along with the traveling pulse solutions
(3.16) and (3.17). Upon expanding to first order in
(ψ, φ), we arrive at the linear equation

− cψ ′ + (λ + 1)ψ + φ = w(ξ − π)ψ(π)

|U ′(π)|
+ w(ξ − π + �)ψ(π − �)

|U ′(π − �)| ,

−φ′ + (λ + α−1)φ = βψ

α
, (3.18)

where we have used the identity

dH(U(ξ) − κ)

dU
= δ(ξ − π)

|U ′(π)| + δ(ξ − π + �)

|U ′(π − �)| . (3.19)

In Folias and Bressloff (2005b), there is a detailed
analysis of the complete spectrum of a similar linear
operator on the infinite domain. We forgo such analysis
here and focus particularly on the point spectrum of
the operator in the system (3.18). In doing so, we can
associate the point spectrum of the linear operator
with the zeros of a complex analytic function called
the Evans function (Coombes and Owen 2004). Thus,
to predict the stability of stimulus-locked pulses, we
look for nontrivial solutions of the eigenvalue problem
(3.18). First, we note that the values which bound the
essential spectrum λ = −1 + ip and λ = −α−1 + ip (p ∈
R) will not contribute to any instabilities. Omitting
these values from the remainder of our analysis, we
proceed by solving for the associated eigenfunctions.
As we did in the solution of the existence problem, we

can solve for φ in terms of ψ to convert the system
(3.18) to the following equation

− cψ ′′ + ((c + 1)λ + c(1 + α−1))ψ ′

−((λ + α−1)(λ + 1) + βα−1)ψ

= ψ(π)

|U ′(π)|
[
cw′(ξ − π) − (λ + α−1)w(ξ − π)

]

+ ψ(π − �)

|U ′(π − �)|
× [

cw′(ξ − π + �) − (λ + α−1)w(ξ − π + �)
]
.

By treating the pointwise terms ψ(π) and ψ(π − �) as
constants, we can solve this equation as an inhomoge-
neous second order differential equation in the case of
the harmonic weight function (2.6). Upon applying pe-
riodic boundary conditions, we arrive at the following
expression for the eigenfunction

ψ(ξ) =
[
P0 + P1 sin ξ − P2 cos ξ

Dp

]
ψ(π)

|U ′(π)|

+
[
P0 + P1 sin(ξ + �) − P2 cos(ξ + �)

Dp

]

× ψ(π − �)

|U ′(π − �)| , (3.20)

where

P0 = w0(αλ + 1)

A1
,

P1 = w2[α2c3 − αcA1 + c(αλ + 1)A2],
P2 = w2[(αλ + 1)(A1 − αc2) + αc2A2],
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with

A1 = (αλ + 1)(λ + 1) + β,

A2 = 2αλ + α + 1,

Dp = [αc2 − A1]2 + (cA2)
2 .

Requiring self-consistency of the solution (3.20), we
generate the following 2 × 2 linear system of equations
ψ = Apψ where

ψ =
(

ψ(π)

ψ(π − �)

)
, Ap =

(
Aππ Aπ�

A�π A��

)
, (3.21)

with

Aππ = DpP0 + P2

Dp|U ′(π)| ,

Aπ� = DpP0 − P1 sin � + P2 cos �

Dp|U ′(π − �)| ,

A�π = DpP0 + P1 sin � + P2 cos �

Dp|U ′(π)| ,

A�� = DpP0 + P2

Dp|U ′(π − �)| .

Then, continuing the approach of previous studies of
the stability of traveling waves in neural fields (Zhang
2004; Coombes and Owen 2004; Folias and Bressloff
2005b), we look for nontrivial solutions of ψ = Apψ

such that E(λ) = 0, where E(λ) = det(Ap − I) is the
Evans function of the traveling pulse solution (3.16)
and (3.17). Since there are no other parts of the spec-
trum that would contribute to instabilities, the traveling
pulse will be linearly stable as long as Re λ < 0 for all λ

such that E(λ) = 0. We can find the zeros of the Evans
function by following (Coombes and Owen 2004) and
writing λ = ν + iω and plotting the zero contours of
Re(E(λ)) and Im(E(λ)) in the (ν, ω)-plane. The Evans
function is zero where the lines intersect.

We present an example of this calculation for the
traveling pulse solutions of Fig. 5. The upper unstable
pulse has a positive real eigenvalue and the stable
pulse’s eigenvalues are complex with negative real part
according to the predictions of their zero contours in
Fig. 9. Therefore, when c moves beyond the interval
of existence for the stable pulse, we expect a trans-
lationally invariant traveling pulse to cease to exist.
Only an unstable traveling pulse remains, and for a
wide range of parameters, this is a breathing pulse.
Previous studies of stimulus-driven neural fields show
breathing pulses can arise through a Hopf bifurcation
in the linear stability of the pulse, associated with
complex eigenvalues with positive real part (Folias and
Bressloff 2005b; Coombes and Owen 2005). Here, we
find the breathing pulses in this network arise when a
stable pulse solution annihilates with an unstable pulse,

Fig. 9 Evans function for the
stimulus-locked traveling
pulses (3.16) and (3.17)
whose width � and shift �I
are plotted in Fig. 5. Zero
contours of Re E(λ) (black)
and Im E(λ) (grey) are
calculated using
E(λ) = det(Ap − I) and
Eq. (3.21), where λ = ν + iω.
Zeros of the Evans function
occur at the crossings of black
and grey lines. (a) Lower
stable branch at c = 0.2;
(b) Middle unstable branch at
c = 0.2; (c) Upper unstable
branch at c = 0.2,
(d) Saddle-node bifurcation
at c = 0.389. Other
parameters are κ = 0.1,
α = 10, β = 0.5, and I0 = 0.5
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leaving a single unstable pulse whose linear stability is
determined by a positive real eigenvalue. Nonetheless,
the spatiotemporal dynamics of the network do evolve
to a propagating pulse solution whose width changes
periodically, as shown in Fig. 8.

3.4 Bumps

To consider the network dynamics resulting as the
rotating input is slowed to a stop, we study the limit of
the stimulus speed as c → 0. In this case, there will be a
stationary input, so we will look for stationary solutions,
bumps in particular. Such inputs may be applicable
to studying the effects of excessive excitation in the
network on fixed visual inputs. Therefore, we study the
existence and stability of stimulus driven bumps in this
section along the lines of previous studies both in a ring
model (Ben-Yishai et al. 1995; Bressloff and Cowan
2002) and in an infinite domain (Folias and Bressloff
2004). In this case, the presence of a periodic weight
function with inhibition contributes to the possibility
of spatially asymmetric instabilities in the bump, as
oppose to the reflection symmetric breathers found in
Folias and Bressloff (2004, 2005a).

3.4.1 Existence

In the case of a stationary (time-independent) bump
solution, the input drive U(x) crosses threshold
κ twice. Assuming the stationary input I(x − ct) ≡
I(x) is centered at x = 0, threshold crossings will
occur at x = −�, � due to the resulting symmetry of
the problem. The input drive must be superthreshold
when |x| < � and subthreshold otherwise. It is straight-
forward to show these conditions hold for bumps in
the network with linear adaptation, but such station-
ary bumps do not exist in the network with nonlinear
adaptation (Kilpatrick and Bressloff 2010b). The time-

independent version of system (2.1) reduces to the pair
of equations

U(x) =
∫ �

−�

w(x − x′)dx′ − V(x) + I(x), (3.22)

V(x) = βU(x). (3.23)

Substituting (3.23) into (3.22) and using the harmonic
weight function yields the solution

U(x) = 2

1 + β
[w0� + w2 sin � cos x]

+ I0

2(1 + β)
(1 + cos x) . (3.24)

Note that, using trigonometric identities, we could
rewrite the bump solution (3.24) as U(x) = A sin(x +
B) + C, so we can be sure the function has a single
maximum and minimum, implying it will surely be a sin-
gle bump. Applying the threshold conditions U(−�) =
U(�) = κ , we arrive at an implicit expression for the
bump width

I0(1 + cos �) + 4w0� + 2w2 sin(2�)

2(1 + β)
= κ. (3.25)

We plot the variation of the bump width with the pa-
rameters w0 and I0 in Fig. 10; the stability of the bump
is analyzed below. Notice specifically in Fig. 10b that
as the net excitation w0 is increased, the bump width
increases, but the bump width decreases as modulatory
strength w2 increases.

3.4.2 Stability

We can determine the stability of the bump of
half-width � by writing u(x, t) = U(x) + eλtψ(x) and
v(x, t) = V(x) + eλtφ(x) with V(x) = βU(x) and ex-
panding Eq. (2.1) to first-order in (ψ, φ). Note, we
assume small, smooth perturbations of the stationary

Fig. 10 (a) Stable (solid)
and unstable (dashed) bump
half-widths � versus input
strength I0 for κ = 0.1,
β = 0.5, w0 = 0.05, and
w2 = 0.5. (b) Stable bump
half-width � versus net
excitation w0 for various
modulatory strengths w2.
Here κ = 0.1, β = 0.5,
and I0 = 0.4
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bump solution are separable. Along with the identity
(3.19), this leads to the linear equation

(λ + 1)ψ + φ = w(x − �)ψ(�)

|U ′(�)|
+ w(x + �)ψ(−�)

|U ′(−�)| , (3.26)

(αλ + 1)φ = βψ, (3.27)

where

U ′(x) = − (4w2 sin � + I0) sin x
2(1 + β)

, (3.28)

and U ′(−�) = −U ′(�) > 0. Substituting Eq. (3.27)
into Eq. (3.26), we obtain the eigenvalue equation

�(λ)ψ(x) = (λ + α−1)

×w(x − �)ψ(�) + w(x + �)ψ(−�)

|U ′(�)| ,

(3.29)

where

�(λ) = λ2 + (1 + α−1)λ + 1 + β

α
.

First, considering solutions ψ(x) that vanish at x = ±�

we find λ = λ0± such that

λ0
± = −(1 + α−1) ± √

(1 + α−1)2 − 4α−1(1 + β)

2
.

Since λ0± have infinite multiplicity and always have
negative real part, they belong to the essential spectrum
and do not contribute to any instabilities. There are
then two other solutions to Eq. (3.29). The first are
of the form ψ(x) = A[w(x − �) + w(x + �)] with A
a constant coefficient and λ given by the roots of the
equation

λ2 + (1 + α−1)λ + α−1(1 + β)

= (λ + α−1)
w(0) + w(2�)

|U ′(�)| .

This yields the pair of eigenvalues λ = λ̂±, where

λ̂± =
−�+ ±

√
�2+ − 4α−1(1 + β)(1 − �+)

2
, (3.30)

with

�+ = 1 + α−1 − (1 + β)�+,

�+ = w(0) + w(2�)

w(0) − w(2�) + I ,

and I = |I′(�)|. Finally, there is a solution of the
form ψ(x) = A[w(x − �) − w(x + �)] with A a con-
stant coefficient and λ given by the roots of

λ2 + (1 + α−1)λ + α−1(1 + β)

= (λ + α−1)
w(0) − w(2�)

|U ′(�)| .

This yields the pair of eigenvalues λ = λ±, where

λ± =
−�− ±

√
�2− − 4α−1(1 + β)(1 − �−)

2
, (3.31)

with

�− = 1 + α−1 − (1 + β)�−,

�− = w(0) − w(2�)

w(0) − w(2�) + I .

Employing the harmonic weight function (2.6) and
noting that � ∈ (0, π), we can make a comparison of
the two pairs of eigenvalues easier by evaluating

�+ = 4(w0 + w2 cos2 �)

(I0 + 4w2 sin �) sin �
,

�− = 4w2 sin2 �

(I0 + 4w2 sin �) sin �
.

Thus, �− > �+ when sin2 � − cos2 � > w0/w2 or
equivalently when

� ∈ (�−, �+), �± = π

2
± cos−1

(
w0

w2

)
,

otherwise �+ > �−. This will determine which is the
dominant eigenvalue. In Fig. 11, we compute specific
eigenvalues for the stimulus driven bumps shown in
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Fig. 11 Maximal eigenvalue associated with the thin (solid) and
wide (dashed) bumps pictured in Fig. 10 as a function of I0. Other
parameters are κ = 0.1, β = 0.5, w0 = 0.05, and w2 = 0.5
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Fig. 10(a), showing the wide bump is unstable and the
thin bump is stable.

4 Nonlinear adaptation

Benda and Herz have derived a reduced firing rate
model with an adaptation variable from three different
conductance based models with hyperpolarizing cur-
rents thought to participate in spike frequency adap-
tation (Benda and Herz 2003). The adaptation vari-
able has a nonlinear dependence upon the activity
variable. Using this idea, a few studies have examined
the effects that different forms of nonlinear adapta-
tion have upon spatiotemporal dynamics of firing rate
models (Coombes and Owen 2004, 2005; Kilpatrick and
Bressloff 2010b). For example, Coombes and Owen
(2005) showed that a neural field model with nonlinear
adaptation can support breathing bumps and pulses as
well as more exotic solutions without any spatially in-
homogeneous input being applied (Folias and Bressloff
2004, 2005b). As has been shown in Kilpatrick and
Bressloff (2010c), the stability analysis of bumps and
traveling pulses in networks with nonlinear adaptation
can be much more subtle than in the linear adapta-
tion case due to the piecewise smooth nature of the
system’s dynamics. Thus, in our study of the network
with nonlinear adaptation we carry out an analysis of
the space-clamped system, the existence of the ON
state, and existence and stability of traveling pulses.
Though, some of these calculations are relegated to the
appendix. We show, as a means of comparison to the
network with linear adaptation, that most of the expres-
sions are much more straightforward, but some cannot
be derived due to the system’s piecewise smoothness.
However, in the network with nonlinear adaptation,
we cannot study the existence and stability of bumps,
since the threshold condition will be violated by the

discontinuity in the adaptation variable (Kilpatrick and
Bressloff 2010b).

4.1 Space-clamped system

As with the system with linear adaptation (2.1), we
study the space-clamped version of the system with
nonlinear adaptation (2.2) in the situation of time-
independent and time-periodic input. The system (2.2)
then becomes a pair of ordinary differential equations

u̇ = −u + w̄H(u − v − κ) + I(t),

αv̇ = −v + β H(u − v − κ), (4.1)

where u and v depend only on t. First, in the limit
of infinite rotation speed c → ∞, the input becomes
I(t) = Ī = π I0, as in Eq. (3.2). Similarly, the synaptic
weight function’s effect can be reduced, in the case of
the harmonic weight (2.6), to w̄ = 2πw0.

To find homogeneous solutions of the full system
(2.2), we compute fixed points of the system (4.1) along
with their existence conditions

u0 = w̄ + Ī, v0 = β, exists if w̄ + Ī > κ + β,

u0 = Ī, v0 = 0, exists if Ī < κ,

and notice a maximum of two fixed points exist, which
would both be stable. Thus, the full system (2.2) will
support only the ON state if Ī > κ , only the OFF state
if w̄ + Ī < κ + β, both ON and OFF states if Ī < κ but
w̄ + Ī > κ + β, and no steady states if Ī > κ and w̄ +
Ī < κ + β. In order for the bistable case to occur, pa-
rameters must be restricted as β < w̄. We illustrate an
example of these possibilities in Fig. 12. Also, we show
the evolution of the system when there are no steady
states and self-sustained oscillations result. It appears
the system with nonlinear adaptation is more conducive
to oscillations. Low amplitude oscillations like this do
not exist in the network with linear adaptation.

Fig. 12 (a) Equilibria of the
space-clamped system (4.1) as
a function of input I0. There
is no bistability for this
particular choice of
parameters since β > w̄.
Other parameters are
κ = 0.1, β = 0.2. (b) Example
of the case with no steady
state when I0 = 0.15,
so that self-sustained
oscillations result
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Secondly, we study the effect of a spatially homo-
geneous, time-periodic input (3.5) with period 2TI ;
this corresponds to a flashing light stimulus. A time-
periodic solution may develop, synchronized to the
input period 2TI . As in the network with linear adap-
tation, we are interested in finding the critical fre-
quency ω∗ = 1/2T∗

I , below which a continuously ON
solution does not exist. As before, we do so by solving
for the time-periodic, continuously ON solution u to
Eq. (4.1) with input (3.5), and identifying where the
minimal value of u crosses below κ . This occurs when
u((2TI)

−) = κ or

I0
(
e−TI − e−2TI

)
1 − e−2TI

= κ − w̄. (4.2)

Notice, this is a much more concise formula than that
derived for the network with linear adaptation (3.6).
We plot the curves given by Eq. (4.2), partitioning pa-
rameter space into flicker and fusion regions in Fig. 13,
also showing the effect of increasing net excitation.
The network with more excitation can maintain fusion
where the network with less does not. These results
are qualitatively similar to those found for the network
with linear adaptation driven by a flicker stimulus in
Fig. 3. However, in the case of nonlinear adaptation,
there seems to be a much stronger dependence of the
critical flicker half-period T∗

I on input strength I0.

4.2 Loss of the ON state

We now examine the critical stimulus speed c∗ at which
the ON state ceases to exist. This is the speed at which

the network can begin to encode information about the
location of the stimulus. Here, we simply present the
exact expression for c∗, which we derive in detail in
Appendix A

c∗ =
√

I2
0

(4πw0 + I0 − 2(β + κ))2
− 1, (4.3)

and when c > c∗, the ON state exists. Notice, therefore,
that when w0 < (β + κ − I0)/(2π), the ON state never
exists for any value of c, and when w0 > (β + κ)/(2π),
the ON state exists for all values of c. Otherwise, the
critical value c∗ will indicate the boundary between the
ON state and dynamics where U(ξ) < β + κ for some
ξ ∈ (−π, π). We plot this boundary in Fig. 14, compar-
ing the effects of different levels of net excitation w0.
Values of c below the critical curve associated with each
value of w0 do not support the ON state. Notice that the
results are qualitatively similar to those derived for the
network with linear adaptation. However, one advan-
tage of the result presented here is that it provides an
explicit expression for the critical stimulus speed.

4.3 Stimulus-locked pulses

We now present our results regarding stimulus-locked
pulses in the network with nonlinear adaptation. Tech-
nical issues arise in calculating stability of the travel-
ing pulse here due to the nonlinearity. Coombes and
Owen have studied existence and stability of traveling
pulses in a network with nonlinear adaptation on an
infinite domain (Coombes and Owen 2005). They used
different thresholds for the nonlinearity in the activity
and adaptation variable equations, allowing them to
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Fig. 13 (a) Evolution of u in time as described by Eq. (4.1) when
subject to a flicker stimulus where TI = 0.5 and I0 = 0.6 for low
and high net excitation w̄ = 0. For elevated excitation (w̄ = 0.1),
the input current remains superthreshold (u > κ + β) for the
entirety of the stimulus period 2TI = 1, while the network with
less excitation (w̄ = 0) does not. (b) Plot of the critical value of TI

versus input strength I0 determined by the Eq. (4.2) for low exci-
tation w̄ = 0 (dashed) and high excitation w̄ = 0.1 (solid). Above
these curves, the input current u is not always superthreshold,
but represents a flicker of the given period. Below these curves,
the input current is always superthreshold, representing a fusion
state. Other parameters are κ = 0.1, α = 10, and β = 0.2
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Fig. 14 (a) The ON state
plotted for stimulus speed
c = 2.2 and net excitation
w0 = 0.02, slightly above the
critical speed for the stimulus
strength I0 = 0.6. The
minimum U(ξm) lies slightly
above the total threshold
κ + V = 0.3. (b) Critical
value of c∗ calculated using
Eq. (4.3) plotted versus
stimulus strength I0 for
threshold κ = 0.1. Here
β = 0.2 0.2 0.4 0.6 0.8 1
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circumvent issues that might arise in the calculation of
the Evans function characterizing stability. As we show
in Appendix C, when calculating stability of traveling
pulses, we must keep track of the sign of perturbation
at the boundaries of the pulse. Recently, this issue
was addressed in a study of existence and stability of
stationary bumps in a nonlinear model with synaptic
depression (Kilpatrick and Bressloff 2010c; Bressloff
and Kilpatrick 2011).

4.3.1 Existence

Dependence of traveling pulse solutions on parame-
ters here is qualitatively similar to that found for the
network with linear adaptation. Our analysis follows
along similar lines too, so our construction of traveling
pulse solution lies in Appendix B. Upon constructing
the stimulus-locked traveling pulse solutions to the
network with nonlinear adaptation (2.2) and Heaviside
firing rate function (2.5), we have following nonlinear

system of equations relating their width � and shift �I

to parameters:

w0� + I0

2
+ I0[c sin �I − cos �I]

2(1 + c2)

+ w2[sin � + c(cos � − 1)]
1 + c2

= β
e�/αc − 1

e2π/αc − 1
+ κ,

w0� + I0

2
+ I0[c sin(�I − �) − cos(�I − �)]

2(1 + c2)

+ w2[sin � + c(1 − cos �)]
1 + c2

= β
1 − e−�/αc

1 − e−2π/αc
+ κ,

which can be solved numerically. Notice, however, a
solution (�, �I) is not necessarily a single pulse. This
is because there could be additional crossing points of
U − V with κ due to the exponential terms in V decay-
ing too steeply. Thus, we must take care in ensuring that

U(ξ) − V(ξ) > κ : ξ ∈ (π − �, π),

U(ξ) − V(ξ) < κ : ξ ∈ (−π, π − �). (4.4)
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Fig. 15 Dependence of the (a) pulsewidth � and (b) input shift
�I on the stimulus speed c. There is range of slow speeds for
which two traveling pulses solutions exist, one unstable (dashed),
one stable (solid). At a critical value of c, two solutions annihilate

one another and a single unstable pulse appears again at higher c
values. Other parameters are κ = 0.1, α = 10, β = 0.2, w0 = 0.02,
w2 = 0.5, and I0 = 0.5
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Fig. 16 Profiles of the
(a) stable for c = 0.2 and
(b) unstable pulse for c = 0.8.
Solutions U(ξ) and V(ξ)

given by Eqs. (B.1) and (B.2),
respectively. Note that the
solution U(ξ) remains above
the threshold V(ξ) + κ within
the region ξ ∈ (π − �, π).
Other parameters are
κ = 0.1, α = 10, β = 0.2,
w0 = 0.02, w2 = 0.05,
and I0 = 0.5  −2 0 2
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Such issues do not arise in the network with linear adap-
tation because the auxiliary variable does not directly
affect the subthreshold or superthreshold conditions of
the traveling pulses.

The dependence of pulse width � and input shift �I

on various parameters is shown in Fig. 15, and example
profiles of a stable and unstable pulse in Fig. 16. Notice
the rise and fall of the input U and adaptation V
variables is much more synched than in the case of
linear adaptation. As c → 0, there is a range of stimulus
speeds for which no stimulus-locked pulses exist, since
the solutions we construct violate the subthreshold and
superthreshold assumptions (4.4). We find propagating
and nonpropagating breathers can result in this slow c
parameter range. Beyond this range, solutions and sta-
bility are qualitatively similar to the linear adaptation
case, and we associate the onset of trailing phenom-
ena with the critical value of c where the saddle-node
bifurcation exists. Parameter space is partitioned into
existing stable solutions in Fig. 17 for both (w2,c) and

(I0,c). Numerical simulations of different scenarios of
stimulus-locked pulses are pictured in Fig. 18.

4.3.2 Stability

We now show stability results for stimulus-driven
pulses in the network with nonlinear adaptation. In
the study of a similar network by Coombes and Owen,
it was shown that in the case of no external stim-
uli, a network with nonlinear adaptation can support
pulses that lose stability through a supercritical Hopf
bifurcation (Coombes and Owen 2005). Their stabil-
ity calculation was eased by the fact that they took
different threshold values for the nonlinearities in the
adaptation versus activity variable. Hopf instabilities
in traveling pulses result in traveling breathers. The
stability calculation for traveling pulses in the network
with nonlinear adaptation (2.2) requires more care due
to there being a jump discontinuity in the derivative
V ′(ξ) at the threshold crossing points ξ = π − � and π .
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Fig. 17 (a) Partition of (w2,c) parameter space, where I0 = 0.5,
into three different behaviors of solutions. For sufficiently slow
stimuli, the network can track the signal as a translationally
invariant traveling pulse. As the stimulus speed increases, there
is a critical value of c at which stable pulses cease to exist and the
invariant solution slips off of the stimulus, leading to traveling

breathers. This corresponds to discrete afterimages at each slip
time. For very fast stimuli, the ON state exists, corresponding
to the whole domain being superthreshold. (b) Similar partition
of (I0,c) parameter space for w2 = 0.5. Other parameters are
κ = 0.1, α = 10, β = 0.2, and w0 = 0.02
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(a) (b)

Fig. 18 Numerical simulations of stimulus-locked pulses and
traveling breathers in the network with nonlinear adaptation
(2.2) for a Heaviside firing rate (2.5), where u(x, t) − v(x, t) is
plotted. (a) For a speed (c = 0.2) within the region of parameter
space where stable locked traveling pulses exist. (b) For a speed

(c = 0.4) beyond the critical speed where stable pulses cease to
exist, superthreshold activity periodically lurches, representative
of a discrete afterimage. Other parameters are κ = 0.1, α = 10,
β = 0.2, w0 = 0.02, w2 = 0.5, and I0 = 0.5

We demonstrate the detailed calculation of the Evans
function, whose zeros are associated with the linear
stability of stimulus-locked pulses, in Appendix C. The
resulting spectral equation then depends on the sign of
the perturbation at these crossing points, which in turn
determines associated eigensolutions.

We can use our Evans function calculation to com-
pute real eigenvalues for the traveling pulse solutions of
Fig. 18. As opposed to the case of the network with lin-
ear adaptation, we find the zeros of the Evans function
by plotting the zero contours of E(λ) = det(Ap − I) in
(c,λ) space assuming λ is real. This requires finding the
real eigenvalues of Ap defined by Eq. (C.10) for four
different restricted classes of eigenvectors, defined in
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Fig. 19 Maximal eigenvalues associated with linear stability of
stimulus-driven pulses (B.1) and (B.2), whose width � and shift
�I are plotted in Fig. 15. These are computed as the real zeros
of the Evans function E(λ) = det(Ap − I) with Eq. (C.10). The
upper branch of pulses in Fig. 15 will be unstable, as determined
by positive eigenvalues (grey), and the lower branch of pulses
will likely be stable, since eigenvalues are negative (black). Pa-
rameters are κ = 0.1, α = 10, β = 0.2, w0 = 0.02, w2 = 0.5, and
I0 = 0.5

Appendix C. In Fig. 19, we plot the maximal real eigen-
value associated with the stability of each traveling
pulse solution in Fig. 18 for c ∈ (0.02, 0.32). Specifically,
we find that the wide pulse is always unstable and the
narrower pulse is always stable, as long as they exist.
Both eigenvalues approach zero as the pulse widths
approach one another. We also found that the maximal
real eigenvalue associated with the single pulse solution
at larger c values is always positive (not shown).

5 Continuous firing rate functions and larger domains

We now study extensions of the full systems (2.1)
and (2.2) beyond the case of a Heaviside firing rate
function (2.5) with a 2π -periodic domain. In particular,
we are interested in the effects of using continuous
firing rate function like the sigmoid (2.3) and piecewise
linear (2.4) as well as the effect of expanding size of
periodic domain we are examining. The benefit of our
previous assumptions on the firing rate function, weight
function, and input were that they allowed us to de-
velop analytic expressions for boundaries in parameter
space separating different spatiotemporal dynamics of
the networks. Especially in the case of the network
with nonlinear adaptation (2.2), these analytical ex-
pressions are straightforward to examine and allow
an understanding of the role each parameter plays in
determining network behavior. We cannot derive such
expressions for the examples in this section. Thus, we
resort to numerical simulations of the network to see
how our predictions of our analysis from Sections 3
and 4 extend to these examples.

Using the same parameter values as our examples in
Section 3, for the network with linear adaptation (2.1),
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we find qualitatively similar results for the relationship
between stimulus speed and the form of the resulting
solution. In Fig. 20, we show two example simulations
similar to that pictured in Fig. 8(b) for the Heaviside
firing rate. The behavior of the model with a sigmoid
firing rate, even for a fairly low gain of η = 10, is quite
similar to that with infinite gain. We found through nu-
merical simulations that the switch from locked pulses
to traveling breathers occurs at a stimulus speed of
roughly c = 0.4, which is not too far removed from
that predicted in the system with the Heaviside firing
rate (2.5). Likewise, we found the onset of traveling
breathers beyond a critical stimulus speed of roughly
c = 0.5 for the network with a piecewise linear firing
rate with slope γ = 2. For weak inputs (not shown),
firing rate functions do not saturate but networks with
continuous firing rate functions exhibit the same tran-
sitions between locked and breathing pulses and the
speed at which the transition between these two behav-
iors decreases as synaptic modulation increases. When
inputs become sufficiently weak, there is no transition
to the ON state as c is increased to infinity, just as we
found for networks with Heaviside firing rate.

We carried out such simulations for other parameter
sets as well for both networks, with linear and nonlinear
adaptation (not shown). Overall, it appears using a
sigmoid with finite gain or a piecewise linear function
does not drastically alter the dynamics existent in the
system. Therefore we conclude that using the Heaviside
firing rate for the bulk of our theoretical predictions in
this paper is a reasonable approximation. In general,
the firing rate of a neuron or population of neurons
is known to be a continuous function input current.
Therefore, the validity of our predictions in previous
sections relies on the reduction of the firing rate to

a piecewise constant function being a justifiable first
order approximation.

Now, we turn to studying the networks with both a
sigmoidal firing rate function (2.3) as well as the alter-
native weight function (2.7) in a larger periodic domain,
specifically L = 10π . In addition we use a Gaussian
input stimulus (2.9) to the network. In general, we find
similar results to those of the smaller network with
L = π for the transitions of stimulus-locked traveling
pulses. Network activity locks to the input stimulus,
when it moves below a certain critical speed and there
is sufficient inhibition in the network. In both networks
with linear and nonlinear adaptation, the pulse begins
to breathe beyond a critical stimulus speed. This tran-
sition can also occur if inhibition strength is lowered,
raising the net excitation of the network.

Numerical simulation results are shown for the net-
work with linear adaptation in Fig. 21. Results are qual-
itatively similar for the network with nonlinear adap-
tation, so that the transition to breathing can occur by
either increasing input speed c or decreasing inhibition
strength Ai. For faster input speeds, the oscillations in
the size of the traveling pulse become drastic enough
such that there is a period of no superthreshold activity.
This would correspond to the input being temporarily
invisible. Such a representation of a moving image is
commensurate with personal reports of visual trails
arising in HPPD. The percept has been compared to
a multiple exposure stroboscopic photograph (Dubois
and VanRullen 2011). Also, for sufficiently large do-
main size L, we found the ON state did not exist for re-
alistic input strengths I0, no matter how large the speed
of the input stimulus. Note, we could approximate very
large domains as being infinite and proceed to analyze
the networks (2.1) and (2.2) along the lines of previous

(a) (b)

Fig. 20 Numerical simulations of traveling breathers in the net-
work with linear adaptation (2.1) for (a) sigmoidal firing rate
(2.3) with gain η = 10 and (b) piecewise linear firing rate with
slope γ = 2, where u(x, t) is plotted. Both networks receive input

with speed c = 0.6 so that superthreshold activity periodically
lurches, representative of a discrete afterimage. Other parame-
ters are κ = 0.1, α = 10, β = 0.5, w0 = 0.02, w2 = 0.5, and I0 =
0.5
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(b)(a)

(d)(c)

Fig. 21 Numerical simulations of stimulus-locked and breathing
pulses in the network with linear adaptation (2.1) for a larger
domain where L = 10π , where u(x, t) is plotted. Firing rate is
sigmoidal with gain η = 50 and threshold κ = 0.1. Weight func-
tion is difference of exponentials (2.7) with spatial scales σe = 1
and σi = 2. Input is Gaussian with strength I0 = 0.6 and spatial
scale σI = 1. (a) For Ai = 0.7 and c = 2.1, stable locked traveling

pulses exist. (b) For Ai = 0.7 and c = 2.3, pulses lose stability
to lurchers. (c) For Ai = 0.7 and c = 3, superthresold activity
flickers on and off. (d) For Ai = 0.6 (more net excitation), trav-
eling pulses can lose stability at the lower stimulus speed c = 2.1,
compare with stable pulses in (a). Other parameters are α = 10
and β = 1

studies such as Folias and Bressloff (2005b), Coombes
and Owen (2005) and Ermentrout et al. (2010). Indeed,
we find our numerical simulations of the larger network
reveal some of the behaviors studied in Folias and
Bressloff (2005b).

6 Discussion

In this paper, we have analyzed the spatiotemporal
dynamics induced by time-dependent stimuli in two
neuronal networks with adaptation. For spatially ho-
mogeneous time-periodic inputs, we could calculate
the critical input frequency below which the network
resolves the signal, motivated by experimental studies
of HPPD patients’ ability to track the frequency of
a flickering light (Abraham and Wolf 1988). The ex-
pression relating parameters to the critical frequency
is simpler and explicit for the network with nonlinear
adaptation. For translationally invariant moving stim-
uli, we find a transition between an ON state and a
pulse occurred when the stimulus speed is reduced

below a critical value. Both models support stimulus-
locked pulses for sufficiently slow stimuli and traveling
breathers for intermediate speeds over a wide range
of parameters. However, the linear stability calcula-
tions for stimulus-locked pulses are particularly more
involved for the model with nonlinear adaptation. As
the strength of modulation of synaptic connections is
increased, we find that the range of traveling breathers
increases. In the context of our model, we consider trav-
eling breathers to represent the phenomena of visual
trails experienced during HPPD.

Our study adds to the existing theoretical frame-
work for stimulus-induced activity patterns in neural
field models with negative feedback. Ben Yishai and
colleagues have examined network dynamics induced
by weak inputs in a network with excitatory and in-
hibitory populations with piecewise linear firing rate
function (Ben-Yishai et al. 1997). For stationary stim-
uli, increased modulation of synapses led to a sharp-
ening of input representation. They found that net-
work activity locked to moving stimuli for slow enough
stimulus speeds, and the critical speed was related
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to the speed of intrinsically generated waves in the
network. In a related study, Hansel and Sompolisky
found stationary inputs could pin activity around the
input location in a network with adaptation (Hansel
and Sompolinsky 1998). However, they did not pursue
the effects of moving inputs on adaptive networks.
We build on these studies by examining strong inputs
in a network with adaptation, rather than inhibition,
as its auxiliary variable. Our analysis allows an exact
prediction of the boundary of stimulus locking. While
increased strength of synaptic modulation can sharpen
the response to stationary stimuli, it lowers the criti-
cal speed beyond which the network locks to moving
stimuli. Thus, synaptic modulation by LSD may last
for an extended period of time (Nichols and Sanders-
Bush 2002), leading to the shorter time scale dynamics
of breathing pulses brought about by the interplay of
synaptic signaling and adaptation. We also note that the
general behavior of our models is largely independent
of the type of firing rate function used. For the sigmoid,
piecewise linear, and Heaviside function, increasing the
strength of synaptic modulation still widens the range of
stimulus speeds that lead to traveling breathers.

Folias and Bressloff studied stimulus-locked travel-
ing pulses in a purely excitatory network with linear
adaptation, finding pulses can destabilize through a
supercritical Hopf bifurcation when stimulus amplitude
is weak enough (Folias and Bressloff 2005b). Traveling
breathers in their network either expand and contract
or emit secondary pulses due to the purely excitatory
and nonperiodic synaptic connectivity. In contrast, the
traveling breathers in our study exclusively lose stabil-
ity through a shift instability. The initial movement of
the network dynamics as it loses track of the solution
is to slip backwards off of the stimulus. It appears
that this requires nonlocal inhibition, considering it is
shown in Ben-Yishai et al. (1997) too. Also in con-
trast to Folias and Bressloff (2005b), the bifurcation
structure of pulses in our model, shown by Fig. 5,
indicates that traveling breathers arise beyond a saddle-
node bifurcation. These unstable oscillating pulses exist
subcritically, as suggested by the high amplitude oscil-
lations in the pulsewidth at the onset. Our work does
share the similarity with Folias and Bressloff (2005b) in
that both employ adaptation as the dynamic negative
feedback in the model. The timescale of breathing
oscillations in the larger domain system, pictured in
Fig. 21, is therefore set by the adaptation timescale,
as in Folias and Bressloff (2005b). Stroboscopic vi-
sual trailing imagery moves at perceivable timescales
of hundreds of milliseconds (Abraham 1983; Dubois
and VanRullen 2011), making adaptation a more likely
candidate mechanism than fast inhibitory synapses.

By considering this work in the context of neural
activity in V1 induced by visual inputs, we can relate
our results to extensive experimental findings related
to HPPD. Traveling breathers, particularly ones that
slip backwards, are representative of the experience of
discrete afterimages seen by HPPD sufferers that trail
behind a moving visual input (Horowitz 1969; Abraham
1983; Halpern and Pope 2003). We propose that, for
the period of time that an afterimage is seen, there is
a population of neurons in V1 that is superthreshold,
despite their receiving no input stimulus at that time. In
our networks, simply increasing net excitation w0 leads
to wider representation of input stimuli, suggestive of
the halos seen in HPPD (Abraham 1983). However, the
strength of synaptic modulation w2 is the main parame-
ter in our models responsible for altering how well the
network can represent moving stimuli. Maintaining the
balance of excitation and inhibition while increasing the
strength of each leads to less faithful representations.
This theory matches well with that findings that LSD
can boost glutamatergic receptor expression (Nichols
and Sanders-Bush 2002), and drugs that induce similar
trailing phenomena to HPPD can increase serotonin
levels (Boyer and Shannon 2005; Fontenelle 2008).
Taken with the fact that timescales of the model dy-
namics are commensurate with stroboscopic imagery,
our model appears to explain several characteristics of
HPPD phenomena.

In future work, it would be interesting to study other
types of solutions that could arise in stimulus-driven
neuronal networks with adaptation. In particular, Troy
and Shusterman have shown that traveling multi-pulses
can arise in a neuronal network with linear adaptation
and no stimuli (Troy and Shusterman 2007). Study-
ing the existence and stability traveling multi-pulses
in stimulus-driven networks may shed light on proper
and pathological visual processing as they relate to
physiological parameters. In addition, Coombes and
Owen showed that exotic solutions like self-replicating
bumps can arise in neuronal networks with nonlinear
adaptation for fairly strong adaptation (Coombes and
Owen 2005). These types of solutions have not been
observed in the case of linear adaptation. It would be
interesting to examine how spike frequency adaptation
aids or hinders the proper processing of a variety of
inputs, particularly how this depends on the form of
adaptation included in a firing rate model.
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Appendix A: ON state in system with nonlinear
adaptation

In this appendix, we derive Eq. (4.3), giving the critical
speed c∗ at which the ON state ceases to exist in the
full network with nonlinear adaptation (2.2). Thus, we
study the equations,

ut = − u +
∫ π

−π

(w0 + w2 cos(x − x′))

× H(u(x′, t) − v(x′, t) − κ)dx′ + I0 cos2

(
x − ct

2

)
,

vt = (−v + β H(u − v − κ))/α. (A.1)

Changing coordinates to the rotating frame ξ = x − ct,
so u = U(ξ) and v = V(ξ), and assuming the ON state
exits (U(ξ) > V(ξ) + κ), we have

−cU ′(ξ) = −U(ξ) +
∫ π

−π

w0 + w2 cos(ξ − ξ ′)dξ ′

+ I0 cos2

(
ξ

2

)
,

−cV ′(ξ) = (−V(ξ) + β)/α.

Solving this pair of first order differential equations by
along with periodic boundary conditions yields

U(ξ) = 2πw0 + I0

2
+ I0(cos ξ − c sin ξ)

2(1 + c2)
(A.2)

and V(ξ) = β. For the ON state to exist, synaptic
input must be superthreshold, U(ξ) > κ + β for all
ξ ∈ (−π, π). Simply requiring this of the minimum,
U(ξm) > κ + β, yields the following inequality

2πw0 + I0(
√

1 + c2 − 1)

2
√

1 + c2
> β + κ. (A.3)

We then identify the critical stimulus speed value c∗ at
which the ON state ceases to exist as that for which the
inequality (A.3) becomes a strict equality. Thus, we can
solve the equality explicitly for Eq. (4.3):

c∗ =
√

I2
0

(4πw0 + I0 − 2(β + κ))2
− 1,

so when c > c∗, the ON state exists.

Appendix B: Existence of pulses in network
with nonlinear adaptation

Here, we present our construction of stimulus-locked
traveling pulse solutions in the network with nonlin-
ear adaptation (2.2) and Heaviside firing rate function
(2.5). Changing to traveling wave coordinates ξ = x −
ct, a pulse of width � ∈ (0, 2π) has superthreshold re-
gion ξ ∈ (π − �, π), where we can arbitrarily select the
leading edge’s location due the translation invariance
of the problem. We also specify a spatial shift �I of the
input I(x, t) = I0 cos2((ξ + �I)/2). This yields

−cU ′(ξ) = −U(ξ) +
∫ π

π−�

w(ξ − ξ ′)dξ ′

+ I0 cos2

(
ξ + �I

2

)
,

−cV ′(ξ) = (−V(ξ) + β�(ξ))/α,

where

�(ξ) =
{

1, ξ ∈ (π − �, π),

0, ξ ∈ (−π, π − �).

Solving this set of equations with periodic boundary
conditions gives

U(ξ) = w0� + I0[cos(ξ + �I) − c sin(ξ + �I)]
2(1 + c2)

+ I0

2
+ w2(sin ξ − sin(ξ + �))

1 + c2

+ w2c(cos ξ − cos(ξ + �))

1 + c2
, (B.1)

V(ξ) = β

(
1 − eξ/αc − e(ξ+�−2π)/αc

2 sinh(π/αc)

)
: ξ ∈ (π − �, π),

V(ξ) = β

(
e(ξ+�)/αc − eξ/αc

2 sinh(π/αc)

)
: ξ ∈ (−π, π − �). (B.2)

Therefore, to specify the pulse width � and associated
shift to the input �I , we impose self consistency by
requiring that the input current U(ξ) − V(ξ) specified
by Eqs. (B.1) and (B.2) cross firing threshold κ at the
leading and trailing edge of the pulse such that U(π) −
V(π) = U(π − �) − V(π − �) = κ . This generates the
following nonlinear system of equations

w0� + I0

2
+ I0[c sin �I − cos �I]

2(1 + c2)

+w2[sin � + c(cos � − 1)]
1 + c2

= β
e�/αc − 1

e2π/αc − 1
+ κ,



50 J Comput Neurosci (2012) 32:25–53

w0� + I0

2
+ I0[c sin(�I − �) − cos(�I − �)]

2(1 + c2)

+w2[sin � + c(1 − cos �)]
1 + c2

= β
1 − e−�/αc

1 − e−2π/αc
+ κ.

Appendix C: Stability of pulses in network
with nonlinear adaptation

In this appendix, we derive the linear stability approx-
imation for traveling pulses in the network with non-
linear adaptation. As in the case of the network with
linear adaptation, we start by considering the evolution
of small, smooth perturbations to the traveling pulse
solution (U(ξ), V(ξ)), such that u(ξ, t) = U(ξ) + ψ̄(ξ, t)
and v(ξ, t) = V(ξ) + φ̄(ξ, t). Upon plugging these ex-
pression into the system (2.2) and expanding to first or-
der in (ψ̄, φ̄), we arrive at the system of linear equations

ψ̄t − cψ̄ξ + ψ̄ =
∫ π

−π

w(ξ − ξ ′)H′(U(ξ ′) − V(ξ ′) − κ)

× (ψ̄(ξ ′, t) − φ̄(ξ ′, t))dξ ′,

φ̄t − cφ̄ξ + φ̄

α
= β

α
H′(U − V − κ)(ψ̄ − φ̄).

To characterize some of the spectrum of this operator,
we can look, in particular, for solutions of the form
(ψ̄, φ̄) = eλt(ψ(ξ), φ(ξ)) and using the identity

dH(U − V − κ)

dU
= δ(ξ − π + �)

|U ′(π − �) − V ′(π − �)|
+ δ(ξ − π)

|U ′(π) − V ′(π)| , (C.1)

where

U ′(π) = w2[cos � − 1 − c sin �]
1 + c2

+ I0[sin �I + c cos �I]
2(1 + c2)

,

U ′(π − �) = w2[1 − cos � − c sin �]
1 + c2

+ I0[sin(�I − �) + c cos(�I − �)]
2(1 + c2)

.

Due to the jump discontinuity in V ′(ξ) at the thresh-
old crossing points, either V ′(π) = V ′+(π) or V ′(π) =

V ′−(π), and similarly either V ′(π − �) = V ′+(π − �) or
V ′(π − �) = V ′−(π − �) where

V ′
+(π) = −β(1 − e(�−2π)/αc)

αc(1 − e−2π/αc)
, (C.2)

V ′
−(π) = β(e�/αc − 1)

αc(e2π/αc − 1)
, (C.3)

V ′
+(π − �) = −β(e−�/αc − e−2π/αc)

αc(1 − e−2π/αc)
, (C.4)

V ′
−(π − �) = β(1 − e−�/αc)

αc(1 − e−2π/αc)
. (C.5)

Note that, following recent studies of the stability
of spatially structured solutions in piecewise smooth
neural fields (Kilpatrick and Bressloff 2010a, c;
Bressloff and Kilpatrick 2011), the particular choice
to make for each V ′(π) and V ′(π − �) will be as-
signed based the sign of the difference of perturbations
(ψ(ξ) − φ(ξ)) in both places the expression appears in
the identity (C.1). This is due to the piecewise smooth
nature of V ′ at the boundary of the pulse. Upon as-
suming a fixed sign of these perturbations, we can only
calculate real eigenvalues associated with the resulting
piecewise defined system. This is due to the fact that
solutions ψ(ξ) − φ(ξ) with associated complex eigen-
values will oscillate above and below zero, violating
our assumption of a fixed sign. Thus, we obtain the
following system

−cψ ′ + (λ + 1)ψ = χπw(ξ − π)(ψ(π) − φ(π))

+ χπ−�w(ξ − π + �)

× (ψ(π − �) − φ(π − �))

−cφ′ + (λ + α−1)φ = β

α

[
χπδ(ξ − π)(ψ(π) − φ(π))

+ χπ−�δ(ξ − π + �)

× (ψ(π − �) − φ(π − �))
]
,

(C.6)

where

χ−1
ξ =

{ |U ′(ξ) − V ′+(ξ)|, if ψ(ξ) < φ(ξ),

|U ′(ξ) − V ′−(ξ)|, if ψ(ξ) > φ(ξ).
(C.7)

Therefore, the stability of the stimulus-locked traveling
pulse given by Eqs. (B.1) and (B.2) can be calculated
using spectrum of the eigenvalue problem (C.6). First,
note that the values bounding the essential spectrum
λ = −1 and λ = −α−1 have infinite multiplicity and
will not contribute to any instabilities. Upon omitting
these value from our analysis, we can proceed by solv-
ing for the eigenfunctions. It is straightforward to do
so by directly integrating both equations, treating the
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ψ(π), ψ(π − �), φ(π), φ(π − �) terms as constants, to
find

ψ(ξ) = χπ

[
P0 + P1 sin ξ − P2 cos ξ

Dp

]
(ψ(π) − φ(π))

+ χπ−�

[
P0 + P1 sin(ξ + �) − P2 cos(ξ + �)

Dp

]

× (ψ(π − �) − φ(π − �)), (C.8)

φ(ξ) = β

αc

{
χπ

[
1

P3
− H(ξ − π)

]
(ψ(π) − φ(π))

+ χπ−�

[
1

P3
− H(ξ − π + �)

]
e

αλ+1
αc �

× (ψ(π − �) − φ(π − �))

}
e

αλ+1
αc (ξ−π),

(C.9)

where

P0 = w0

λ + 1
,

P1 = w2c,

P2 = w2(λ + 1),

P3 = 1 − e− 2(αλ+1)π
αc ,

Dp = (λ + 1)2 + c2.

Requiring self-consistency of the the solutions (C.8)
and (C.9), we generate the following 2 × 2 system of
equations ψ − φ = Ap(ψ − φ) where

ψ =
(

ψ(π)

ψ(π − �)

)
, φ =

(
φ(π)

φ(π − �)

)
,

Ap =
(
Aππ Aπ�

A�π A��

)
, (C.10)

with

Aππ = χπ

[DpP0 + P2

Dp
− β

αc

(
1

P3
− Hπ

)]
,

Aπ� = χπ−�

[DpP0 − P1 sin � + P2 cos �

Dp

− β

αc

[
1

P3
− 1

]
e

αλ+1
αc �

]
,

A�π = χπ

[DpP0 + P1 sin � + P2 cos �

Dp

− β

αc

(
1

P3

)
e− αλ+1

αc �

]
,

A�� = χπ−�

[DpP0 + P2

Dp
− β

αc

(
1

P3
− Hπ−�

)]
,

and

Hπ =
{

1, if ψ(π) > φ(π),

0, if ψ(π) < φ(π),

Hπ−� =
{

1, if ψ(π − �) < φ(π − �),

0, if ψ(π − �) > φ(π − �).

Now in order to examine the stability, we look for
nontrivial solutions of ψ − φ = Ap(ψ − φ) such that
E(λ) = 0, where E(λ) = det(Ap − I), is the Evans func-
tion of the traveling pulse solution (B.1) and (B.2). The
traveling pulse will surely not be linearly stable in the
case that λ > 0 for all real λ such that E(λ) = 0. We
cannot ensure linear stability, since we have omitted
eigensolutions with complex eigenvalues. However, we
find that, in many instances, our analysis accurately pre-
dicts the nonlinear stability of the associated stimulus-
locked traveling pulse. The Evans function is then
piecewise defined for four possible classes of eigenfunc-
tion: (i) ψ(π) > φ(π) and ψ(π − �) > φ(π − �); (ii)
ψ(π) > φ(π) and ψ(π − �) < φ(π − �); (iii) ψ(π) <

φ(π) and ψ(π − �) > φ(π − �); and (iv) ψ(π) < φ(π)

and ψ(π − �) < φ(π − �).
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