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Abstract We study the spatiotemporal dynamics of
a two-dimensional excitatory neuronal network with
synaptic depression. Coupling between populations of
neurons is taken to be nonlocal, while depression is
taken to be local and presynaptic. We show that the
network supports a wide range of spatially structured
oscillations, which are suggestive of phenomena seen
in cortical slice experiments and in vivo. The particular
form of the oscillations depends on initial conditions
and the level of background noise. Given an initial, spa-
tially localized stimulus, activity evolves to a spatially
localized oscillating core that periodically emits target
waves. Low levels of noise can spontaneously generate
several pockets of oscillatory activity that interact via
their target patterns. Periodic activity in space can also
organize into spiral waves, provided that there is some
source of rotational symmetry breaking due to external
stimuli or noise. In the high gain limit, no oscillatory
behavior exists, but a transient stimulus can lead to a
single, outward propagating target wave.
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1 Introduction

Spatially localized oscillations arise both in vivo and
in vitro and may be observed experimentally using
multi-electrode arrays or voltage-sensitive dye imaging
(Wu 2008). Such organizing activity in the brain has
been purported to play a role in sensory perception
(Ermentrout and Kleinfeld 2001; Lakatos et al. 2007),
memory—both working and long term (Klimesch
1999), and pathological events like epilepsy (Milton and
Jung 2003). Whether or not large-scale brain oscilla-
tions are epiphenomena or have functional significance
remains an open question in many cases. However,
both experiment and modeling continue to devote ef-
forts to understanding the mechanisms that generate
and sustain oscillations (Buszaki and Draguhn 2004).

When neocortical or hippocampal in vitro slices are
treated with an inhibitory neurotransmitter antagonist
such as bicuculline, effectively eliminating inhibition, a
localized current stimulus evokes population activity.
Such activity may take the form of a spatially localized
group of neurons whose population activity oscillates
around 1–10 Hz (Wu et al. 1999; Milton and Jung 2003;
Shusterman and Troy 2008); during each oscillation
cycle the population may emit elevated activity that
propagates as a traveling pulse (Wu et al. 1999; Chervin
et al. 1988; Wu 2008) or a spiral wave (Huang et al.
2004; Schiff et al. 2007). Spiral waves provide a mecha-
nism for spatially organizing extensive episodes of pe-
riodic activity, effectively reducing the dimensionality
of the dynamics (Schiff et al. 2007). Since inhibitory
connectivity is pharmacologically blocked, any negative
feedback in the network is likely to arise at the single
cell level due to mechanisms such as synaptic depres-
sion (Abbott et al. 1997; Bart et al. 2005; Matveev and
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Wang 2000; Tabak et al. 2000; Tsodyks et al. 1998) and
spike frequency adaptation (Benda and Herz 2003).

A variety of sensory stimuli have been linked to
oscillations in vivo. For example, a number of studies
of vertebrate and invertebrate olfactory bulbs have
found that odor stimuli can elicit oscillations (Lam
et al. 2000; Delaney et al. 1994). Stimuli can also
evoke oscillations and waves in visual cortex (Singer
and Gray 1995; Roelfsema et al. 1997; Xu et al. 2007;
Benucci et al. 2007; Han et al. 2008), rat barrel cortex
(Petersen et al. 2003), and auditory cortex (Lakatos
et al. 2007). Spatiotemporal activity is not only a neural
correlate of sensory stimuli, but is also associated with
various forms of memory. For example, the encoding
of new information as well as the retrieval of long-
term memory is reflected by the period of oscillations
(Klimesch 1999), and the recall of a previous memory is
often accompanied by an increase in oscillatory power
(Sederberg et al. 2003). On the other hand, station-
ary bumps of persistent spatial activity that neither
propagate nor oscillate have been seen during working
memory tasks (Wang 1999).

Oscillations can also be the signature of certain brain
pathologies such as epilepsy (Milton and Jung 2003).
Electrophysiology has been used to study epilepsy in
humans as well as animal models, and seizures are
usually accompanied by measurable structured popu-
lation activity. Trauma or developmental malfunction
can lead to reduced regions of inhibition, axonal sprout-
ing, or synaptic reorganization of excitatory circuitry
(Dudek and Spitz 1997). Such regions are prime can-
didates for epileptic seizure foci. Any incurring excita-
tory input may be sufficient to create high frequency
oscillations in the population activity of these patches of
cortex (McNamara 1994). The nature of such structured
population activity as recorded by electroencephala-
gram can indicate the nature of the seizure mechanism
(Lee et al. 2006). As in cortical slice studies, some
seizures have hallmark electrical activity traces consist-
ing of focused localized synchronous oscillations that
emit traveling pulses (Schiff et al. 2005).

In light of the above examples, it is important to
understand the mechanisms behind spatially structured
oscillations in large scale neuronal networks due to
their functional and pathological implications. A num-
ber of organizing mechanisms for such spatiotempo-
ral activity have been suggested, including a single
pacemaker oscillator exciting successive neighbors in
an excitable network, or coupled oscillators propagat-
ing gradual phase delays in space (Ermentrout and
Kleinfeld 2001; Wu 2008). Therefore, activity that prop-
agates away from a focused region of high frequency
oscillations may either travel faster than the character-

istic time-scale set by the oscillating region, according
to dynamics of an excitable medium, or at a speed
set by the period of the oscillating core if the rest
of the medium is oscillatory as well. Conceivably, this
may establish a dynamical systems explanation for the
wide range in speed at which seizures spread across
the cortex, which can be anywhere from 0.05 mm/s to
10 cm/s (Milton and Jung 2003).

Recently Troy and Shusterman (2007) have shown
how a pulse emitting oscillating core can occur in
an excitatory neuronal network based on a neural
field model with linear negative feedback (Pinto and
Ermentrout 2001a). They first considered a two-
dimensional network operating in an excitable regime
with a homogeneous low activity (Down) state that
corresponded to a stable fixed point of the space-
clamped dynamics. Linearization about the fixed point
yielded a Jacobian with complex eigenvalues so that
the fixed point was a stable focus. In this regime,
Troy and Shusterman showed that after breaking the
rotational invariance of an initially generated target
wave, reentry of the free ends of the resulting rotor
into the center of the domain generated subsequent
waves. In the same system, spiral waves were generated
by periodically breaking rotational invariance with an
inhibitory stimulus. In a subsequent study they showed
that the same system, with large enough negative feed-
back, supports spatially localized oscillations that pe-
riodically emit traveling pulses (Shusterman and Troy
2008). In this regime the space-clamped model exhibits
bistability, in which a stable Down state coexists with
a stable limit cycle. However, since the linear form of
adaptation used in these studies is not directly related
to physiological models of adaptation, it is difficult to
ascertain whether or not the levels of feedback required
are reasonable.

In this paper, we show how various forms of spatially
structured oscillations, including spiral waves and pulse
emitters, can occur in a two dimensional excitatory
neuronal network with a physiologically based form of
nonlinear negative feedback, namely, synaptic depres-
sion. Previously, we considered the combined effects
of synaptic depression and spike frequency adaptation
on the spatiotemporal dynamics of a one-dimensional
excitatory network (Kilpatrick and Bressloff 2009). We
showed that synaptic depression tends to dominate the
dynamics, providing a mechanism for generating spa-
tially localized oscillations. Here we extend our analysis
to two dimensions and to the case of noisy networks.
For simplicity, we ignore the effects of spike frequency
adaptation since they tend to be relatively weak. The
basic two-dimensional model is introduced in Section 2.
We then analyze the space-clamped version of the
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model, and show that it supports a stable limit cycle
in the absence of noise (Section 3). However, in the
presence of additive white noise, the parameter regime
over which oscillations can occur can be significantly
widened. In Section 4 we present a number of numer-
ical simulations illustrating various two-dimensional
spatiotemporal activity patterns supported by the full
network model. Depending on the initial conditions,
we show that in the absence of noise, network activity
can evolve as a pulse-emitting oscillating core or as a
spiral wave. Furthermore, addition of a small amount
of spatially uncorrelated noise to a quiescent network
can drive pockets of the system superthreshold and
lead to discrete locations of pulse-emitting cores. On
the other hand, large amounts of noise lead to bulk
oscillations which can disrupt any spatially structured
activity. We also show that when a radially symmetric
stimulus is applied to the network in the presence of
noise, spiral waves can be generated due to symmetry
breaking, similar to the organized activity found in
mammalian cortical slice (Huang et al. 2004; Schiff et al.
2007). Finally, we study the system in the high-gain
limit (Section 5). In this case, oscillations do not exist in
the deterministic system, but depression is a sufficient
mechanism for generating outward propagating target
waves following a brief stimulus.

2 Neural network model with synaptic depression

We consider a neuronal network model which includes
synaptic depression (Abbott et al. 1997; Bart et al.
2005; Matveev and Wang 2000; Tabak et al. 2000;
Tsodyks et al. 1998; Zucker and Regehr 2002). As
opposed to the usual Pinto-Ermentrout formulation of
negative feedback (Pinto and Ermentrout 2001a; Folias
and Bressloff 2004; Troy and Shusterman 2007; Troy
2008) in spatially extended neural fields, here we take
negative feedback to depend on output firing rate

∂u(r, t)
∂t

= −u(r, t) + w ∗ (qf (u)) (r, t) (2.1a)

∂q(r, t)
∂t

= 1 − q(r, t)
α

− βq(r, t) f (u(r, t)), (2.1b)

where

w ∗ (qf (u)) (r, t) =
∫

R2
w

(∣∣r − r′∣∣) q
(
r′, t

)
f
(
u

(
r′, t

))
dr′

where r and r′ are spatial positions in the two-
dimensional plane R

2. Equation (2.1a) describes the
evolution of the synaptic current or drive u(r, t) in the

presence of synaptic depression, which takes the form
of a synaptic scaling factor q(r, t) evolving according
to Eq. (2.1b). The factor q(r, t) can be interpreted as
a measure of available presynaptic resources, which
are depleted at a rate β f (Tsodyks et al. 1998; Bart
et al. 2005; Tabak et al. 2000), and are recovered on
a timescale specified by the constant α (experimentally
shown to be 200–1500 ms (Abbott et al. 1997; Tsodyks
and Markram 1997; Tsodyks et al. 1998; Stevens and
Wesseling 1998)). In a previous study, we considered
a one-dimensional model with synaptic depression and
adaptation and showed that adaptation has a relatively
small effect on the dynamics (Kilpatrick and Bressloff
2009). Therefore, we focus on synaptic depression here.
It will be convenient in the following to fix parameters
so that f is interpreted as the fraction of the maximum
firing rate, that is 0 ≤ f ≤ 1.

Most of our analysis and numerics are carried out
for a general piecewise linear firing rate function that
attains saturation as pictured in Fig. 1:

f (u) =
⎧⎨
⎩

0, u ∈ (−∞, θ),

σ (u − θ), u ∈ (θ, θ + σ−1),

1, u ∈ [θ + σ−1, ∞).

(2.2)

Here σ specifies the slope of the linear regime. (One
could also consider a firing rate function with a step
followed by linear increase (Guo and Chow 2005a, b)).
Note that taking the firing rate to be a linear function
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Fig. 1 Comparison of the step, piecewise linear, and sigmoid
firing rate functions. Parameter values are θ = 0.05 and σ = 4.
The sigmoid function has the same slope and value as the piece-
wise linear function at their mean values. When compared to
the sigmoid function, it is apparent that the piecewise linear
function’s true threshold is more accurately given by θs = 0.175,
rather than θ , the point at which nonzero firing occurs
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close to threshold is consistent with the observation
that spike frequency adaptation tends to linearize the
firing frequency-input current curve (Ermentrout 1998;
Wang 1998). In the limit that σ → ∞, we recover the
Heaviside step function used in Amari’s original work
on scalar networks (Amari 1977) and most analyt-
ical studies of the Pinto-Ermentrout model (Pinto and
Ermentrout 2001a, b; Shusterman and Troy 2008; Folias
and Bressloff 2004, 2005a, b; Troy and Shusterman
2007; Troy 2008):

f (u) = H(u − θ) =
{

0, u ∈ (−∞, θ),

1, u ∈ [θ, ∞).
(2.3)

We will use such a function in order to study target
waves and stationary bumps (see Section 5). One im-
portant point, as illustrated in Fig. 1, is that the thresh-
old θ in Eq. (2.2) is not necessarily analogous to the
threshold θ in Eq. (2.3). A region above threshold in
the piecewise linear case might still be considered “off”
if it only sustains a low level of activity. This is further
reinforced by comparison with a sigmoid function in
which threshold is taken to be the point at which the
firing rate is half its maximum value:

f (u) = 1/(1 + exp(−σ(u − θs))). (2.4)

The homogeneous weight distribution w(|r − r′|) de-
fines the strength of the synaptic connections between
neurons at r and r′, depending only on the distance be-
tween two cells. Typical excitatory weight functions are
monotone decreasing functions such as the exponential
and the Gaussian. We will take w to be given by a
difference of modified Bessel functions of the second
kind: (Folias and Bressloff 2004; Laing 2005; Owen
et al. 2007)

w(r) = 2w0

3πd
(K0(r/d) − K0(2r/d)) , (2.5)

where w0 determines the strength of the synaptic con-
nections. The factor 2/3π ensures that Eq. (2.5) is a
very good fit to the exponential weight function

w(r) = w0

2πd
e−r/d

The expansion in terms of Bessel functions is particu-
larly convenient because it allows us to transform the
system (2.1) into a fourth order PDE, which is compu-
tationally less expensive to simulate (Laing and Troy
2003; Laing 2005; Troy and Shusterman 2007; Owen
et al. 2007) (see Section 4). Finally, we fix the temporal
and spatial scales of the network by setting τ = 1 and
d = 1. The membrane time constant is typically around
10 ms, whereas the range of synaptic connections within
cortex is of the order 1 mm. We also fix synaptic

strength by setting w0 = 1. The effects of varying w0 are
briefly discussed at the end of Section 3.

3 Oscillations in the space-clamped system

Previous modeling studies of space-clamped neuronal
networks with synaptic depression showed the exis-
tence of oscillations in the case of excitatory/inhibitory
networks (Tsodyks et al. 1998) or for a purely excitatory
network with noise (Bart et al. 2005). Tabak et al.
showed that an excitatory network with depression
could support regular oscillations and bursting, using an
alternative form for the neural field equation as well as
different gains and thresholds for each variable’s activa-
tion function (Tabak et al. 2000). In our study, we find
that saturation of the activation function is sufficient to
stabilize limit cycles using the same activation function
for both the activity and depression variables.

3.1 Phase plane for piecewise linear firing rate

As a means of determining the oscillatory behavior of
the system, we examine the equilibria of the space-
clamped system (Bart et al. 2005; Tabak et al. 2000;
Tsodyks et al. 1998)

u̇(t) = −u(t) + q(t) f (u(t)),

αq̇(t) = 1 − q(t) − αβq(t) f (u(t)), (3.1)

where f is the piecewise linear activation function (2.2)
shown in Fig. 1. We carry out the stability analysis of
phase space using the piecewise linear function because
explicit analytical expressions can be derived for the
fixed points. However, these results extend to the case
where there is a smooth transition from the linear to the
saturated portion of the firing rate.

To calculate equilibria of (3.1), we consider the pos-
sible solutions on the three domains of the piecewise
function f (u). We find that there is a low activity or
Down state on the lower domain (u < θ) for θ > 0 such
that (u, q) = (0, 1). The stability of this Down state is
determined by the eigenvalues of the Jacobian

J (0, 1) =
(−1 0

0 −1/α

)
(3.2)

and is therefore stable for all realistic parameters. A
stable Down state exists in the network for any f with a
hard threshold, that is f (u) = 0 for u < θ . Without this
condition, it is possible that the Down state may desta-
bilize or vanish due to a nonzero firing rate existing for
zero synaptic drive.
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We find additional equilibria by solving (3.1) on the
middle and upper domains of f . On the middle domain
(θ ≤ u ≤ θ + σ−1), where f (u) = σ(u − θ), we have

u = σ(u − θ)q, (3.3)

q = 1/(1 + σαβ(u − θ)), (3.4)

θ ≤ u ≤ θ + σ−1, (3.5)

which has solutions

u = σ + σαβθ − 1 ± √
D

2σαβ
(3.6)

q = 2

1 + σ − σαβθ ± √
D

(3.7)

D = (σ + σαβθ − 1)2 − 4σ 2αβθ

provided D ≥ 0 and condition (3.5) is satisfied. Stability
is determined by the eigenvalues of the Jacobian

J (u, q) =
(−1 + σq σ(u − θ)

−βσq −(1/α + βσ(u − θ))

)
. (3.8)

We find that for a wide range of parameters, the mid-
dle domain contains two equilibria, one of which is a
saddle and the other is a stable or unstable focus. The
latter corresponds to a high activity or Up state. For
sufficiently fast depression, destabilization of the Up
state can lead to the formation of a stable limit cycle
via a subcritical Hopf bifurcation as pictured in Fig. 2.
In parameter regimes where the focus equilibrium

does not exist, the Up state occurs on the upper domain
(u > θ + σ−1), where f (u) = 1, and is given by

u = 1/(1 + αβ), (3.9)

q = 1/(1 + αβ), (3.10)

Its stability is determined by the eigenvalues of the
Jacobian

J (u, q, a) =
(−1 1

0 −(1/α + β)

)
, (3.11)

which guarantees that such an Up state is always stable.
In Fig. 3 we show a simulation of the space-clamped

network for a choice of parameters that supports a
limit cycle. The parameter value for synaptic depression
time constant α is taken to be within the physiological
range 200–1500 ms (Abbott et al. 1997; Tsodyks et al.
1998). Notice that both variables oscillate at a period of
roughly 40 time units or 400 ms, which correlates well
with the scale of epileptiform events (Buszaki 2006;
McNamara 1994; Milton and Jung 2003; Shusterman
and Troy 2008). This also implies that the timescale
of oscillations is roughly set by the time constant of
synaptic depression. Notice that as opposed to self
sustained oscillations in the Pinto-Ermentrout model
(Shusterman and Troy 2008), the equilibrium focus
in our model is associated with the Up rather than
the Down or rest state. As stated, these results easily
extend to the case where f is a smooth, saturating
function above the threshold value u = θ . In particular,
since limit cycles are structurally stable solutions in
continuous systems, oscillations persist when f (u) is
modified by smoothing out the corner at u = θ + 1/σ .
However, without a hard threshold at u = θ , we have
not witnessed the same types of dynamics as presented
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Fig. 2 Piecewise linear firing rate function. (a) Bifurcation dia-
gram showing fixed points u of the system (3.1) as a function
of β for α = 80. (b) Stability diagram for the space-clamped
system (3.1) showing regions in parameter space where the Up

state is a stable focus (black), an unstable focus surrounded by a
stable limit cycle (grey), or an unstable focus without a limit cycle
(white). Other parameters are θ = 0.01, and σ = 4
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Fig. 3 (a) Numerical simulation of (3.1) using the parameters
θ = 0.01, σ = 4, α = 80, and β = 0.05 given the initial condition
(u, q) = (1, 1). The synaptic input u and fraction of available
resources q are plotted as a function of time t. Oscillations

lock to a period roughly determined by the time constant α.
(b) Corresponding phase-plane plot of q versus u (dashed line)
showing that the system supports a stable limit cycle

here for the piecewise linear f . If oscillations exist, a
stable Down state does not, which we show in an analy-
sis of the system with a sigmoidal firing rate function
(2.4).

3.2 Phase plane for sigmoidal firing rate

We use a numerical root finding algorithm to identify
the equilibria of the system (3.1) in the case where f
is the sigmoidal function (2.4). It is possible to find
physiologically reasonable parameter regimes where
limit cycles exist, but they do not appear to coincide
with a stable Down state, as in the piecewise linear f
case. We show an example of one such limit cycle in
Fig. 4, where transitions between low and high activity
states occur at the knees of the u-nullcline. There is
no such mechanism in the limit cycle present in the
piecewise linear system. This distinction suggests that
the loss of a hard threshold may change the overall
topology of dynamics within the network. Rather than
finding an excitable regime with limit cycles about the

Up state, we find either a purely oscillatory regime, or
an excitable regime with no limit cycles.

3.3 Space-clamped system with noise

A previous study of the space-clamped system (3.1)
with f given by (2.2) considered parameter regimes
in which the subcritical Hopf bifurcation of the Up
state only produced an unstable limit cycle (Bart et al.
2005). In this case the authors showed that oscillations
could be generated in the presence of additive noise,
which switched the system between the Up and Down
states (see also Holcman and Tsodyks 2006). It follows
that noise enlarges the parameter regime over which
self-sustained oscillations can occur. We illustrate the
effects of additive noise by simulating the system

u̇(t) = −u(t) + q(t) f (u(t)) + γ ν(t),

αq̇(t) = 1 − q(t) − αβq(t) f (u(t)), (3.12)

Fig. 4 Sigmoidal firing rate
function. (a) Bifurcation
diagram showing fixed points
u of the system (3.1) as a
function of β for α = 50. (b)
Phase-plane plot of q versus u
(dashed line) showing the
system supports a limit cycle.
Other parameters are
θs = 0.15, and σ = 20
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where f is the piecewise linear function (2.2), ν(t) is
a Gaussian white noise process such that 〈ν(t)〉 = 0,
and 〈ν(s)ν(t)〉 = 2δ(t − s); γ is the noise strength. We
simulated the system (3.12) using an Euler-Maruyama
scheme for stochastic differentiation with a timestep
�t = 10−6. The nature of the noise-induced oscilla-
tions depends upon whether the Up state is a stable
or unstable focus. In the case of a stable focus, even
though oscillations are damped out eventually in the
deterministic system, noise is sufficient to repeatedly
drive the system between the Up and Down states,
along analogous lines to Bart et al. (2005). However,
the oscillations tend to be rather irregular as illustrated
in Fig. 5.

More regular noise-induced oscillations occur in the
case of an unstable focus. Equation (3.12) now repre-
sent an excitable system with only a stable Down state,
in which noise periodically drives the system above
threshold, leading to an elevated firing rate that then
relaxes back down as synaptic depression is activated.
An example simulation is shown in Fig. 6, which neatly
illustrates the regularity of the noise-induced oscilla-
tions. This is an example of a well known stochas-
tic property of excitable systems, namely, coherence
resonance (Linder et al. 2004). That is, there exists
an optimal level of noise with respect to the degree
of regularity of the induced oscillations; if the level
of noise is too high then this completely washes out
any oscillations. We conclude that noise extends the
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Fig. 5 Numerical simulation of the space-clamped system (3.12)
in which background noise drives the system between Up and
Down states. The horizontal dashed line denotes the input cur-
rent value at which activity is half of its maximal value (θs =
0.135). Firing rate is taken to be piecewise linear function (2.2).
Parameters are α = 60, β = 0.06, γ = 0.02, θ = 0.01, and σ = 4.
In the absence of noise, the Up state is a stable focus
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Fig. 6 Same as Fig. 5 except α = 80 so that now the Up state is
an unstable focus in the absence of noise

parameter range over which the space-clamped sys-
tem supports oscillations to include regions where the
underlying deterministic system supports a stable or
unstable focus without a stable limit cycle. This also
has important implications for the effects of noise in the
spatially extended system (see Section 4).

Bart et al. (2005) showed that changing the synaptic
strength w0 can also alter the stability of the Up state
of the system (3.1), whilst keeping all other parameters
fixed. Stronger synapses (higher w0) stabilize the Up
state, while weaker synapses (lower w0) destabilize
it. Consistent with these observations, we found that
changing w0 alters the parameter ranges of α and β

over which a stable limit cycle exists. That is, increasing
w0 shifts the region in which limit cycles exist to higher
values of α. On the other hand, decreasing w0 allows for
limit cycles to exist for lower values of α, but the range
of β values over which they exist is much narrower.
Thus, superthreshold activity in a network with weak
synapses is much more easily overridden by synaptic
depression. In our simulations we take w0 = 1.

4 Oscillations in the spatially extended model

We now consider the implications of the existence
of deterministic and noise-induced oscillations in the
space-clamped model for spatially structured oscilla-
tions in the full model (2.1). Using numerical sim-
ulations, we demonstrate that the two dimensional
network supports a spatially localized oscillating core
that emits target waves each cycle, as well as spiral
waves. The results presented here can also be generated
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for a system with smoother forms of f . However, as the
simulations are qualitatively similar, we only show re-
sults for the piecewise linear case. As in previous stud-
ies of two-dimensional neural field models, we carry
out a transformation of our system for more efficient
computation (Laing and Troy 2003; Laing 2005; Troy
and Shusterman 2007; Owen et al. 2007). That is, we
convert the integro-differential equation system (2.1)
to a fourth order PDE using two-dimensional Fourier
transforms. This is possible due to the fact that the
Fourier transform of the weight distribution w(r) given
by Eq. (2.5) is a rational function. Discretizing the
resulting differential operators leads to sparse matrices,
as opposed to full matrices arising from an integral
operator.

Numerical simulations are thus performed on the
following system, which is equivalent to Eqs. (2.1) and
(2.5):
[∇4 − A∇2 + B

]
(ut + u) = Mqf (u),

qt = 1 − q
α

− βqf (u) (4.1)

over the domain  ⊂ R
2. Here, the fourth order oper-

ator, L = ∇4 − A∇2 + B, arises as the denominator of
the two-dimensional Fourier transform of our modified
Bessel weight function (2.5), which is given by

ŵ(ρ) = 2

3π

(
1

ρ2 + 1
− 1

ρ2 + 22

)

= 2/π

ρ4 + 5ρ2 + 4
, (4.2)

where ·̂ denotes the two-dimensional Fourier trans-
form. In this case, A = 5, B = 4, and M = 2/π , but we
may adjust these parameters by considering a rescal-
ing of w. We solve the system (4.1) numerically on a
Cartesian grid of 1000 × 1000, applying homogeneous
Dirichlet and Neumann boundary conditions. For the
fourth order operator, we employed a second order
finite difference method to construct a matrix version of
L. The time derivative was approximated using forward
Euler with a timestep of �t = 0.01, which was small
enough so that shrinking it further did not change
results.

4.1 Pulse emitter

Similar to our previous study of a one-dimensional
network (Kilpatrick and Bressloff 2009), we find that
in parameter regimes where a stable limit cycle exists
in the space-clamped system, the corresponding two-
dimensional network supports a spatially localized os-
cillating core that periodically emits traveling pulses.

All that is necessary to induce such behavior is an initial
condition of the form

(u(r, 0), q(r, 0)) = (χe−(x2+y2)/ζ 2
, 1), (4.3)

where χ and ζ parameterize the amplitude and spatial
constant of the initial state. We seek to characterize the
evolving activity in the limit cycle regime, especially the
period of oscillation and the speed of emitted pulses. In
Fig. 7, we show an example of a pulse-emitting core,
which oscillates at a frequency of roughly 3Hz. Pulses
are emitted each cycle, and travel at a speed of roughly
30 cm/s, which is determined by the period of the oscil-
lations; the latter is set by the time constant of synaptic
depression. The initial emission of spreading activity
appears as a traveling front which propagates from the
region activated by the input current into the surround-
ing region of zero activity; it travels at the same speed
as the subsequent target waves. The front converts
each region of the network into an oscillatory state
that is phase-shifted relative to the core, resulting in
the appearance of a radially symmetric target pattern.
Since our network has solely excitatory connections, we
can consider it to be akin to disinhibited neocortical or
hippocampal slices (Chervin et al. 1988; Wu et al. 1999;
Wu 2008) or regions of cortex or hippocampus where
excitatory circuitry dominates due to some pathology
(Buszaki 2006; Dudek and Spitz 1997). Interestingly,
the speed of the simulated waves matches the time-
scale of fast seizure spread in cortex (Milton and Jung
2003).

4.2 Spiral waves

Several experimental and modeling studies of two-
dimensional cortex reveal the existence of spiral waves
(Huang et al. 2004; Laing 2005; Milton and Jung 2003;
Schiff et al. 2005, 2007). Such self-sustained activity
can often be classified by a constant angular velocity
(Huang et al. 2004; Schiff et al. 2005). When identi-
fied using voltage sensitive dye, one finds such activ-
ity patterns have true phase singularities about which
the spiral organizes. One may think of such spatially
structured activity as a network property manifesting
the recovery period necessary for groups of neurons.
Therefore, sections of cortex about the phase singu-
larity alternate between Down and Up states, giving
ample time for sections to recover during the Down
state.

Spiral waves have been generated in previous studies
of neural field models with linear adaptation, in which
the neuronal network acts like an excitable medium
(Laing 2005; Troy and Shusterman 2007). The oscilla-
tions necessary for the generation of spiral waves arise
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Fig. 7 Snapshots of the solution u(x, y, t) to the fourth order
PDE (4.1), following a stimulus specified by Eq. (4.3) at t = 0,
where χ = 1 and ζ = 25. Initially, an activated state spreads
radially outward, across the entire medium as a traveling front.
Then, the localized oscillating core of activity emits a target wave

with each oscillation cycle. Eventually, these target waves fill the
domain. Each target wave can be considered as a phase shift
in space of the oscillation throughout the medium; they travel
with the same speed as the initial front. Parameters are α = 80,
β = 0.05, σ = 4

from the Down state of the network being a stable
focus. Laing used the rotational symmetry of the spiral
waves to generate equations for the activity profile and
angular velocity of a spiral on a disc domain (Laing
2005). Troy and Shusterman generated spiral waves
by continually breaking the symmetry of target waves
in the network (Troy and Shusterman 2007). In our
model, we find that spiral wave patterns can be induced
by breaking the rotational symmetry of pulse emitter
solutions. More specifically, we chose an initial condi-
tion where the target pattern produced by the emitter
has the top and bottom halves of its domain phase
shifted. The network then evolves into two counter-
rotating spirals on the left and right halves of the
domain as shown in Fig. 8. Closer inspection of one
of these spirals reveals that it has a fixed center about
which activity rotates indefinitely as shown in Fig. 9.

Huang and others showed that spiral waves gener-
ated in cortical slices are a way for oscillating activity
to organize spatially in a smooth and isotropic medium

(Huang et al. 2004). They found the waves persisted for
up to 30 cycles and rotated at a rate of roughly 10 cycles
per second. Also, the phase singularity at the center of
a spiral wave experiences a reduction in oscillation am-
plitude due to the mixing of all phases in a small region.
Certainly, the spiral waves we have found in our system
persist for a long time, but it seems that the rotation
rate is slightly slower at roughly 2 Hz. Of course this is
due in part to the time constant of synaptic depression.
As we have shown in our previous work, including
spike frequency adaptation can increase the frequency
of oscillations (Kilpatrick and Bressloff 2009).

4.3 Noise-induced oscillations

As in the space-clamped system, it is interesting to
consider the effects of noise on the two-dimensional
spatially extended network. In a recent study of the
role of additive Gaussian noise on Turing instabili-
ties in neural field equations, Hutt et al. found that
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Fig. 8 Snapshots of a solution
u(x, y, t) to the fourth order
PDE (4.1) revealing the
counter-rotation of two spiral
waves on either side of the
domain. These were
generated with an initial
condition where the target
pattern of Fig. 7 had the top
and bottom halves of the
domain phase shifted.
Parameters are α = 80,
β = 0.05, σ = 4, and θ = 0.01
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noise delays the onset of pattern formation (Hutt et al.
2008). Also, Laing et al. have shown that in a neural
field model with linear adaptation, moving bumps are
slowed by the introduction of an additive noise term
(Laing et al. 2007). Here we show that in addition to

modulating spatiotemporal activity patterns that exist
in the deterministic system, noise also gives rise to new
dynamics.

Following a previous study of neural field models
with additive noise (Laing et al. 2007), we introduce
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Fig. 9 A zoomed in version of the rotating left spiral wave
pictured in Fig. 8. The period of the spiral wave oscillation is
roughly the same as the period of the oscillation in the space-
clamped system. All patches of neurons are oscillating at the

same frequency, but phase-shifted as coordinates are rotated
about the central phase singularity. Parameters are α = 80, β =
0.05, σ = 4, and θ = 0.01
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a Gaussian white noise term to each equation of a
discretized version of the fourth order PDE (4.1):

Lh

(
uk+1

ij − uk
ij

�t
+ uij + ημij(t)

)
= Mqij f (uij),

qk+1
ij − qk

ij

�t
= 1 − qij

α
− βqij f (uij), (4.4)

where i = 1, ..., Nx and j = 1, ..., Ny, Lh is the finite dif-
ference version of the linear operator given in Eq. (4.1),
uij and qij are discrete values of u and q at (x, y) =
(xi, y j), each μij evolves independently as 〈μij(t)〉 = 0
and 〈μij(t)μij(s)〉 = δ(t − s), and η is the variance of our
white noise term.

In the case of low levels of spatially incoherent
Gaussian noise, we find that small pockets of the net-
work spontaneously form spatially localized oscillators
which then interact with one another via the target
waves that propagate from their cores. We picture this

in Fig. 10 for η = 0.005. Therefore, as in the space -
clamped case, noise provides a mechanism for gener-
ating oscillations in a situation where the deterministic
system would remain quiescent. If the noise level is
increased then it tends to disrupt these oscillating cores,
which provides a symmetry breaking mechanism for
the generation of spiral waves as illustrated in Fig. 11.
Following induction of a spatially localized oscillation
using a Gaussian stimulus of the form (4.3), we find
that the oscillating core begins to be broken up by
the noise such that the two halves of the core oscillate
antisynchronously. A semi-ring wave then propagates
from the bottom to the top of the domain (first three
snapshots in Fig. 11), and breaks up into two spiral
waves as it reaches the boundary of the core (fourth
snapshot). Background oscillations absorb the two spi-
ral waves and the ring-wave is reinitiated (final two
snapshots). At even higher levels of noise any spatially
structured activity in the network is disrupted and the
entire network exhibits bulk oscillations. Indeed, it has
previously been shown that there can be an optimal
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Fig. 10 Snapshots of a solution u(x, y, t) to the noisy system
(4.4) in the absence of stimulation. Background noise initiates
spatially localized oscillating cores at discrete sites in the medium.

Target waves emitted by the various oscillating regions collide,
disrupting the spatial structure of the oscillations. Parameters are
α = 80, β = 0.05, η = 0.005, σ = 4, and θ = 0.01
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Fig. 11 Snapshots of a solution u(x, y, t) to the noisy system (4.4),
following a stimulus specified by Eq. (4.3) at t = 90, where χ = 1
and ζ = 60. As activity develops, the background noise starts to
break the symmetry of an oscillating central core. Rather than
a contiguous oscillation, two halves of the core oscillate anti-
synchronously. A semi-ring wave propagates from the bottom

to the top of the medium, and breaks into two spiral waves as
it collides with the boundary of the core. This exemplifies noise
induced spiral waves, which are sustained for relatively long time
intervals. Parameters are α = 80, β = 0.05, η = 0.01, σ = 4, and
θ = 0.01

level of noise for the generation of spiral waves in ex-
citable media (Jung and Mayer-Kress 1995). Note that
an alternative mechanism to noise for generating spiral
waves is to introduce random network inhomogeneities
(quenched disorder), as shown in the case of a two-
dimensional integrate-and-fire network (Milton et al.
1993).

5 High-gain limit

In order to analyze the existence and stability of spa-
tially structured solutions in neuronal networks, the
high-gain limit of a sigmoid-like firing rate function is
often considered, whereby f reduces to the Heaviside
function (2.3) with a discontinuity at the threshold u =
θ (Amari 1977; Pinto and Ermentrout 2001a). Although
an excitatory neuronal network with synaptic depres-
sion as given by Eq. (2.1) no longer supports oscilla-
tory solutions in the high-gain limit, stationary pulses
(bumps) and target wave solutions can be found. How-

ever, the presence of a Heaviside function in the dy-
namics of the synaptic depression variable means that
the resulting dynamical system is piecewise smooth,
which considerably complicates the analysis of the sta-
bility of waves and bumps. In this section, we carry
out a phase-plane analysis of the space-clamped system,
show that stable target wave solutions exist, and derive
equations for the existence of stationary bumps. The
issue of stability will be addressed elsewhere (see also
Kilpatrick and Bressloff 2009).

5.1 Phase-plane analysis

The space-clamped system with a Heaviside firing rate
function takes the form

u̇(t) = −u(t) + q(t)H(u(t) − θ),

αq̇(t) = 1 − q(t) − αβq(t)H(u(t) − θ). (5.1)

In order to calculate equilibria of (5.1), we consider
the possible solutions on the two domains of the step
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function H(u − θ). We find that there is always a low
activity or Down state on the lower domain (u < θ)
for θ > 0 such that (u, q) = (0, 1). The stability of this
Down state is determined by the eigenvalues of the
Jacobian

J (0, 1) =
(−1 0

0 −1/α

)
(5.2)

and is therefore stable for all realistic parameters. As
stated in our analysis of the system with the piecewise
linear firing rate function, this stable Down state indeed
should exist for all systems possessing an f with a hard
threshold.

In the upper domain (u > θ), an equilibrium is given
by the system

0 = −u + q, (5.3)

0 = (1 − q)/α − βq, (5.4)

implying a fixed point (u,q) = (1/(1 + αβ), 1/(1 + αβ))
will exist, provided θ < 1/(1 + αβ). Its stability is deter-
mined by the eigenvalues of the Jacobian

J (u, q, a) =
(−1 1

0 −(1/α + β)

)
, (5.5)

which guarantees that such an Up state is always stable.
Therefore, as stated, we have a bistable system as long
as θ < 1/(1 + αβ), as pictured in Fig. 12. Additive noise
could then be a mechanism for switching the system
between its Up and Down states. However, if θ >

1/(1 + αβ), only the Down state exists, which physically
means that in this case synaptic depression curtails
recurrent excitation to the point that no sustained ac-
tivity is possible. In the special case θ = 1/(1 + αβ), an
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Fig. 12 Phase plane plot of the space-clamped system (5.1) fin
the case θ < 1/(1 + αβ) for which there exist two stable fixed
points. Parameters are α = 50, β = 0.05, and θ = 0.1

equilibrium exists at u = q = θ , provided that we take
H(0) = 1. However, the piecewise smooth nature of the
dynamics needs to be taken into account in order to
determine the stability of the fixed point. That is, the
fixed point is stable with respect to perturbations δu > 0
but unstable with respect to perturbations δu < 0. Thus
stability cannot be established simply by linearizing
about the fixed point. While this special case is non-
generic in the space-clamped system, it foreshadows po-
tential problems in the study of the stability of spatially
structured solutions of the full system (2.1). This is due
to the fact that one has to consider perturbations at
threshold crossing points x where u(x, t) = θ . We will
discuss this issue further, following a study of spatially
structured solutions.

5.2 Target waves

As shown by numerical simulations in the case of a
piecewise linear firing rate, spatially structured oscil-
lations can generate expanding target waves via prop-
agating phase shifts in an oscillatory medium. Here,
we show that in the high-gain limit, target waves arise
in the context of an excitable medium. We studied
the existence of traveling pulses in a one-dimensional
excitatory network with synaptic depression in a pre-
vious study (Kilpatrick and Bressloff 2009). Traveling
pulses of this type represent a homoclinic orbit in the
projected space of the traveling wave coordinate, rather
than phase shifts of an existing limit cycle, as in an
oscillatory medium. Implications of these two different
dynamical systems scenarios may be useful in determin-
ing the mechanism that generates traveling waves in
experiment. For example, in studies of disinhibited cor-
tical slice, localized stimuli may lead to either traveling
plane waves, which are transient, or spiral waves, which
are persistent (Huang et al. 2004).

We find that by simulating the two-dimensional spa-
tially extended system with the Heaviside step firing
rate function, a localized stimulus can lead to outwardly
propagating target waves. In Fig. 13, we show snap-
shots of such a simulation where the initial condition is
taken to be a Gaussian stimulus of the synaptic drive,
as specified by Eq. (4.3). In the case of a piecewise
linear firing rate function, radially symmetric stimuli
lead to an oscillating core that recurrently generated
target waves. Here, a single radially symmetric target
wave is generated, after which, the system returns to
a quiescent state. The structure of the solution reflects
the underlying symmetries of the weight function (2.5)
and the stimulus. Numerical simulations suggest that
these target waves are stable.
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Fig. 13 Snapshots of a solution u(x, y, t) to the fourth order
PDE (4.1) showing a single outward propagating target wave,
following a stimulus specified by Eq. (4.3) at t = 0, where χ = 1

and ζ = 25. The firing rate function is taken to be a Heaviside
function, f (u) = H(u − θ). Parameters are α = 50, β = 0.4, and
θ = 0.1

5.3 Standing bumps

Finally, we extend our previous analysis of bumps in
a one-dimensional network (Kilpatrick and Bressloff
2009) in order to derive conditions for the existence
of standing bumps in the two-dimensional network
(2.1) with a Heaviside firing rate function. We can
assume radially symmetric bumps since the correspond-
ing weight distribution (2.5) is itself radially symmetric.
Consider a radially symmetric stationary bump solution
of Eq. (2.1) such that u(r, t) = U(r), q(r, t) = Q(r) and
U(r) crosses the threshold θ at the unique radius r = a.
The solution is taken to be superthreshold within the
domain r < a and subthreshold otherwise, and a is iden-
tified as the radial width of the bump. Given reasonable
boundary conditions, we thus have

U(r) ≷ θ, for r ≶ a, (5.6)

{U(r), Q(r))} → {0, 1} , as r → ∞. (5.7)

Substituting such a solution into Eq. (2.1) gives

U(r) =
∫
U

Q(r′)w(|r − r′|)dr′, (5.8)

Q(r) = (1 + αβ�(a − r))−1, (5.9)

where U = {r = (r, θ) : r ≤ a} is the domain on which
the bump is superthreshold and

�(r) =
{

1, r ≥ 0,

0, r < 0.
(5.10)

If we express (5.9) as

Q(r) =
⎧⎨
⎩

1

1 + αβ
, r ≤ a,

1, r > a,

(5.11)

then we can substitute (5.11) back into (5.8) to yield

(1 + αβ)U(r) = �(a, r), (5.12)

where

�(a, r) =
∫ 2π

0

∫ a

0
w

(∣∣r − r′∣∣) r′dr′dθ ′. (5.13)
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We can calculate the double integral in (5.13) using
Fourier transform and Bessel function identities, as in
a previous study (Folias and Bressloff 2004). Thus, we
find that

�(a, r) = 2πa
∫ ∞

0
ŵ(ρ)J0(rρ)J1(aρ)dρ, (5.14)

where ŵ(ρ) is the two-dimensional Fourier transform
of w, and Jν(z) is a Bessel function of the first kind.

To illustrate the parameter dependence of stationary
bumps, we consider the concrete example of a weight
function w given by the difference of modified Bessel
functions (2.5), which has the Fourier transform (4.2).
The integral (5.14) can then be evaluated explicitly by
substituting (4.2) into (5.14), setting r = a, and using the
identity

a
∫ ∞

0

1

ρ2 + s2
J0(aρ)J1(aρ)dρ = a

s
I1(sa)K0(sa),

where Iν is the modified Bessel function of the first
kind. Thus, the condition for existence of a stationary
bump of radius a is given by

(1 + αβ)θ = �(a), (5.15)

with

�(a) ≡ �(a, a)

= 4

3

(
aI1(a)K0(a) − a

2
I1(2a)K0(2a)

)
. (5.16)

Relations between bump radius a and depression
strength β are shown in Fig. 14. Numerical simulations
suggest all such bumps are unstable, so that some form
of lateral inhibition is required in order to stabilize
the bumps. Alternatively bumps could be stabilized by
global divisive inhibition (Wu et al. 2008; Fung et al.
2008)

While bump existence calculations are straightfor-
ward in the case of a Heaviside firing rate function,
bump stability calculations are not, due to the piece-
wise smooth nature of the depression dynamics. Fol-
lowing previous studies of bump stability (Pinto and
Ermentrout 2001b; Folias and Bressloff 2004; Owen
et al. 2007), one could formally linearize the neural
field equations. However, as we have recently shown
in the case of one-dimensional bumps (Kilpatrick and
Bressloff 2009), considerable care has to be taken
in evaluating terms arising from perturbations of the
bump boundary. It turns out one needs to keep track of
the sign of such perturbations, analogous to what hap-
pens when θ = 1/(1 + αβ) in the space-clamped system.
The details of this analysis will be presented elsewhere.
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Fig. 14 Bump radius a as a function of depression strength β for
different values of threshold θ , while α = 80

6 Discussion

In this paper, we analyzed the spatiotemporal dynamics
of a two-dimensional excitatory neuronal network with
synaptic depression. We showed that there is an exten-
sive parameter range over which spatially structured
oscillations are supported. With the inclusion of noise
in the model this range is widened even further. We
found that application of a localized current input as an
initial condition to the network leads to a localized re-
gion of synchronous activity repeatedly emitting target
waves. This type of activity has been linked to epileptic
seizures (Buszaki 2006; Milton and Jung 2003), memory
(Klimesch 1999), and sensory input (Lakatos et al. 2007;
Lam et al. 2000; Roelfsema et al. 1997; Singer and Gray
1995). Additionally, breaking the symmetry of target
wave emitting solutions either using external stimu-
lation or noise generated spiral waves. Disinhibited
mammalian cortical slices also support spiral waves,
and it has been postulated that such activity allows
periodic activity to be organized in spatially extended
populations of neurons (Huang et al. 2004; Schiff et al.
2007). Finally, we showed that in the high-gain limit,
the network acts like an excitable rather than oscilla-
tory neural medium in which solitary target waves can
propagate but stationary bumps are unstable.

Although the effects of short-term depression with
and without noise have been studied in a variety of
contexts (Abbott et al. 1997; Tsodyks et al. 1998;
Matveev and Wang 2000; Tabak et al. 2000; Bart et al.
2005; Holcman and Tsodyks 2006), its role in spatially
structured networks has not previously been consid-
ered. Just as synaptic depression provides a negative
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feedback mechanism for generating moderately fast
wave (1–10 Hz) oscillations, it is possible that synaptic
facilitation of excitatory to inhibitory synapses plays
a role in producing slow wave oscillations (0.1–1 Hz),
as recently suggested by a modeling study of a space-
clamped network (Melamed et al. 2008). We hope to
pursue this in a future study.

Acknowledgements This publication was based on work sup-
ported in part by the National Science Foundation (DMS-
0813677) and by Award No KUK-C1-013-4 made by King
Abdullah University of Science and Technology (KAUST). PCB
was also partially supported by the Royal Society-Wolfson Foun-
dation. We would like to thank Carlo Laing for helpful con-
versations regarding numerical simulations. We also thank Bard
Ermentrout for highlighting issues regarding bump stability cal-
culations in the high-gain limit.

References

Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997).
Synaptic depression and cortical gain control. Science, 275,
220–224.

Amari, S. (1977). Dynamics of pattern formation in lateral-
inhibition type neural fields. Biological Cybernetics, 27,
77–87.

Bao, S., Chang, E. F., Davis, J. D., Gobeske, K. T., & Merzenich,
M. M. (2003). Progressive degradation and subsequent re-
finement of acoustic representations in the adult auditory
cortex. Journal of Neuroscience, 23, 10765–10775.

Bart, E., Bao, S., & Holcman, D. (2005). Modeling the sponta-
neous activity of the auditory cortex. Journal of Computa-
tional Neuroscience, 19, 357–378.

Benda, J., & Herz, A. V. M. (2003). A universal model for spike-
frequency adaptation. Neural Computation, 15, 2523–2564.

Benucci, A., Frazor, R. A., & Carandini, M. (2007). Standing
waves and traveling waves distinguish two circuits in visual
cortex. Neuron, 55, 103–117.

Buszaki, G. (2006). Rhythms of the brain. Oxford: Oxford Uni-
versity Press.

Buszaki, G., & Draguhn, A. (2004). Neuronal oscillation in corti-
cal networks. Science, 304, 1926–1929.

Chervin, R. D., Pierce, P. A., & Connors, B. W. (1988). Peri-
odicity and directionality in the propagation of epileptiform
discharges across neocortex. Journal of Neurophysiology, 60,
1695–1713.

Delaney, K., Gelperin, A., Fee, M., Flores, J., Gervais, R., &
Tank, D. (1994). Waves and stimulus-modulated dynamics in
an oscillating olfactory network. Proceedings of the National
Academy of Sciences of the United States of America, 91,
669–73.

Dudek, F. E., & Spitz, M. (1997). Hypothetical mechanisms
for the cellular and neurophysiological basis of secondary
epileptogenesis: Proposed role for synaptic reorganization.
Journal of Clinical Neurophysiology, 14, 90–101.

Ermentrout, G. B. (1998). Linearization of f-I curves by adapta-
tion. Neural Computation, 10, 1721–1729.

Ermentrout, G. B., & Kleinfeld, D. (2001). Traveling electrical
waves in cortex: Insights from phase dynamics and specula-
tion on a computational role. Neuron, 29, 33–44.

Folias, S. E., & Bressloff, P. C. (2004). Breathing pulses in an exci-
tatory neural network. SIAM Journal on Applied Dynamical
Systems, 3, 378–407.

Folias, S. E., & Bressloff, P. C. (2005a). Breathers in two-
dimensional neural media. Physical Review Letters, 95,
208107.

Folias, S. E., & Bressloff, P. C. (2005b). Stimulus-locked traveling
waves and breathers in an excitatory neural network. SIAM
journal on Applied Mathematics, 65, 2067–2092.

Fung, C. C. A., Wong, K. Y. M., & Wu, S. (2008). Dynam-
ics of neural networks with continuous attractors. EPL, 84,
18002.

Guo, Y., & Chow, C. C. (2005a). Existence and stability of stand-
ing pulses in neural networks: I. Existence. SIAM Journal on
Applied Dynamical Systems, 4, 217–248.

Guo, Y., & Chow, C. C. (2005b). Existence and stability of stand-
ing pulses in neural networks: II. Stability. SIAM Journal on
Applied Dynamical Systems, 4, 249–281.

Han, F., Caporale, N., & Dan, Y. (2008). Reverberation of recent
visual experience in spontaneous cortical waves. Neuron, 60,
321–327.

Hansel, D., & Sompolinsky, H. (2001). Methods in neuronal mod-
eling. In Modeling feature selectivity in local cortical circuits
(2nd Ed., ch. 13, pp. 499–568). Cambridge: MIT.

Holcman, D., & Tsodyks, M. (2006). The emergence of Up and
Down states in cortical networks. PLoS Computational Bi-
ology, 2, 174–181.

Huang, X., Troy, W. C., Yang, Q., Ma, H., Laing, C. R., Schiff,
S. J., et al. (2004). Spiral waves in disinhibited mammalian
neocortex. Journal of Neuroscience, 24, 9897–9902.

Hutt, A., Longtin, A., & Schimansky-Geier, L. (2008). Additive
noise-induces Turing transitions in spatial systems with ap-
plication to neural fields and the Swift-Hohenberg equation.
Physica D, 237, 755–773.

Jung, P., & Mayer-Kress, G. (1995). Spatiotemporal stochastic
resonance in excitable media. Physical Review Letters, 74,
2130–2133.

Kilpatrick, Z. P., & Bressloff, P. C. (2009). Effects of adap-
tation and synaptic depression on spatiotemporal dy-
namics of an excitatory neuronal network. Physica D.
doi:10.1016/j.physd.2009.06.003.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect
cognitive and memory performance: A review and analysis.
Brain Research Reviews, 29, 169–195.

Laing, C. R. (2005). Spiral waves in nonlocal equations. SIAM
Journal on Applied Dynamical Systems, 4, 588–606.

Laing, C. R., Frewen, T. A., & Kevrekidis, I. G. (2007). Coarse-
grained dynamics of an activity bump in a neural field model.
Nonlinearity, 20, 2127–2146.

Laing, C. R., & Troy, W. C. (2003). PDE methods for nonlocal
models. SIAM Journal on Applied Dynamical Systems, 2,
487–516.

Lakatos, P., Chen, C. M., O’Connell, M. N., Mills, A., &
Schroeder, C. E. (2007). Neuronal oscillations and multi-
sensory interaction in primary auditory cortex. Neuron, 53,
279–292.

Lam, Y. W., Cohen, L. B., Wachowiak, M., & Zochowski, M. R.
(2000). Odors elicit three different oscillations in the turtle
olfactory bulb. Journal of Neuroscience, 20, 749–62.

Lee, U., Kim, S., & Jung, K. Y. (2006). Classification of epilepsy
types through global network analysis of scalp electroen-
cephalograms. Physical Review E, 73, 041920.

Linder, B., Garcia-Ojalvo, J., Neiman, A., & Schimansky-Geier,
L. (2004). Effects of noise in excitable systems. Physics Re-
ports, 393, 321–424.

http://dx.doi.org/10.1016/j.physd.2009.06.003


J Comput Neurosci (2010) 28:193–209 209

Matveev, V., & Wang, X. J. (2000). Implications of all-or-none
synaptic transmission and short-term depression beyond
vesicle depletion: A computational study. Journal of Neuro-
science, 20, 1575–1588.

McNamara, J. O. (1994). Cellular and molecular basis of epilepsy.
Journal of Neuroscience, 14, 3412–3425.

Melamed, O., Barak, O., Silberberg, G., Markram, H., &
Tsodyks, M. (2008). Slow oscillations in neural networks
with facilitating synapses, Journal of Computational Neuro-
science, 25, 308–316.

Milton, J., & Jung, P. (2003). Epilepsy as a dynamic disease.
Berlin: Springer.

Milton, J. G., Chu, P. H., & Cowan, J. D. (1993). Spiral waves
in integrate-and-fire neural etworks. In S. J. Hanson, J. D.
Cowan, & C. L. Giles (Eds.), Advances in neural information
n processing systems (pp. 1001–1007). San Mateo: Morgan
Kaufmann.

Owen, M. R., Laing, C. R., & Coombes, S. (2007). Bumps and
rings in a two-dimensional neural field: splitting and rota-
tional instabilities. New Journal of Physics, 9, 378.

Petersen, C. C. H., Grinvald, A., & Sakmann, B. (2003). Spa-
tiotemporal dynamics of sensory responses in layer 2/3
of rat barrel cortex measured in vivo by voltage-sensitive
dye imaging combined with whole-cell voltage recordings
and neuron reconstructions. Journal of Neuroscience, 23(4),
1298–1309.

Pinto, D. J., & Ermentrout, G. B. (2001a). Spatially structured ac-
tivity in synaptically coupled neuronal networks: I. Traveling
fronts and pulses. SIAM journal on Applied Mathematics, 62,
206–225.

Pinto, D. J., & Ermentrout, G. B. (2001b). Spatially structured ac-
tivity in synaptically coupled neuronal networks: II. Lateral
inhibition and standing pulses. SIAM Journal on Applied
Mathematics, 62, 226–243.

Prechtl, J. C., Cohen, L. B., Pesaran, B., Mitra, P. P., & Kleinfeld,
D. (1997). Visual stimuli induce waves of electrical activity
in turtle cortex. Proceedings of the National Academy of
Sciences of the United States of America, 94, 7621–7626.

Roelfsema, P. R., Engel, A. K., Konig, P., & Singer, W. (1997).
Visuomotor integration is associated with zero time-lag syn-
chronization among cortical areas. Nature, 385, 1157–1161.

Rubin, J., & Bose, A. (2004). Localized activity patterns in exci-
tatory neuronal networks. Network, 15, 133–158.

Schiff, S. J., Huang, X., & Wu, J. Y. (2007). Dynamical evolu-
tion of spatiotemporal patterns in mammalian middle cortex.
Physical Review Letters, 98, 178102.

Schiff, S. J., Sauer, T., Kumar, R., & Weinstein, S. L. (2005). Neu-
ronal spatiotemporal pattern discrimination: The dynamical
evolution of seizures. Neuroimage, 28, 1043–1055.

Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., &
Madsen, J. R. (2003). Theta and gamma oscillations during

encoding predict subsequent recall. Journal of Neuroscience,
23, 10809–10814.

Shusterman, V., & Troy, W. C. (2008). From baseline to
epileptiform activity: A path to synchronized rhythmic-
ity in large-scale neural networks. Physical Review E, 77,
061911.

Singer, W., & Gray, C. M. (1995). Visual feature integration
and the temporal correlation hypothesis. Annual Review of
Neuroscience, 18, 555–586.

Stevens, C., & Wesseling, J. (1998). Activity-dependent modula-
tion of the rate at which synaptic vesicles become available
to undergo exocytosis. Neuron, 21, 415–424.

Tabak, J., Senn, W., O’Donovan, M. J., & Rinzel, J. (2000). Mod-
eling of spontaneous activity in developing spinal cord us-
ing activity-dependent depression in an excitatory network.
Journal of Neuroscience, 20, 3041–3056.

Troy, W. C. (2008). Traveling waves and synchrony in an ex-
citable large-scale neuronal network with asymmetric con-
nections. SIAM Journal on Applied Dynamical Systems, 7,
1247–1282.

Troy, W. C., & Shusterman, V. (2007). Patterns and features
of families of traveling waves in large-scale neuronal net-
works. SIAM Journal on Applied Dynamical Systems, 6,
263–292.

Tsodyks, M. S., & Markram, H. (1997). The neural code between
neocortical pyramidal neurons depends on neurotransmitter
release probability. Proceedings of the National Academy of
Sciences of the United States of America, 94, 719–723.

Tsodyks, M. S., Pawelzik, K., & Markram, H. (1998). Neural
networks with dynamic synapses. Neural Computation, 10,
821–835.

Wang, X. J. (1998). Calcium coding and adaptive temporal com-
putation in cortical pyramidal neurons. Journal of Neuro-
physiology, 79, 1549–1566.

Wang, X. J. (1999). Synaptic basis of cortical persistent activity:
the importance of NMDA receptors to working memory.
Journal of Neuroscience, 19, 9587–9603.

Wu, J. Y. (2008). Propagating waves of activity in the neocortex:
What they are, what they do. Neuroscientist, 14, 487–502.

Wu, J. Y., Guan, L., & Tsau, Y. (1999). Propagating activa-
tion during oscillations and evoked responses in neocortical
slices. Journal of Neuroscience, 19, 5005–5015.

Wu, S., Hamaguchi, K., & Amari, S.-I. (2008). Dynamics and
computation of continuous attractors. Neural Computation,
20, 994–1025.

Xu, W., Huang, X., Takagaki, K., & Wu, J. Y. (2007). Compres-
sion and reflection of visually evoked cortical waves. Neuron,
55, 119–129.

Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plas-
ticity. Annual Review of Physiology, 64, 355–405.


	Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression
	Abstract
	Introduction
	Neural network model with synaptic depression
	Oscillations in the space-clamped system
	Phase plane for piecewise linear firing rate
	Phase plane for sigmoidal firing rate
	Space-clamped system with noise

	Oscillations in the spatially extended model
	Pulse emitter
	Spiral waves
	Noise-induced oscillations

	High-gain limit
	Phase-plane analysis
	Target waves
	Standing bumps

	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


