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Abstract. We study the dynamics of stationary bumps in continuum neural

field equations near a saddle-node bifurcation. The integral terms of these evo-
lution equations have a weight kernel describing synaptic interactions between

neurons at different locations of the network. Excited regions of the neural
field correspond to parts of the domain whose fraction of active neurons ex-

ceeds a sharp threshold of a firing rate nonlinearity. For sufficiently low firing

threshold, a stable bump coexists with an unstable bump and a homogeneous
quiescent state. As the threshold is increased, the stable and unstable branch

of bump solutions annihilate in a saddle-node bifurcation. Near this criticality,

we derive a quadratic amplitude equation that describes the slow evolution of
the even mode (bump contractions) as it depends on the distance from the

bifurcation. Beyond the bifurcation, bumps eventually become extinct, and

the lifetime of bumps increases for systems nearer the bifurcation. When noise
is incorporated, a stochastic amplitude equation for the even mode can be de-

rived, which can be analyzed to quantify bump extinction time both below and

above the saddle-node.

1. Introduction. Continuum neural fields are a well-accepted model of spatiotem-
poral neuronal activity evolving within in vitro and in vivo brain tissue [6,11]. Wil-
son and Cowan initially introduced these nonlocal integrodifferential equations to
model activity of neuronal populations in terms of mean firing rates [54]. While they
discount the intricate dynamics of neuronal spiking, these models can qualitatively
capture a wide range of phenomena such as propagating activity waves observed
in disinhibited slice preparations [27, 44, 45, 47]. Neural field models exhibit a wide
variety of spatiotemporal dynamics including traveling waves, Turing patterns, sta-
tionary pulses, breathers, and spiral waves [13, 17, 19, 31, 38]. A distinct advantage
of utilizing these continuum equations to model large-scale neural activity is that
many analytical methods for studying their behavior can be adapted from non-
linear partial differential equations (PDEs) [6]. Recently, several authors explored
the impact of stochasticity on spatiotemporal patterns in neural fields [8, 30, 35]
by employing techniques originally used to study stochastic front propagation in
reaction-diffusion systems [48]. Typically, the approach is to perturb about a lin-
early stable solution of the deterministic system, under the assumption of weak
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noise. However, some recent efforts have been aimed at understanding the impact
of noise on patterns near bifurcations [30,36].

In this work, we are interested in how noise interacts with stationary pulse
(bump) solutions near a saddle-node bifurcation at which a branch of stable bumps
and a branch of unstable bumps annihilate [1]. Bumps are commonly utilized as
a model of persistent and tuned neural activity underlying spatial working mem-
ory [21, 55]. This activity lasts for a few seconds, after which it is extinguished, to
allow subsequent memories to be formed [23]. One way to terminate these sustained
activity patterns is by transiently synchronizing the spiking patterns of excitatory
neurons that participate in the signal [25]. Another proposed mechanism for ter-
minating persistent activity is a strong and brief global inhibitory signal, driving
the system from the stable bump state to a quiescent state [10]. In terms of neural
field and spiking models, this can be thought of as momentarily raising the firing
threshold of the system, temporarily driving it beyond the saddle-node bifurcation
from which the stable bump emerges.

We focus on a scalar neural field model that supports stationary bump solutions
for appropriate choices of parameters and constituent functions [1, 11]:

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

w(x− y)f(u(y, t))dy (1)

where u(x, t) is the total synaptic input at location x and time t, and w(x − y)
describes the strength (amplitude) and polarity (sign) of synaptic connections from
neurons at location y to neurons at location x. We assume w(x) is an even-
symmetric function w(x) = w(−x) with a bounded integral

∫
Ω
w(x)dx < ∞ over

the spatial domain x ∈ Ω = (−x∞, x∞). The nonlinearity f(u) is a firing rate
function, which we take to be the sigmoid [54]

f(u) =
1

1 + e−η(u−θ) , (2)

and we also find it useful to take the high gain limit η →∞, in which case:

f(u) = H(u− θ) =

{
1 : u ≥ θ,
0 : u < θ,

(3)

allowing for analytical tractability in several of our calculations. It is important
to note that (1) neglects several known features of neuronal networks including
spike rate adaptation [26], propagation delays [29], synaptic depression [33], and
refractoriness [16]. Thus, we assume we are focusing on a network where these
effects are weak enough to not impact our main results.

Amari was the first to analyze (1) in detail, showing that when f(u) is defined to
be a Heaviside function (3), the network supports stable stationary bump solutions
when the weight function w(x) is a lateral inhibitory (Mexican hat) distribution
satisfying: (i) w(x) > 0 for x ∈ [0, x0) with w(x0) = 0; (ii) w(x) < 0 for x ∈
(x0, x∞); (iii) w(x) is decreasing on [0, x0]; and (iv) w(x) has a unique minimum on
[0, x∞) at x = x1 with x1 > x0 and w(x) strictly increasing on (x1, x∞) [1]. Based
on restrictions (i)-(iv), Amari made use of the integral of the weight function

W (x) ≡
∫ x

0

w(y)dy (4)

to prove some of his main results. For instance, it is clear that W (0) = 0 and
W (x) = −W (−x) based on the above assumptions. Moreover, there will be a
single maximum of the function W (x) on the interval (0, x∞) given at x = x0,
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i.e. Wmax = maxxW (x) = W (x0), due to conditions (i) and (ii), and w(x0) = 0.
When θ < W (x0) there are two bump solutions: one stable and one unstable (up
to translation symmetry), and when θ > W (x0) there are no bump solutions to
(1). When θ = θc ≡ W (x0), there is a single marginally stable bump solution.
It is at this point that the two branches (stable and unstable) of bump solutions
meet and annihilate in a saddle-node bifurcation (Fig. 1). Dynamics of (1) for
values of θ beyond this saddle-node bifurcation evolve to quasi-stationary solutions
resembling the ghost of the bump at θc, lasting for a period of time inversely related
to
√
|θ − θc| [51]. A principled exploration of these dynamics (section 2) is one of

the primary goals of this paper.
As mentioned, the neural field equation (1) in the absence of noise has been

analyzed extensively [1, 11, 17]. We expand upon these previous studies by also
exploring the impact of noise on stationary bump solutions to (1) near a saddle-node
bifurcation (section 3). Additive noise is incorporated, so that the evolution of the
neural field is now described by the spatially extended Langevin equation [4,6,30,40]:

du(x, t) =

[
−u(x, t) +

∫
Ω

w(x− y)f(u(y, t))dy

]
dt+ εdW (x, t), (5)

where dW (x, t) is the increment of a spatially varying Wiener process with mean
〈dW (x, t)〉 = 0 and correlations 〈dW (x, t)dW (y, s)〉 = C(x − y)δ(t − s)dtds and ε
describes the amplitude of the noise, assumed to be weak (ε � 1). The function
C(x− y) describes the spatial correlation between two points x, y ∈ Ω.

2. Slow bump extinction in the deterministic system. We begin by exam-
ining the dynamics of stationary bump solutions near a saddle-node bifurcation,
where a stable and unstable branch of solutions annihilate. Our initial analysis
focuses on the noise-free case W (x, t) ≡ 0, allowing us to derive an amplitude equa-
tion that approximates the evolution of the bump height. Linearization of bumps in
(1) typically reveals that they are marginally stable to translating perturbations, so
the overall stability is characterized by the stability to even perturbations that ex-
pand/contract the bump [17]. Our analysis will emphasize the region of parameter
space near where bumps are marginally stable to even perturbations.

2.1. Existence and stability of bumps. We now briefly review existence and
stability results for stationary bump solutions to the neural field equation (1). These
results are analogous to those presented in [1,35,52]. For transparency, we focus on
the case of a Heaviside firing rate function (3). This allows us to cast bump stability
in terms of a finite dimensional set of equations, focusing on the evolution of the two
edge interfaces of the bump [1, 15]. Assuming a stationary solution u(x, t) = U(x),
we find (1) requires

U(x) =

∫
Ω

w(x− y)H(U(y)− θ)dy. (6)

Given a unimodal bump solution U(x), without loss of generality, we can fix the
center and peak of the bump to be at the origin x = 0. In the case of even-symmetric
bumps U(x) = U(−x) [1], we will have the conditions for the bump half-width a:
U(x) > θ for x ∈ (−a, a), U(x) < θ for x ∈ Ω\[−a, a], and U(±a) = θ. In this case,
(6) becomes

U(x) =

∫ a

−a
w(x− y)dy =

∫ x+a

x−a
w(y)dy =

∫ x+a

0

w(y)dy −
∫ x−a

0

w(y)dy.
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Figure 1. Saddle-node bifurcation of bumps in (1) with a Heav-
iside firing rate function (3). (A) Difference of Gaussians weight

function w(x) = e−x
2 − Ae−x

2/σ2

has a Mexican hat profile with
A = 0.4 < 1 and σ = 2 > 1. The critical bump half-width ac at
the saddle-node satisfies the relation w(2ac) = 0. (B) The weight
function integral (4) determines the bump half-widths a. When θ
is below the critical threshold θc at the saddle-node, there are two
stationary bump solutions to (1): one stable as and one unstable
au. When θ > θc, there are zero equilibria, but the dynamics of
(1) are slow in the bottleneck near Uc(x).

By utilizing the integral function (4), we can write the even-symmetric solution

U(x) = W (x+ a)−W (x− a). (7)

To determine the half-width a, we require the threshold conditions U(±a) = θ of
the solution (7) to yield

U(a) = W (2a) =

∫ 2a

0

w(y)dy = θ.

Note that when θ < Wmax = maxxW (x), there will be a stable and unstable
bump solution to (1). When θ = θc ≡ Wmax, there is a single marginally stable
bump solution Uc(x) to (1), as illustrated in Fig. 1B. Differentiating W (2a) by
its argument yields W ′(2ac) = w(2ac) ≡ 0 as an implicit equation for the half-
width ac at this criticality. Utilizing the notation of Amari condition (i), we have
that ac = x0/2. Note, the relation w(2ac) = 0 is explicitly solvable for ac for
several typical lateral inhibitory type weight functions. For instance, in the case

of the difference of Gaussians w(x) = e−x
2 − Ae−x

2/σ2

on x ∈ (−∞,∞) [1], we

have ac = σ
√

ln(1/A)/
[
2
√
σ2 − 1

]
and θc =

√
π

2 [erf(2ac)−Aσerf(2ac/σ)]. For the

“wizard hat” w(x) = (1 − |x|)e−|x| on x ∈ (−∞,∞) [12], we have ac = 1/2 and
θc = e−1. For a cosine weight w(x) = cos(x) on the periodic domain x ∈ [−π, π] [35],
we have ac = π/4 and θc = 1.

To characterize the stability of bump solutions to (1), we will study the evo-
lution of small smooth perturbations εψ̄(x, t) (ε � 1) to stationary bumps U(x)
by utilizing the Taylor expansion u(x, t) = U(x) + εψ̄(x, t) + O(ε2). By plugging
this expansion into (1) and truncating to O(ε), we can derive an equation whose
solutions constitute the family of eigenfunctions associated with the linearization of
(1) about the bump solution U(x). We begin by truncating (1) to O(ε) assuming
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u is given by the above expansion and that the nonlinearity f(u) is given by the
Heaviside function (3), so

∂ψ̄(x, t)

∂t
= −ψ̄(x, t) +

∫
Ω

w(x− y)H ′(U(y)− θ)ψ̄(y, t)dy, (8)

and we can differentiate the Heaviside function, in the sense of distributions, by
noting H(U(x)− θ) = H(x+ a)−H(x− a), so

δ(x+ a)− δ(x− a) =
dH(U(x)− θ)

dx
= H ′(U(x)− θ)U ′(x),

which we can rearrange to find

H ′(U(x)− θ) =
δ(x+ a)− δ(x− a)

U ′(x)
=

1

|U ′(a)|
(δ(x+ a) + δ(x− a)) . (9)

Upon applying the identity (9) to (8), we have

∂ψ̄(x, t)

∂t
= −ψ̄(x, t) + γ

[
w(x+ a)ψ̄(−a, t) + w(x− a)ψ̄(a, t)

]
, (10)

where γ−1 = |U ′(a)| = w(0) − w(2a). One class of solutions, such that ψ̄(±a, t) =
ψ̄(±a, 0) = 0, lies in the essential spectrum of the linear operator that defines (10).
In this case, ψ̄(x, t) = ψ̄(x, 0)e−t, so perturbations of this type do not contribute
to any instabilities of the stationary bump U(x) [24]. Assuming separable solutions
ψ̄(x, t) = b(t)ψ(x), we can characterize the remaining solutions to (10). In this case,
b′(t) = λb(t), so b(t) = eλt where λ ∈ R, and

(λ+ 1)ψ(x) = γ [w(x+ a)ψ(−a) + w(x− a)ψ(a)] . (11)

Solutions to (11) that do not satisfy the condition ψ(±a) ≡ 0 can be separated into
two classes: (i) odd ψ(a) = −ψ(−a) and (ii) even ψ(a) = ψ(−a). This is due to the
fact that the equation (11) implies the function ψ(x) is fully specified by its values
at x = ±a. Thus, we need only concern ourselves with these two points, yielding
the two-dimensional linear system

(λ+ 1)ψ(−a) = γ [w(0)ψ(−a) + w(2a)ψ(a)] (12a)

(λ+ 1)ψ(a) = γ [w(2a)ψ(−a) + w(0)ψ(a)] . (12b)

For odd solutions ψ(a) = −ψ(−a), the eigenvalue

λo = −1 + γ [w(0)− w(2a)] = −1 +
w(0)− w(2a)

w(0)− w(2a)
= 0,

reflecting the fact that (1) is translationally symmetric, so bumps are marginally
stable to perturbations that translate their position. Even solutions ψ(a) = ψ(−a)
have associated eigenvalue

λe = −1 + γ [w(0) + w(2a)] = −1 +
w(0) + w(2a)

w(0)− w(2a)
=

2w(2a)

w(0)− w(2a)
.

Thus, when θ < θc, the wide bump as > ac will be linearly stable to expand-
ing/contracting perturbations since w(2as) < 0 due to Amari’s condition (ii) [1].
The narrow bump au < ac is linearly unstable to such perturbations since w(2au) >
0 due to Amari’s condition (i). When θ = θc, we have w(2ac) = 0 so that λe = 0
and |U ′(±ac)| = w(0).
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In anticipation of our derivations of amplitude equations, we define the eigen-
functions at the criticality θ = θc. Utilizing the fact that |U ′(±ac)| = w(0) and the
linear system (12a), we have that the odd eigenfunction at the bifurcation is

ψo(x) =
1

w(0)
[w(x− ac)− w(x+ ac)] , (13)

and the even eigenfunction is

ψe(x) =
1

w(0)
[w(x− ac) + w(x+ ac)] . (14)

Note, this specifies that ψe(±a) = ψo(a) = −ψo(−a) = 1. Furthermore, we will
find it useful to compute the derivatives

ψ′o(x) =
1

w(0)
[w′(x− ac)− w′(x+ ac)] ,

which is even (ψ′o(−ac) = ψ′o(ac)), and

ψ′e(x) =
1

w(0)
[w′(x− ac) + w′(x+ ac)] ,

which is odd (ψ′e(−ac) = −ψ′e(ac)). Lastly, we note that we will utilize the fact that,
for even symmetric functions w(x), w′(0) = 0 and w′(−x) = −w′(x), so ψ′o(±ac) =
ψ′e(−ac) = −ψ′e(ac) = |w′(2ac)|/w(0) = w′(−2ac)/w(0) = −w′(2ac)/w(0), noting
Amari’s conditions (iii) and (iv) [1].

2.2. Saddle-node bifurcation of bumps. Motivated by the above linear stabil-
ity analysis, we now carry out a nonlinear analysis in the vicinity of the saddle-
node bifurcation from which the stable and unstable branches of stationary bumps
emanate. Specifically, we will perform a perturbation expansion about the bump
solution Uc(x) at the critical threshold value θc. We therefore define θ = θc + µε2,
ε� 1, so that µ is a bifurcation parameter determining the distance of θ from the
saddle-node bifurcation point. As demonstrated above, the linear stability problem
for Uc(x) reveals two zero eigenvalues λo = λe = 0 associated with the odd ψo and
even ψe eigenfunctions (13) and (14), respectively. Our analysis employs the ansatz:

u(x, t) = Uc(x) + εAe(τ)ψe(x) + ε2Ao(t)ψo(x) + ε2u2(x, τ) +O(ε3), (15)

where τ = εt is a temporal rescaling that reflects the vicinity of the system to a
saddle-node bifurcation associated with the even expanding/contracting eigenmode
ψe [51]. Similar expansions have been utilized in the analysis of bifurcations for
spatial patterns in reaction-diffusion systems [3,49] and neural field models [5,28,53].
Upon plugging (15) into (1) and expanding in orders of ε, we find that at O(1), we
simply have the stationary bump equation (6) at θ = θc. Proceeding to O(ε), we
find

0 = Ae(τ)

[∫
Ω

w(x− y)H ′(Uc(y)− θc)ψe(y)dy − ψe(x)

]
,

so we can use (9) to write

0 = Ae(τ)

[
1

w(0)
(w(x+ a)ψe(−a) + w(x− a)ψe(a))− ψe(x)

]
. (16)



GHOSTS OF BUMP ATTRACTORS 2217

The right hand side of (16) vanishes due to the formula for the even (14) eigen-
function associated with the stability of the bump Uc(x). At O(ε2), we obtain an
equation for higher order term u2:

L [Aoψo + u2] =A′eψe +A′oψo + µ

∫
Ω

w(x− y)H ′(Uc(y)− θc)dy (17)

− A2
e

2

∫
Ω

w(x− y)H ′′(Uc(y)− θc)ψe(y)2dy,

where L is the non-self-adjoint linear operator

Lu(x) = −u(x) +

∫
Ω

w(x− y)H ′(Uc(y)− θc)u(y)dy. (18)

Both ψo(x) and ψe(x) lie in the nullspace N (L), as demonstrated in the previous
section by identifying solutions to (8). Thus, the ψo terms on the left hand side
of (17) vanish. We can ensure a bounded solution to (17) exists by requiring that
the right hand side be orthogonal to all elements of the nullspace of the adjoint
operator L∗. The adjoint is defined with respect to the L2 inner product

〈Lu, v〉 =

∫
Ω

[Lu(x)] v(x)dx =

∫
Ω

u(x) [L∗v(x)] dx = 〈u,L∗v〉. (19)

Thus, we find

L∗v(x) = −v(x) +H ′(Uc(x)− θc)
∫

Ω

w(x− y)v(y)dy, (20)

defined in the sense of distributions under the L2 inner product given in (19). It is
straightforward to show that ϕo := H ′(Uc − θc)ψo and ϕe := H ′(Uc − θc)ψe lie in
the nullspace of L∗. Components of N (L∗) are defined by the equation

v(x) = H ′(Uc(x)− θc)
∫

Ω

w(x− y)v(y)dy. (21)

To show ϕo, ϕe ∈ N (L∗), we simply plug these formulas into (21) to find

H ′(Uc(x)− θc)ψj(x) = H ′(Uc(x)− θc)
∫

Ω

w(x− y)H ′(Uc(y)− θc)ψj(y)dy,

for j = o, e, which is true due to the fact that ψo and ψe lie in N (L). Thus, we will
impose solvability of (17) by taking the inner product of both sides of the equation
with respect to ϕo := H ′(Uc − θc)ψo and ϕe := H ′(Uc − θc)ψe yielding

0 =

〈
ϕj , A

′
eψe +A′oψo + µw ∗H ′(Uc − θc)−

A2
e

2
w ∗

[
H ′′(Uc − θc)ψ2

e

]〉
, (22)

for j = o, e, where we have defined the convolution w ∗ F =
∫

Ω
w(x − y)F (y)dy.

Due to odd-symmetry, terms of the form 〈H ′(Uc − θc)ψj , ψk〉, j 6= k, vanish. In
a similar way, the term 〈H ′(Uc − θc)ψo, w ∗ H ′(Uc − θc)〉 vanishes due to odd-
symmetry. Isolating the temporal derivatives A′j in (22), we find that the amplitudes
Aj (j = o, e) satisfy the following fast-slow system of nonlinear differential equations

dAo
dt

=

〈
ϕo, w ∗

[
H ′′(Uc − θc)ψ2

e

]〉
2〈ϕo, ψo〉

Ae(τ)2, (23a)

dAe
dτ

= −µ 〈ϕe, w ∗H
′(Uc − θc)〉

〈ϕe, ψe〉
+

〈
ϕe, w ∗

[
H ′′(Uc − θc)ψ2

e

]〉
2〈ϕe, ψe〉

Ae(τ)2. (23b)
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With the system (23) in hand, we can determine the long term dynamics of the
amplitudes as the bifurcation parameter µ is varied. We begin by computing the
constituent components of the right hand sides, using properties of the eigenfunc-
tions ψo and ψe. To start, we will compute the second derivative H ′′(Uc − θc),
which appears in the coefficient of the quadratic term A2

e. Differentiating the func-
tion H(Uc(x) − θc) twice with respect to x, using the chain and product rule, we
find the following formula

d2H(Uc(x)− θc)
dx2

= (U ′c(x))2H ′′(Uc(x)− θc) + U ′′c (x)H ′(Uc(x)− θc)

= (U ′c(x))2H ′′(Uc(x)− θc) +
U ′′c (x)

U ′c(x)

dH(Uc(x)− θc)
dx

,

where we have applied the identity (9) for the first derivative H ′(U−θ). Rearranging
terms, we find that

H ′′(Uc − θc) =
1

U ′c(x)2

d2H(Uc(x)− θc)
dx2

− U ′′c (x)

|U ′c(a)|3
[δ(x+ ac) + δ(x− ac)] . (24)

We can further specify the formula (24) by differentiating dH(Uc−θc)
dx = δ(x+ ac)−

δ(x− ac) with respect to x to yield

d2H(Uc − θc)
dx2

= δ′(x+ ac)− δ′(x− ac),

where δ′(x − x0) is defined, in the sense of distributions, for any smooth function
F (x) by using integration-by-parts [32]:∫

Ω

δ′(x− x0)F (x)dx = −
∫

Ω

δ(x− x0)F ′(x)dx = −F ′(x0).

Furthermore, we note that the spatial derivatives |U ′c(±ac)| = w(0) and U ′′c (x) =
w′(x+ ac)− w′(x− ac). Even symmetry of w(x) mandates that w′(x) = −w′(−x)
and w′(0) = 0, so U ′′c (±ac) = w′(2ac). Thus, we can at last write

H ′′(Uc − θc) =
δ′(x+ ac)− δ′(x− ac)

w(0)2
− w′(2ac) [δ(x+ ac) + δ(x− ac)]

w(0)3
. (25)

Computing the inner products in (23) then simply amounts to evaluating the inte-
grals in the sense of distributions. First, we use (9) to note

〈ϕj , ψj〉 =

∫
Ω

ψj(x)2H ′(Uc(x)− θc)dx = γ
[
ψj(ac)

2 + ψj(−ac)2
]

=
2

w(0)
,

for j = o, e, since ψe(±ac) = ψo(ac) = −ψo(−ac) = 1. Furthermore,

〈ϕe, w ∗H ′(Uc − θc)〉 =

∫
Ω

∫
Ω

w(x− y)ψe(x)H ′(Uc(x)− θc)H ′(Uc(y)− θc)dydx

= γ2

∫
Ω

[ ∑
a=±ac

w(x+ a)

]
ψe(x)

[ ∑
a=±ac

δ(x+ a)

]
dx

= γ2 [ψe(ac) + ψe(−ac)] · [w(0) + w(2ac)] =
2

w(0)
, (26)
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where we have utilized ψe(±ac) = 1 and w(2ac) ≡ 0. Finally, we compute the
quadratic terms using the identity (25), starting with

〈ϕo, w ∗
[
H ′′(Uc − θc)ψ2

e

]
〉 =

∫
Ω

∫
Ω

w(x− y)ϕo(x)H ′′(Uc(y)− θc)ψe(y)2dydx

= γ
∑
a=±ac

ψo(a)

∫
Ω

w(a− y)H ′′(Uc(y)− θc)ψe(y)2dy,

(27)

and we note that individual terms under the integral from the sum defining (25)
are∫

Ω

w(−ac − y)δ′(y + ac)ψe(y)2dy = w′(0)ψe(−ac)2 − 2w(0)ψ′e(−ac)ψe(−ac)

= 2w′(2ac),∫
Ω

w(ac − y)δ′(y + ac)ψe(y)2dy = w′(2ac)ψe(−ac)2 − 2w(2ac)ψ
′
e(−ac)ψe(−ac)

= w′(2ac),∫
Ω

w(−ac − y)δ′(y − ac)ψe(y)2dy = w′(−2ac)ψe(ac)
2 − 2w(2ac)ψ

′
e(ac)ψe(ac)

= −w′(2ac),∫
Ω

w(ac − y)δ′(y − ac)ψe(y)2dy = w′(0)ψe(ac)
2 − 2w(0)ψ′e(ac)ψe(ac)

= −2w′(2ac),

for the terms involving the distributional derivative δ′(x − x0), whereas the terms
involving δ(x− x0) are∫

Ω

w(−ac − y)δ(y + ac)ψe(y)2dy = w(0)ψe(−ac)2 = w(0),∫
Ω

w(ac − y)δ(y + ac)ψe(y)2dy = w(2ac)ψe(−ac)2 = 0,∫
Ω

w(−ac − y)δ(y − ac)ψe(y)2dy = w(2ac)ψe(ac)
2 = 0,∫

Ω

w(ac − y)δ(y − ac)ψe(y)2dy = w(0)ψe(ac)
2 = w(0).

Thus, each integral term∫
Ω

w(−ac − y)H ′′(Uc(y)− θc)ψe(y)2dy =
2w′(2ac)

w(0)2
(28)∫

Ω

w(ac − y)H ′′(Uc(y)− θc)ψe(y)2dy =
2w′(2ac)

w(0)2
. (29)

Finally, using the fact that ψo(a) = −ψo(−a) = 1, we find that the two terms in the
sum of (27) cancel and the integral vanishes. Thus, 〈ϕo, w ∗

[
H ′′(Uc − θc)ψ2

e

]
〉 = 0,

so Ao(t) ≡ Āo is constant. On the other hand, computing the quadratic coefficient
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in the equation for Ae, we have

〈ϕe, w ∗
[
H ′′(Uc − θc)ψ2

e

]
〉 =

∫
Ω

∫
Ω

w(x− y)ϕe(x)H ′′(Uc(y)− θc)ψe(y)2dydx

= γ
∑
a=±ac

ψe(a)

∫
Ω

w(a− y)H ′′(Uc(y)− θc)ψe(y)2dy.

(30)

The integrals in (30) are identical to those in (27), so it is straightforward to com-
pute, using (28) and (29), that

〈ϕe, w ∗
[
H ′′(Uc − θc)ψ2

e

]
〉 = γ

[
2w′(2ac)

w(0)2
+

2w′(2ac)

w(0)2

]
=

4w′(2ac)

w(0)3
.

Thus, we can at last compute all the terms in (23), specifying that

dAo
dt

= 0, (31a)

dAe
dτ

= −µ− |w
′(2ac)|
w(0)2

Ae(τ)2, (31b)

where we have noted the fact that w′(2ac) < 0 due to Amari’s conditions (iii) and
(iv) on the weight function w(x) [1].

Equation (31a) reflects the translational symmetry of the original neural field
equation (1), so bumps are neutrally stable to translating perturbations ψo re-
gardless of the bifurcation parameter µ. On the other hand, as the bifurcation
parameter µ is changed, the dynamics of the even eigenmode ψe reflect the rela-
tive distance to the saddle-node bifurcation where bumps are marginally stable to
expanding/contracting perturbations. When µ < 0, there are two fixed points of

equation (31b) at Ae = ±w(0)
√
|µ/w′(2ac)|, corresponding to the pair of emerging

stationary bump solutions which are wider (+) and narrower (−) than the critical
bump Uc. As expected from our analysis in section 2.1, the wide bump is linearly
stable since a linearization of (31b) yields λ+ = −

√
|µ · w′(2ac)|/w(0) < 0, and the

narrow bump is linearly unstable since λ− = +
√
|µ · w′(2ac)|/w(0) > 0. Crossing

through the subcritical saddle-node bifurcation, we find that for µ ≡ 0, there is a
single fixed point Ae ≡ 0, which is marginally stable, since λ0 = 0.

Lastly, note when µ > 0, there are no fixed points of the differential equa-
tion (31b). However, starting at the initial condition Ae(0) = 0 (correspondingly
u(x, 0) = Uc(x)), we find that the dynamics of the amplitude Ae(τ) are strongly
determined by the ghost of the fixed point at Ae = 0 [51]. Note in Fig. 2A that
the transient bump retains a shape much like that of the critical bump for an ap-
preciable period of time before extinguishing. Trajectories of the full system (1)
evolve more slowly when the distance to the bifurcation |θ − θc| = |µ|ε2 is smaller.
Solving for Ae(τ) in this specific case and reverting the the original time coordinate
t = τ/ε, we find

Ae(t) = −
w(0)

√
µ√

|w′(2ac)|
tan

(
ε
√
µ · |w′(2ac)|t/w(0)

)
. (32)

Thus, the residence time tb in the bottleneck, or neighborhood of the ghost of the
fixed point Ae = 0, is given by the amount of time it takes for Ae(t) to traverse to
some set value. Of course, this is dependent on the bifurcation parameter µ. For
illustration, we examine how long it takes until Ae(tb) = −1. By explicitly focusing
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Figure 2. Slow passage of bumps on x ∈ (−∞,∞) when w(x) =

e−x
2 − Ae−x

2/σ2

. (A) Slow passage of a transient bump by the
ghost of the critical solution Uc(x) when θ = θc + ε2 for ε = 0.1
(µ = 1), A = 0.4, and σ = 2. (B) The peak of the bump u(0, t)
slowly decreases in amplitude until breaking down quickly in the
vicinity of Ae(t) = −1. Note the theoretical formula for the am-
plitude (solid line) given by (32) matches the numerical simulation
(dashed line) in the slow passage region. (C) Amplitude of the
even mode Ae(t) slowly decreases with time. The duration of the
bottleneck increases as the distance to the bifurcation is decreased
by reducing ε. (D) Comparison of the theory (solid) given by (33)
to the numerically computed (dots) duration in the bottleneck (the
crossing Ae(tb) = −1).

on the region where |Ae(tb)| ≤ 1, we are roughly restricting to the time interval
during which |u(x, t) − Uc(x)| = O(ε), where we would expect the expansion (15)
to be valid. Using the formula (32), it is straightforward to find that

tb =
w(0)

ε
√
µ · |w′(2ac)|

tan−1

(√
|w′(2ac)|
w(0)

√
µ

)
. (33)

We compare this formula to the results of numerical simulations in Fig. 2B, uti-

lizing the difference of Gaussians weight function w(x) = e−x
2 − Ae−x

2/σ2

on
x ∈ (−∞,∞). Comparisons are made by noting that when Ae(tb) = −1, then
u(x, t) ≈ Uc(x)− εψe(x), so that the peak of the activity profile will be

u(0, tb) ≈ Uc(0)− εψe(0) = W (ac)−W (−ac)−
2w(ac)ε

w(0)
.
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Figure 3. Slow passage of a bump on x ∈ [−π, π] for a cosine
weight function w(x) = cos(x). (A) Amplitude of the even mode
Ae(t) slowly decreases with time. Numerical simulations (dashed

lines) of (1) are compared to the trajectory
√

2(1 − ε tan(εt)) de-
termined by theory (solid lines). (B) The duration of bottleneck
increases as the distance to the bifurcation is decreased. Simula-
tions (dots) are well fit by the theory tb = π/[4ε] (solid line).

Notice in Fig. 2C,D that, as predicted, the time spent in the bottleneck increases as
the amplitude of the small parameter ε is decreased. The attracting impact of the
ghost is stronger when the parameters of the system lie closer to the saddle-node.
For further comparison, we consider the case w(x) = cos(x) in Fig. 3. In this case
the constituent functions ac = π/4, w(0) = 1, and w(2ac) = −1. Furthermore, by
setting µ = 1 the formulas for the amplitude (32) and residence time (33) simplify
considerably to Ae(t) = − tan(εt) and tb = π/[4ε].

2.3. Amplitude equations for smooth nonlinearities. Our nonlinear analysis
in the case of Heaviside nonlinearities f(u) ≡ H(u − θ) made extensive use of the
specific form of the distributional derivatives. Inner products with these functions
lead to dynamical equations focused on a finite number of discrete points in space,
rather than over the spatial continuum x ∈ Ω. Here, we show it is straightforward
to extend this analysis to the case of arbitrary smooth nonlinearities f(u). There
are several detailed analyses of stationary bumps in neural field with smooth firing
rate, showing a similar bifurcation structure to that presented in Fig. 1: a stable
and an unstable branch of bump solutions annihilate in a saddle-node bifurcation
as the threshold of the firing rate function is increased. We refrain from such a
detailed analysis here and refer the reader to these works [14, 18, 35, 37, 41, 52].
Again, defining θ = θc + µε2, ε � 1, so µ determines the distance of θ from the
bifurcation and on which side of θc it lies. Following our previous analysis, we
utilize the ansatz (15) and rescale time τ = ετ . In this case, ψo(x) and ψe(x) will
still be odd and even eigenmodes associated with the linear stability of stationary
bump solutions to (1). At the criticality θ ≡ θc, their associated eigenvalues will be
λo = λe ≡ 0, as in the case of Heaviside firing rates [52]. Expanding (1) in orders of
ε using the ansatz (15) yields a similar amplitude equation to (23) at O(ε2). Again,
we apply solvability conditions to the equation for u2. After canceling odd terms
and isolating the derivatives A′j , we find the amplitudes Aj satisfy the system:
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dAo
dt

=
〈ϕo, w ∗

[
f ′′(Uc)ψ

2
e

]
〉

2〈ϕo, ψo〉
Ae(τ)2, (34a)

dAe
dτ

= −µ 〈ϕe, w ∗ f
′(Uc)〉

〈ϕe, ψe〉
+
〈ϕe, w ∗

[
f ′′(Uc)ψ

2
e

]
〉

2〈ϕe, ψe〉
Ae(τ)2. (34b)

We can derive the coefficients in the system (34) by computing the inner products
therein. To do so, we must choose a specific nonlinearity, such as the sigmoid (2),
and a weight kernel. For illustration, we consider the cosine kernel w(x) = cos(x)
on the ring x ∈ Ω = [−π, π] with periodic boundaries. As shown in previous
studies, the bump solution Uc(x) = Ac cosx while the eigenmodes ψo(x) = sin(x)
and ψe(x) = cos(x) [26,35,52]. Since Lψj ≡ 0 for j = o, e, this means

sin(x) =

∫ π

−π
cos(x− y)f ′(Ac cos(y)) sin(y)dy = sinx

∫ π

−π
sin2(y)f ′(Ac cos y)dy,

where we have used cos(x− y) = cosx cos y + sinx sin y, and

cos(x) =

∫ π

−π
cos(x− y)f ′(Ac cos(y)) cos(y)dy = cosx

∫ π

−π
cos2(y)f ′(Ac cos y)dy,

so that we can write∫ π

−π
sin2(y)f ′(Ac cos y)dy ≡ 1,

∫ π

−π
cos2(y)f ′(Ac cos y)dy ≡ 1. (35)

The identities (35) allow us to compute

〈ϕo, ψo〉 =

∫ π

−π
f ′(Ac cos(y)) sin(y)2dy = 1,

and

〈ϕe, ψe〉 =

∫ π

−π
f ′(Ac sin(y)) cos(y)2dy = 1.

Furthermore,

〈ϕo, w ∗
[
f ′′(Uc)ψ

2
e

]
〉 =

∫ π

−π
f ′′(Uc(y))ψe(y)2

∫ π

−π
cos(x− y)f ′(Ac cos(y)) sin(y)dxdy

=

∫ π

−π
f ′′(Uc(y)) cos(y)2 sin(y)dy = 0, (36)

where the last equality holds due to the integrand being odd. Thus, the equation
(34a) reduces to A′o(t) = 0, so Ao(t) ≡ Āo. Now, we can calculate the coefficients of
the Ae amplitude equation. First by utilizing the fact that

∫ π
−π w(x− y)ϕe(y)dy =

ψe(x), we can compute

〈ϕe, w ∗ f ′(Uc)〉 =

∫ π

−π
f ′(Ac cos(x)) cos(x)dx = 〈ϕe, 1〉. (37)

Lastly, we can simplify the integrals in the quadratic term by again making use of
the identity

∫ π
−π w(x− y)ϕe(y)dy = ψe(x), so

〈ϕe, w ∗
[
f ′′(Uc)ψ

2
e

]
〉 =

∫ π

−π
f ′′(Ac cos(x)) cos3(x)dx = 〈f ′′(Uc), ψ3

e〉, (38)

so we can simplify (34b) to

dAe
dτ

= −µ〈ϕe, 1〉+
1

2
〈f ′′(Uc), ψ3

e〉Ae(τ)2. (39)
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3. Stochastic neural fields near the saddle-node. We now study the impact of
stochastic forcing near the saddle-node bifurcation of bumps. Our analysis focuses
on the spatially extended Langevin equation with additive noise (5). Guided by our
analysis of the deterministic system (1), we will utilize an expansion in the small
parameter ε, which determines the distance of the system from the saddle-node.
To formally derive stochastic amplitude equations, we must specify the scaling of
the noise amplitude ε as it relates to the small parameter ε, as this will determine
the level of the perturbation hierarchy wherein the noise term dW will appear. We
opt for the scaling ε = ε5/2, as this introduces a nontrivial interaction between the
nonlinear amplitude equation for Ae and the noise.

It is important to note that our derivations are only carried up to O(ε2) in the
hierarchy of the regular perturbation expansion in ε. Were we to continue this
expansion further, we would likely find that the ε = ε5/2 noise term does indeed
shift the location of the bifurcation at higher order as in [2, 30]. Thus, as the
amplitude of noise is increased, the validity of the expansion we derive here will
begin to break down, since the terms beyond O(ε2) will have a more substantial
effect on the dynamics. Hence, the results we derive in this section are valid for small
noise levels only. An understanding of the effects of larger noise terms, employing
scalings ε = εp with p < 5/2, warrants further study which is beyond the scope of
our current work.

3.1. Stochastic amplitude equation for bumps. Motivated by our quantitative
analysis in the noise-free case, we rescale time in the stochastic term of (5) using
τ = εt, so

du(x, t) =

[
−u(x, t) +

∫
Ω

w(x− y)f(u(y, t))dy

]
dt+ ε2dŴ (x, τ), (40)

where dŴ (x, τ) :=
√
εdW (x, ε−1τ) is a rescaled version of the Wiener process dW

that is independent of ε [22]. We then apply the ansatz (15) once again and take
Heaviside firing rate functions (3), thus finding (16) at O(ε). The O(ε) equation is
satisfied due to the fact that ψe ∈ N (L), where L is the linear operator given by
(18). Finally, proceeding to O(ε2), we find

L [Aoψo + u2] dt =dAeψe + dAoψo + µ

∫
Ω

w(x− y)H ′(Uc(y)− θc)dydt (41)

− A2
e

2

∫
Ω

w(x− y)H ′′(Uc(y)− θc)ψe(y)2dydt+ dŴ .

As before, the ψo terms on the left vanish since Lψo ≡ 0, and we ensure a bounded
solution to (41) exists by requiring the inhomogeneous part is orthogonal to ϕo, ϕe ∈
N (L∗), where L∗ is the adjoint linear operator given by (20). Taking inner products
yields

0 = 〈ϕj ,dAe(τ)ψe(x) + dAo(t)ψo(x) + µw ∗H ′(Uc − θc)dt (42)

−Ae(τ)2

2
w ∗

[
H ′′(Uc − θc)ψ2

e

]
dt+ dŴ

〉
,

for j = o, e. Isolating temporal derivatives, we find the amplitudes Ao(t) and Ae(τ)
obey the following pair of nonlinear stochastic differential equations
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dAo(t) =
〈ϕo, w ∗

[
H ′′(Uc − θc)ψ2

e

]
〉

2〈ϕo, ψo〉
Ae(τ)2dt− 〈ϕo,dŴ 〉

〈ϕo, ψo〉
(43a)

dAe(τ) =− µ 〈ϕe, w ∗ [H ′(Uc − θc)]〉
〈ϕe, ψe〉

+
〈ϕe, w ∗

[
H ′′(Uc − θc)ψ2

e

]
〉

2〈ϕe, ψe〉
Ae(τ)2 (43b)

− 〈ϕe,dŴ 〉
〈ϕe, ψe〉

.

Utilizing the formulas for H ′(Uc − θc) (9) and H ′′(Uc − θc) (24) we derived in the
previous section, we can simplify the expressions in (43). Additionally, we make use
of the fact that

dŴo(τ) := −〈ϕo,dŴ 〉
〈ϕo, ψo〉

= −1

2

[
ψo(−ac)dŴ (−ac, τ) + ψo(ac)dŴ (ac, τ)

]
=

dŴ (−ac, τ)− dŴ (ac, τ)

2
,

dŴe(τ) := −〈ϕe,dŴ 〉
〈ϕe, ψe〉

= −1

2

[
ψe(−ac)dŴ (−ac, τ) + ψe(ac)dŴ (ac, τ)

]
= −dŴ (ac, τ) + dŴ (−ac, τ)

2
.

Noting that 〈dŴ (x, τ)dŴ (y, τ ′)〉 = C(x − y)δ(τ − τ ′)dτdτ ′, it is straightforward

to compute the variances 〈Ŵo(τ)2〉 = Doτ = (C(0) − C(2ac))τ/2 and 〈Ŵe(τ)2〉 =
Deτ = (C(0) + C(2ac))τ/2. Clearly, for spatially flat correlation functions C(x) ≡
C̄, noise will have no impact on the odd amplitude Ao(t) since Do ≡ 0. In general,
(43) becomes

dAo(t) =
√
εdWo(t), (44a)

dAe(τ) = −µdτ − |w
′(2ac)|
w(0)2

Ae(τ)2dτ + dŴe(τ), (44b)

where we have converted the noise term in (44a) back to the original time coordinate:

dWo(t) = dŴo(εt)/
√
ε [22]. Note that in equation (44a), we essentially recover the

diffusion approximation of the translating mode of the bump 〈Ao(t)2〉 = εDot,
which is analyzed in [35]. Equation (44b) is a stochastic amplitude equation, so
that the noise term dWe is projected onto the direction of the neutrally stable even
perturbation ψe.

3.2. Metastability and bump extinction. To analyze the one-dimensional non-

linear SDE (44b), we further rescale the equation by setting A := |w′(2ac)|
w(0)2 Ae:

dA(τ) = −
[
m+A(τ)2

]
dt+ dŴ(τ), (45)

where m := |w′(2ac)|
w(0)2 µ. Thus, the effective diffusion coefficient of the rescaled noise

term is 〈Ŵ(τ)2〉 = Dτ = w′(2ac)
2(C(0) + C(2ac))τ/

[
2w(0)4

]
. Note the rescaled

equation (45) has an effective potential [42, 51]:

V (A) =
A3

3
+mA, (46)

the derivative V ′(A) of which yields the deterministic part of the right hand side.
As the bifurcation parameter m is varied, the potential exhibits a minimum (at
A =

√
m) and a maximum (at A = −

√
m) when m < 0, a saddle point (at A = 0)
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Figure 4. Noise-induced extinction of bumps in the stochastic
neural field (5) on x ∈ [−π, π] for a cosine weight w(x) = cos(x).
(A) A single realization of the equation (5) with the initial con-

dition u(x, 0) = Uc(x) =
√

2 cos(x) leads to a stochastically wan-
dering bump that eventually crosses a separatrix at t ≈ 70, lead-
ing to extinction. The noise-free system possesses a stable bump
solution since µ = −0.2 < 0; ε = 0.4. (B) The large devia-
tion can easily be detected by tracking maxxu(x, t), which departs
the bottleneck of the noise-free system, whose lower bound lies at
maxx [Uc(x)− εψe(0)] =

√
2(1− ε).

when m = 0, and no extrema for m > 0 (Fig. 5A). For all parameter values m, the
state of the stochastic system (45) will eventually escape to the limit A → −∞ as
τ →∞. Such trajectories were observed in the noise-free system in the case m > 0,
as demonstrated in Fig. 2 of the previous section. However, we show here that
noise qualitatively alters the dynamics of the system, so its state will not remain in
the vicinity of the stable attractor (at A =

√
m) when m < 0.

We now study the problem of bump extinction using the stochastic amplitude
equation (45) in the case m < 0. We show that the noise decreases the av-
erage amount of time until an extinction event will occur. For clarity, we as-
sume the initial condition A(0) = 0 (correspondingly u(x, 0) = Uc(x)). We take
the bottleneck to be the region Ae ∈ [−1, 1], which in the rescaled variable is
A ∈ [−|w′(2ac)|/w(0)2, |w′(2ac)|/w(0)2]. The residence time τb in the bottleneck is
given by the amount of time it takes for A to escape this region. We can determine
the statistics of τb by considering it as a first passage time problem.

Let p(A, τ) be the probability density for the stochastic process A(τ) given the
initial condition A(0) = A0. Then the corresponding Fokker-Planck equation is
given

∂p

∂τ
=
∂
[
(m+A2)p(A, τ)

]
∂A

+
D

2

∂2p(A, τ)

∂A2
≡ −∂J(A, τ)

∂A
, (47)

where

J(A, τ) = −D
2

∂p(A, τ)

∂A
− (m+A2)p(A, τ), (48)

and p(A, 0) = δ(A − A0). We focus on the three different scenarios discussed
above. First, if m < 0, there there is a single stable fixed point of the deterministic
equation Ȧ = −m−A2 at A =

√
m and a single unstable fixed point at A = −

√
m.
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Figure 5. (A) Potential function (46) associated with the sto-
chastic amplitude equation (45) has zero (m > 0); one (m ≡ 0); or

two (m < 0) extrema - associated with equilibria of Ȧ = −m−A2.
When m < 0, crossing the saddle point requires stochastic forc-
ing. (B) Mean time t̄b until bump extinction is approximated by a
mean first passage time problem of the stochastic amplitude equa-
tion (45). Numerical simulations (circles) of the full system (5) are
well approximated by this theory (line) given by (51) for ε = 0.6.

The basin of attraction of A =
√
m is given by the interval (−

√
m,∞). When

D > 0, fluctuations can induce rare transitions on exponentially long timescales
whereby A(τ) crosses the point A = −

√
m, leaving the basin of attraction. For the

non-generic case m = 0, the timescale of departure scales algebraically [50]. When

m > 0, noise simply modulates the flows of the deterministic equation Ȧ = −m−A2,
leading to an average speed-up in the departure from the bottleneck. In general,
we consider solving the first passage time problem as an escape from the domain

(−α,∞) where α := |w′(2ac)|
w(0)2 (equivalently where Ae = −1) [22]. To do so, we

impose an absorbing boundary condition at −α: p(−α, τ) = 0. Now let T (A)
denote the stochastic first passage time for which (45) first reaches the point −α,
given it started at A ∈ (−α,∞). The first passage time distribution is related to
the survival probability that the system has not yet reached −α:

S(τ) ≡
∫ ∞
−α

p(A, τ)dA,

which is S(τ) := Pr(τ > T (A)), so the first passage time density is [22]

F (τ) = −dS

dτ
= −

∫ ∞
−α

∂p

∂τ
(A, τ)dA.

Substituting for the expression for ∂p/∂τ using the Fokker-Planck equation (47)
and the formula for the flux (48) shows

F (τ) =

∫ ∞
−α

∂J(A, τ)

∂A
dA = −J(−α, τ),

where we have utilized the fact that limA→∞ J(A, τ) = 0. Thus, the first pas-
sage time density F (τ) can be interpreted as the total probability flux through
the absorbing boundary at A = −α. To calculate the mean first passage time
T (A) := 〈T (A)〉, we use standard analysis to associate T (A) with the solution of
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the backward equation [22]:

−(m+A2)
dT
dA

+
D

2

d2T
dA2

= −1, (49)

with the boundary conditions T (−α) = 0 and T ′(∞) = 0. Solving (49) yields the
closed form solution

T (A) =
2

D

∫ A

−α

∫ ∞
y

φ(z)

φ(y)
dzdy, (50)

where

φ(A) = exp

[
2 [V (−α)− V (A)]

D

]
,

and V (x) is the potential function (46). Explicit expressions for the integral (50)
can be found in some special cases [42, 50]. For our purposes, we simply integrate
(50) numerically to generate theoretical relationships between the mean first passage
time and model parameters. For comparison, we focus on the case the weight func-
tion w(x) = cos(x) and the correlations C(x) = cos(x), so that Uc(x) =

√
2 cos(x),

ac = π
4 , w(0) = 1, w′(2ac) = −1, C(0) = 1, and C(2ac) = 0. Therefore, α = 1,

m = µ, D = 1/2. This allows us to write the formula (50) at A = 0 as

T (0) = 4

∫ 0

−1

∫ ∞
y

exp

[
4

(
z3 − y3

3
+ µ(z − y)

)]
dzdy. (51)

Lastly, note that by rescaling time t = ετ , we have that the mean first passage time
in units of t will be t̄b = T (0)/ε. We compare our theory (51) with the results of
numerical simulations of the full stochastic neural field (5) in Fig. 5B. Note there is
some discrepancy between our numerical simulations and theory as m is decreased.
One of the primary reasons for this deviation is likely because of the moderate level
of noise (ε = 0.6) used in comparison to the small parameter assumption (ε � 1)
using in the theory we have developed. Any minor mismatch will be exacerbated by
the fact that mean first passage times for escape problems depend exponentially on
parameters like noise amplitude and well depth, as in (51). Nonetheless, the theory
does provide a rough estimate of the mean first passage times for smaller values of
the parameter m.

4. Discussion. We have developed a weakly nonlinear analysis for saddle-node bi-
furcations of bumps in deterministic and stochastic neural field equations. While
most of our analysis has focused upon Heaviside firing rate functions, we have also
demonstrated the techniques can easily be extended to arbitrary smooth nonlineari-
ties. In the vicinity of the saddle-node, the dynamics of bump expansion/contraction
can be described by a quadratic amplitude equation. For deterministic neural fields,
this low dimensional approximation can be used to approximate the trajectory and
lifetime of bumps as they slowly extinguish. To do so, we focused on the initial
time epoch in the bottleneck surrounding the ghost of the critical bump Uc(x). In
stochastic neural fields with appropriate noise scaling, a stochastic amplitude equa-
tion for the even mode of the bump can be derived. Importantly, we must choose
the noise amplitude to scale as ε = ε5/2, in order for the noise term to appear in the
stochastic version of the quadratic amplitude equation. We then cast the lifetime
of the bump in terms of a mean first passage time problem of the reduced system,
which is valid for the noise scaling we have chosen.
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Our work extends recent studies that have derived low-dimensional nonlinear
approximations of neural field pattern dynamics in the vicinity of bifurcations
[5, 7, 20, 30, 35, 36]. As in our work, most of these previous studies derived ap-
proximations where the location of the bifurcation was unaffected by noise terms.
On the other hand, Hutt et al. showed that noise can in fact shift the position of
Turing bifurcations in neural fields, and the amplitude of the bifurcation threshold
shift was proportional to the noise variance [30]. Were we to have carried the hier-
archy out to higher order, we would have found such a shift in the case we studied.
Note, it was necessary in our work to apply a specific noise scaling (ε5/2), as com-
pared to the distance from criticality (ε2), in order for the noise to simply appear
as a modification of the even mode amplitude equation. Were we to have selected
noise of larger amplitude, this could have induced bifurcation shifts at lower order,
analogous to that found in [30].

Another potential future direction would be to consider the impact of axonal
propagation delays [29] on the dynamics close to the saddle-node. As demonstrated
in this work, the neural field (1) is quite sensitive to small perturbations near critical-
ity, so delays may alter the duration of the bottleneck or even shift the saddle-node
bifurcation point. In previous work [36], we derived amplitude equations describ-
ing propagation-generating drift bifurcations that arise when linear adaptation is
incorporated into (1). We anticipate that similar analyses might be performed on
networks with synaptic depression [33], although piecewise smooth methods may be
necessary in the case of Heaviside firing rates [34]. Lastly, we note there have been
recent efforts to systematically derive macroscopic descriptions of neural activity
from recurrently coupled spiking networks [9, 39, 43]. Such alternative descriptions
can also capture the form of steady state solutions like stationary bumps [39, 46].
Bumps in these models do exhibit saddle-node bifurcations similar to those observed
in the Amari model [1]. Thus, extending our methods to such models would re-
quire knowledge of the stationary equations defining bump solutions. Perturbation
analysis along with solvability conditions could then yield the coefficients of the
amplitude equations near the saddle-node.

REFERENCES

[1] S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybern.,
27 (1977), 77–87.

[2] D. Blömker, M. Hairer and G. Pavliotis, Multiscale analysis for stochastic partial differential

equations with quadratic nonlinearities, Nonlinearity, 20 (2007), 1721–1744.

[3] M. Bode, Front-bifurcations in reaction-diffusion systems with inhomogeneous parameter dis-
tributions, Physica D , 106 (1997), 270–286.

[4] C. A. Brackley and M. S. Turner, Random fluctuations of the firing rate function in a con-
tinuum neural field model, Phys. Rev. E , 75 (2007), 041913.

[5] P. C. Bressloff and S. E. Folias, Front bifurcations in an excitatory neural network, SIAM J

Appl. Math., 65 (2004), 131–151.
[6] P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields, J Phys. A: Math. Theor.,

45 (2012), 033001, 109pp.

[7] P. C. Bressloff and Z. P. Kilpatrick, Nonlinear Langevin equations for wandering patterns in
stochastic neural fields, SIAM J. Appl. Dyn. Syst., 14 (2015), 305–334.

[8] P. C. Bressloff and M. A. Webber, Front propagation in stochastic neural fields, SIAM J.

Appl. Dyn. Syst., 11 (2012), 708–740.
[9] M. A. Buice and C. C. Chow, Dynamic finite size effects in spiking neural networks, PLoS

Comput. Biol , 9 (2013), e1002872, 21pp.

http://www.ams.org/mathscinet-getitem?mr=MR0681526&return=pdf
http://dx.doi.org/10.1007/BF00337259
http://www.ams.org/mathscinet-getitem?mr=MR2335080&return=pdf
http://dx.doi.org/10.1088/0951-7715/20/7/009
http://dx.doi.org/10.1088/0951-7715/20/7/009
http://www.ams.org/mathscinet-getitem?mr=MR1462315&return=pdf
http://dx.doi.org/10.1016/S0167-2789(97)00050-X
http://dx.doi.org/10.1016/S0167-2789(97)00050-X
http://dx.doi.org/10.1103/PhysRevE.75.041913
http://dx.doi.org/10.1103/PhysRevE.75.041913
http://www.ams.org/mathscinet-getitem?mr=MR2112392&return=pdf
http://dx.doi.org/10.1137/S0036139903434481
http://www.ams.org/mathscinet-getitem?mr=MR2871421&return=pdf
http://dx.doi.org/10.1088/1751-8113/45/3/033001
http://www.ams.org/mathscinet-getitem?mr=MR3317377&return=pdf
http://dx.doi.org/10.1137/140990371
http://dx.doi.org/10.1137/140990371
http://www.ams.org/mathscinet-getitem?mr=MR2967462&return=pdf
http://dx.doi.org/10.1137/110851031
http://www.ams.org/mathscinet-getitem?mr=MR3032729&return=pdf
http://dx.doi.org/10.1371/journal.pcbi.1002872


2230 ZACHARY P. KILPATRICK

[10] A. Compte, N. Brunel, P. S. Goldman-Rakic and X. J. Wang, Synaptic mechanisms and
network dynamics underlying spatial working memory in a cortical network model, Cereb.

Cortex , 10 (2000), 910–923.

[11] S. Coombes, Waves, bumps, and patterns in neural field theories, Biol. Cybern., 93 (2005),
91–108.

[12] S. Coombes and M. R. Owen, Bumps, breathers, and waves in a neural network with spike
frequency adaptation, Phys. Rev. Lett., 94 (2005), 148102.

[13] S. Coombes, H. Schmidt and I. Bojak, Interface dynamics in planar neural field models, J

Math. Neurosci , 2 (2012), Art. 9, 27 pp.
[14] S. Coombes and H. Schmidt, Neural fields with sigmoidal firing rates: Approximate solutions,

Discrete Contin. Dyn. Syst., 28 (2010), 1369–1379.

[15] S. Coombes, H. Schmidt, C. R. Laing, N. Svanstedt and J. A. Wyller, Waves in random neural
media, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 2951–2970.

[16] R. Curtu and B. Ermentrout, Oscillations in a refractory neural net, J Math. Biol., 43 (2001),

81–100.
[17] B. Ermentrout, Neural networks as spatio-temporal pattern-forming systems, Rep. Prog.

Phys., 61 (1998), 353–430.

[18] O. Faugeras, R. Veltz and F. Grimbert, Persistent neural states: Stationary localized activity
patterns in the nonlinear continuous n-population, q-dimensional neural networks, Neural

Comput., 21 (2009), 147–187.
[19] S. E. Folias and P. C. Bressloff, Breathing pulses in an excitatory neural network, SIAM J

Appl. Dyn. Syst., 3 (2004), 378–407.

[20] S. E. Folias, Nonlinear analysis of breathing pulses in a synaptically coupled neural network,
SIAM J Appl. Dyn. Syst., 10 (2011), 744–787.

[21] S. Funahashi, C. J. Bruce and P. S. Goldman-Rakic, Mnemonic coding of visual space in the

monkey’s dorsolateral prefrontal cortex, J Neurophysiol., 61 (1989), 331–349.
[22] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural

Sciences, 3rd edition, Springer-Verlag, Berlin, 2004.

[23] P. S. Goldman-Rakic, Cellular basis of working memory, Neuron, 14 (1995), 477–485.
[24] Y. Guo and C. Chow, Existence and stability of standing pulses in neural networks: I. Exis-

tence, SIAM J Appl. Dyn. Syst., 4 (2005), 217–248.

[25] B. S. Gutkin, C. R. Laing, C. L. Colby, C. C. Chow and G. B. Ermentrout, Turning on and
off with excitation: The role of spike-timing asynchrony and synchrony in sustained neural

activity, J Comput. Neurosci., 11 (2001), 121–134.
[26] D. Hansel and H. Sompolinsky, Modeling feature selectivity in local cortical circuits, in Meth-

ods in neuronal modeling: From ions to networks (eds. C. Koch and I. Segev), Cambridge:

MIT, 1998, Chapter 13, 499–567.
[27] X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing, S. J. Schiff and J.-Y. Wu, Spiral waves

in disinhibited mammalian neocortex, J Neurosci., 24 (2004), 9897–9902.
[28] A. Hutt and F. M. Atay, Analysis of nonlocal neural fields for both general and gamma-

distributed connectivities, Physica D , 203 (2005), 30–54.

[29] A. Hutt, M. Bestehorn and T. Wennekers, Pattern formation in intracortical neuronal fields,

Network , 14 (2003), 351–368.
[30] A. Hutt, A. Longtin and L. Schimansky-Geier, Additive noise-induced turing transitions in

spatial systems with application to neural fields and the Swift–Hohenberg equation, Physica
D , 237 (2008), 755–773.

[31] A. Hutt and N. P. Rougier, Activity spread and breathers induced by finite transmission

speeds in two-dimensional neural fields, Phys. Rev. E , 82 (2010), R055701.

[32] J. P. Keener, Principles of Applied Mathematics, Perseus Books, Advanced Book Program,
Cambridge, MA, 2000.

[33] Z. P. Kilpatrick and P. C. Bressloff, Effects of synaptic depression and adaptation on spa-
tiotemporal dynamics of an excitatory neuronal network, Physica D , 239 (2010), 547–560.

[34] Z. P. Kilpatrick and P. C. Bressloff, Stability of bumps in piecewise smooth neural fields with

nonlinear adaptation, Physica D , 239 (2010), 1048–1060.
[35] Z. P. Kilpatrick and B. Ermentrout, Wandering bumps in stochastic neural fields, SIAM J.

Appl. Dyn. Syst., 12 (2013), 61–94.

[36] Z. P. Kilpatrick and G. Faye, Pulse bifurcations in stochastic neural fields, SIAM J Appl.
Dyn. Syst., 13 (2014), 830–860.

http://dx.doi.org/10.1093/cercor/10.9.910
http://dx.doi.org/10.1093/cercor/10.9.910
http://www.ams.org/mathscinet-getitem?mr=MR2212153&return=pdf
http://dx.doi.org/10.1007/s00422-005-0574-y
http://dx.doi.org/10.1103/PhysRevLett.94.148102
http://dx.doi.org/10.1103/PhysRevLett.94.148102
http://www.ams.org/mathscinet-getitem?mr=MR2990960&return=pdf
http://dx.doi.org/10.1186/2190-8567-2-9
http://www.ams.org/mathscinet-getitem?mr=MR2679715&return=pdf
http://dx.doi.org/10.3934/dcds.2010.28.1369
http://www.ams.org/mathscinet-getitem?mr=MR2903995&return=pdf
http://dx.doi.org/10.3934/dcds.2012.32.2951
http://dx.doi.org/10.3934/dcds.2012.32.2951
http://www.ams.org/mathscinet-getitem?mr=MR1854003&return=pdf
http://dx.doi.org/10.1007/s002850100089
http://dx.doi.org/10.1088/0034-4885/61/4/002
http://www.ams.org/mathscinet-getitem?mr=MR2464844&return=pdf
http://dx.doi.org/10.1162/neco.2009.12-07-660
http://dx.doi.org/10.1162/neco.2009.12-07-660
http://www.ams.org/mathscinet-getitem?mr=MR2114738&return=pdf
http://dx.doi.org/10.1137/030602629
http://www.ams.org/mathscinet-getitem?mr=MR2821253&return=pdf
http://dx.doi.org/10.1137/100815852
http://www.ams.org/mathscinet-getitem?mr=MR2053476&return=pdf
http://dx.doi.org/10.1007/978-3-662-05389-8
http://dx.doi.org/10.1007/978-3-662-05389-8
http://dx.doi.org/10.1016/0896-6273(95)90304-6
http://www.ams.org/mathscinet-getitem?mr=MR2173528&return=pdf
http://dx.doi.org/10.1137/040609471
http://dx.doi.org/10.1137/040609471
http://dx.doi.org/10.1523/JNEUROSCI.2705-04.2004
http://dx.doi.org/10.1523/JNEUROSCI.2705-04.2004
http://www.ams.org/mathscinet-getitem?mr=MR2135132&return=pdf
http://dx.doi.org/10.1016/j.physd.2005.03.002
http://dx.doi.org/10.1016/j.physd.2005.03.002
http://dx.doi.org/10.1088/0954-898X_14_2_310
http://www.ams.org/mathscinet-getitem?mr=MR2452166&return=pdf
http://dx.doi.org/10.1016/j.physd.2007.10.013
http://dx.doi.org/10.1016/j.physd.2007.10.013
http://dx.doi.org/10.1103/PhysRevE.82.055701
http://dx.doi.org/10.1103/PhysRevE.82.055701
http://www.ams.org/mathscinet-getitem?mr=MR1741517&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2595821&return=pdf
http://dx.doi.org/10.1016/j.physd.2009.06.003
http://dx.doi.org/10.1016/j.physd.2009.06.003
http://www.ams.org/mathscinet-getitem?mr=MR2639623&return=pdf
http://dx.doi.org/10.1016/j.physd.2010.02.016
http://dx.doi.org/10.1016/j.physd.2010.02.016
http://www.ams.org/mathscinet-getitem?mr=MR3032854&return=pdf
http://dx.doi.org/10.1137/120877106
http://www.ams.org/mathscinet-getitem?mr=MR3209713&return=pdf
http://dx.doi.org/10.1137/140951369


GHOSTS OF BUMP ATTRACTORS 2231

[37] K. Kishimoto and S. Amari, Existence and stability of local excitations in homogeneous neural
fields, J Math. Biol., 7 (1979), 303–318.

[38] C. R. Laing, Spiral waves in nonlocal equations, SIAM J Appl. Dyn. Syst., 4 (2005), 588–606.

[39] C. R. Laing, Derivation of a neural field model from a network of theta neurons, Phys. Rev.
E , 90 (2014), 010901.

[40] C. R. Laing and A. Longtin, Noise-induced stabilization of bumps in systems with long-range
spatial coupling, Physica D , 160 (2001), 149–172.

[41] C. R. Laing, W. C. Troy, B. Gutkin and G. B. Ermentrout, Multiple bumps in a neuronal

model of working memory, SIAM J Appl. Math., 63 (2002), 62–97.
[42] B. Lindner, A. Longtin and A. Bulsara, Analytic expressions for rate and cv of a type i neuron

driven by white gaussian noise, Neural Comput., 15 (2003), 1761–1788.
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