ON 1. WAVELET BASED APPROACH TO
NUMERICAL SOLUTION OF NONLINEAR
PARTIAL DIFFERENTIAL EQUATIONS
AND
II. NONLINEAR WAVES IN FULLY DISCRETE
DYNAMICAL SYSTEMS

by
JAMES MATTHEW KEISER
BS, Clarkson University, 1988
MS, Clarkson University, 1989

MS, University of Colorado at Boulder, 1994

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Program in Applied Mathematics

1995

This thesis for the Doctor of Philosophy degree by
James Matthew Keiser
has been approved for the
Program in
Applied Mathematics

by

Gregory Beylkin

Mark J. Ablowitz

William L. Briggs

James H. Curry

Harvey Segur

Date

iii

Keiser, James Matthew (Ph. D., Applied Mathematics)

On 1. Wavelet Based Approach to Numerical Solution of Nonlinear Partial
Differential Equations
and
II. Nonlinear Waves in Fully Discrete Dynamical Systems

Thesis directed by Professor Gregory Beylkin and Professor Mark J. Ablowitz

The first part of this work involves the numerical solution of nonlinear
partial differential equations of the form u; = Lu + N f(u) where £ and N are
linear differential operators and f(u) is a nonlinear function. The approach is to
project the solution « and the operators £ and A into a wavelet basis. Vanishing
moments of the basis functions permit a sparse representation of the solution
and operators. Using these sparse representations fast, adaptive algorithms are
developed that may be used to solve the evolution equations. These algorithms
apply operators to functions and evaluate nonlinear functions. For a wavelet
representation of u that contains Ny significant coefficients, the algorithms up-
date the solution using O(Ny) operations. The approach is applied to a number
of examples and numerical results are given.

The second part of this work is concerned with the nonlinear wave
propagation associated with certain nonlinear partial-difference equations having
their dependent variables in finite fields. Solutions of such equations exhibit
behavior which are discrete analogues of continuous phenomena, i.e. solitons and
their elastic interactions. The main result is a time-reversible and multi-state
generalization of an irreversible two-state model previously introduced. A new
rule for explicitly constructing special periodic solutions of these finite-difference
equations for the reversible k-state rules is given. Detailed consideration of the

reversible aspects of these automata are discussed.

My life is a sequence of zeros and ones.

Sometimes it’s a zero, sometimes it’s a one.

CONTENTS

CHAPTER
1 GENERAL INTRODUCTION
2 WAVELET BASED SOLUTIONS OF NONLINEAR PARTTAL DIF-
FERENTIAL EQUATIONS o oo
2.1 The Semigroup Approach and Quadratures
2.1.1 The Semigroup Approach
2.1.2 Quadratures oo
2.2 Wavelet Representations of Operator Functions
2.2.1 The Non-Standard Form of Operator Functions
2.2.2 Vanishing Moments of the B/ Blocks
2.2.3 Adaptive Calculations with the Non-Standard Form
2.3 Evaluating Functions in Wavelet Bases
2.3.1 Adaptive Calculation of u?
2.3.2 Notes on the Adaptive Calculation of General f(u) . . .
2.4 Results of Numerical Experiments
2.4.1 The Heat Equation
2.4.2 Burgers’ Equation
2.4.3 The Forced Heat Equation
2.5 Conclusionso o e

2.5.1 Future Directions

3 FULLY DISCRETE NONLINEAR DYNAMICAL SYSTEMS

12
12
13
17
17
21
24
30
34
40
44
46
54
72
75
78
80

vi

3.1 Cellular and Filter Automata 82

3.2 The Parity Rule Filter Automaton and the Fast Rule Theorem 83

3.2.1 The Parity Rule Filter Automaton 84

3.2.2 The Fast Rule Theorem 91

3.3 Multi-State Generalizations, 98

3.3.1 Multi-State, Time-Irreversible Rules 98

3.3.2 Multi-State, Time-Reversible Rules 102

3.4 Construction of Periodic Particles 111

3.4.1 Particles Supported by the 2-State Irreversible Rule . . 111

3.4.2 Construction of Multistate Periodic Particles 121

3.5 Discrete Propagation of Waves through Layered Media 123

3.6 Conclusiono 129

BIBLIOGRAPHY e 130
APPENDIX

A PRELIMINARIES AND CONVENTIONS OF WAVELET ANALYSIS 135

A.1 Multiresolution Analysis 135
A.2 Representation of Functions in Wavelet Bases 136
A.3 The Standard and Non-Standard Form of Operators 141
A.4 The Non-Standard Form of Differential Operators 152

B DERIVATION OF QUADRATURE APPROXIMATIONS 155
B.1 Derivation of Approximation-m=1 155
B.1.1 Mathematica Programs form=1 157

B.2 Derivation of Approximation —-m =2 162
B.2.1 Mathematica Programs form=2 167

C PSEUDOCODE LISTINGS i 174

C.1 Pseudocode for Multiplying Operators and Functions 174

vii

C.2 Pseudocode for Computing the Pointwise Square of a Function 175

C.3 Sparse Data Structures. 177

CHAPTER 1

GENERAL INTRODUCTION

This Thesis discusses two distinct topics: wavelet-based solutions of
nonlinear partial differential equations, and nonlinear discrete dynamical sys-
tems.

In Chapter 2 fast, adaptive numerical solution of initial boundary value

problems of the form

ur = Lu+ N f(u) (1.0.1)

with
u(z,0) = ugp(z) 0<z<1 (1.0.2)
w(0,8) =u(l,t) 0<t<T, (1.0.3)

is considered where the operators £ and N are independent of ¢ and the function
f(u) is typically nonlinear. Such equations may have solutions possessing either
smooth or shock-like behavior or both. Examples of such evolution equations
include the diffusion (or heat) equation, reaction-diffusion equations (which have
solutions that may blow-up), and equations which model both stationary and
moving shocks (e.g. Burgers’ equation). Although multi-dimensional problems
are not specifically address in this work, it should be noted that the Navier-
Stokes equations may also be written in the form (1.0.1), see e.g. [40].

The new approach described in Chapter 2 uses expansions of functions

and operators in wavelet bases, which allows one to combine some of the desirable

features found in finite-difference methods, spectral methods and front-tracking
or adaptive grid methods into a collection of efficient, generic algorithms. These
algorithms take advantage of the fact that wavelet expansions may be viewed as
a localized Fourier analysis with multiresolution structure that is automatically
adaptive to both smooth and shock-like behavior of the solution of (1.0.1). In
smooth regions few wavelet coefficients are needed and in singular regions large
variations in the function require more wavelet coefficients. The theoretical
analysis of such functions by wavelet methods is well-understood [42, 53, 54].
However, the use of wavelet expansions of functions and operators for numerical
purposes requires the development of new algorithms, which are introduced in
this Thesis.

Chapter 2 is outlined as follows. We begin with a discussion of the
background of and motivation for our studies. We then reformulate the partial
differential equation (1.0.1) as a nonlinear integral equation via the semigroup
method and develop a method for approximating the integrals to an arbitrary
order of accuracy. We continue with the development of two new fundamental
algorithms required for the numerical solution of the nonlinear integral equation.
In particular we develop fast, adaptive algorithms for (1) multiplying operators
and functions, and (2) computing nonlinear functions. Chapter 2 concludes with
several numerical examples. We note that our developments use expansions of
functions and operators in wavelet bases, and that Appendix A provides a review

of the background material used in our approach.

In Chapter 3 we discuss nonlinear fully discrete dynamical systems ex-

pressed in terms of nonlinear finite-difference equations having state variables

taken from finite fields. We will refer to this class of nonlinear discrete dynam-
ical systems as cellular automata. Cellular automata have been used to model
fluid flows including the Navier-Stokes equations (see e.g. [4]-[7]) and Burgers’
equation (see e.g. [8] and [9]). Other physical phenomena modeled by cellular au-
tomata include reaction-diffusion, biological and chemical-reactive systems (see
e.g. [2, 3]).

In Chapter 3 we investigate a particular cellular automaton known as
the Parity Rule Filter Automata (PRFA), [14]. This automaton is of interest be-
cause given localized initial data, subsequent evolution of the automaton yields
a remarkable number and variety of stable, coherent structures or ‘particles’.
Moreover, a number of these particles exhibit behavior which can be viewed as
a discrete analogue of soliton interactions. For a review of solitons and their im-
portance in physical systems see [16, 17] and the references therein. The model
introduced in [14] has the following two features that are addressed in Chap-
ter 3. First the automaton operates on field variables taken from a set of only
two elements, e.g. {0,1}. Second and perhaps of more fundamental importance
is the inherent time irreversibility of the original model, i.e. information may
be lost during the evolution of the PRFA. The purpose of Chapter 3 is to de-
scribe a multi-state and time-reversible generalization of the Parity Rule Filter
Automata.

Chapter 3 is outlined as follows. We begin by setting the notation as-
sociated with our study of nonlinear fully discrete dynamical systems. We then
review the Parity Rule Filter Automata, and the equivalent and analytically
powerful formulation call the Fast Rule Theorem. We then discuss a nonlin-

ear difference equation that is equivalent to the PRFA and that allows us to

immediately generalize the PRFA to multi-states. Moreover, the nonlinear dif-
ference equation allows us to identify the source of the time-irreversibility of the
PRFA and to formulate a time-reversible automata. Chapter 3 continues with
a description of the construction of special periodic solutions of the nonlinear
difference equation. We conclude Chapter 3 by describing the qualitative simi-
larities between the new multi-state, time-reversible automaton and the propa-
gation of nonlinear waves through multilayered media. The work contained in

this Chapter has been previously published [24] and referenced, see e.g. [26, 27].

CHAPTER 2

WAVELET BASED SOLUTIONS OF NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS

This Chapter is concerned with the fast, adaptive numerical solution
of nonlinear partial differential equations having solutions with both smooth
and shock-like behavior. The new approach described in this Chapter uses ex-
pansions of functions and operators in wavelet bases, which allow us to com-
bine the desirable features of finite-difference approaches, spectral methods and
front-tracking or adaptive grid approaches into a collection of efficient, generic
algorithms. These algorithms take advantage of the fact that wavelet expansions
may be viewed as a localized Fourier analysis with multiresolution structure that
automatically distinguishes between smooth and shock-like behavior. In smooth
regions few wavelet coefficients are needed and in singular regions large varia-
tions in the function require more wavelet coefficients. The theoretical analysis
of such functions by wavelet methods is well-understood, [42, 54, 53]. However
the use of wavelet expansions of functions and operators for numerical purposes
requires the development of new algorithms, which we introduce in this Chapter.

The algorithmic complexity of our approach is proportional to the num-
ber of significant coefficients in the wavelet expansions of functions and opera-
tors. The wavelet-expansion approach to solving such equations is essentially a

projection method. In projection methods the goal is to use the fewest number of

expansion coefficients to represent a function, since this leads to efficient numer-
ical computations. The number of coefficients required to represent a function
expanded in a Fourier series (or similar expansions based on the eigenfunctions
of a differential operator) depends on the most singular behavior of the function.
The functions we are interested in are solutions of partial differential equations
that have regions of smooth, non-oscillatory behavior interrupted by a number
of well-defined localized shocks or shock-like structures. Therefore expansions
of these solutions based upon the eigenfunctions of differential operators require
a large number of terms due to the singular regions. Alternately a localized
representation of the solution, typified by front-tracking or adaptive grid meth-
ods, may be employed in order to distinguish between smooth and shock-like
behavior.

There are several reasons for investigating the use of wavelet expansions
in the development of new numerical algorithms. Let the wavelet transform of
a function consist of Ny significant coefficients near shock-like structures. Our
goal is to design fully adaptive algorithms that perform numerical computations
in O(Ns) operations, using only the significant wavelet coefficients. In other
words, we will look for a general approach that has the desirable properties
of specialized adaptive algorithms. Another reason for investigating the use of
wavelet-basis expansions in numerical methods is that in wavelet coordinates dif-
ferential operators may be preconditioned by a diagonal matrix, [46]. Moreover,
a large class of operators, namely Calderén-Zygmund and pseudo-differential
operators, are sparse in wavelet bases. These observations alone make a good
case for developing new numerical algorithms for computing in wavelet bases.

Using properties of the wavelet representation of functions and opera-

tors we design two new algorithms for computing solutions of partial differential

equations. Specifically, these two algorithms are: 1. adaptive application of
operators to functions, and 2. adaptive pointwise product of functions. In
any basis-expansion approach these algorithms are necessary ingredients of any
fast, adaptive numerical scheme for computing solutions of partial differential
equations. The wavelet representation of a class of operators, which includes
differential operators and Hilbert transforms, has a vanishing-moment property
described in Section 2.2.2. We will use this property to develop a generic, effi-
cient, adaptive algorithm for applying differential operators to functions using
only O(Nj) significant wavelet coefficients. We have also developed an adaptive
algorithm for computing the pointwise product of functions, again using only

O(N;) significant wavelet coefficients.

We apply our approach to the problem of computing numerical solu-

tions of initial and boundary value problems of the form

u = Lu+ N f(u) (2.0.1)

with
u(z,0) = ug(x) 0<z<1 (2.0.2)
w(0,t) =u(l,t) 0<t<T. (2.0.3)

The evolution equation (2.0.1) is written in terms of a linear part, Lu, and a
nonlinear part, N f(u), where the operators £ and N are constant-coefficient,
differential operators that do not depend on time ¢, and the function f(u) is
typically nonlinear, e.g. f(u) = uP. The class of problems we are interested
in has initial conditions wug(z) which are bounded and may or may not have

discontinuities.

Equations such as (2.0.1) can describe the buildup and propagation of
shocks and arise in a variety of models of physical phenomena (see e.g. [31]). Ex-
amples of such evolution equations in 141 dimensions include reaction-diffusion

equations which are characterized by blowing-up solutions, e.g.

Up = Vg, + uP p>1 v>0, (2.0.4)

and models of stationary or moving shocks, e.g. Burgers’ equation

Up + Uy = Vlgy v >0, (2.0.5)

[32]. An additional, trivial example of equation (2.0.1) is the classical diffusion
(or heat) equation

Up = Vlgy v > 0. (2.0.6)

Although we do not address multi-dimensional problems, we note that
the Navier-Stokes equations may also be written in the form (2.0.1). A one-
dimensional model that may be thought of as a prototype for the Navier-Stokes
equation is

up = H(u)u, (2.0.7)

where H(-) is the Hilbert transform, [40]. The presence of the Hilbert transform
introduces a long range interaction which models that found in the Navier-
Stokes equations. Even though the algorithms we will develop are for one-
dimensional problems, we take special care that they generalize properly to

several dimensions so that we can address these problems in the future.

Our scheme, which uses expansions in wavelet bases, has desirable fea-
tures of adaptive grid or front-tracking algorithms and pseudo-spectral methods.

Our wavelet based expansion approach is similar to the Fourier expansions of

spectral methods. Due to the vanishing moments of the wavelet basis functions,
we know that the wavelet transform of a function automatically places significant
coefficients in a neighborhood of large gradients present in the function. This
is in direct contrast with adaptive grid methods, which refine the grid based on
somewhat ad hoc procedures (see e.g. [37]). This combination of basis expansion
and adaptive thresholding is the foundation for our fast, adaptive approach.

In order to take advantage of this “adaptive transform” scheme and
compute solutions of (2.0.1) in wavelet bases using order N, operations, we
must have at our disposal the two basic adaptive algorithms referred to above: —
application of an operator to a function and pointwise products of functions.
We rewrite the partial differential equation (2.0.1) in a form amenable to these
two algorithms by first applying the semigroup method in order to rewrite the
differential equation as a nonlinear integral equation. We then use quadrature
formulas to discretize the integral equation in time in order to obtain a system

to which we can apply our adaptive algorithms.

Several numerical techniques have been developed to compute approx-
imate solutions of equations such as (2.0.1). These techniques include finite-
difference, pseudo-spectral and adaptive grid methods (see e.g. [29, 60]). An
important first step in solving equation (2.0.1) by any of these methods is the
choice of time discretization. Explicit schemes (which are easiest to implement)
may require prohibitively small time steps, usually because of diffusion terms
in the evolution equation. On the other hand, implicit schemes allow for larger
time steps but require solving a system of equations at each time step and for
this reason are somewhat more difficult to implement in an efficient manner. In

our approach we have used an implicit time integrator.

10

The main difficulty in computing solutions of equations like (2.0.1) is
the resolution of shock-like structures. Straightforward refinement of a finite-
difference scheme easily becomes computationally excessive. The specialized
front-tracking or adaptive grid methods require some criteria to perform local
grid refinement. Usually in such schemes these criteria are chosen in an ad
hoc fashion (especially in multiple dimensions) and are generally based on the
amplitudes or local gradients in the solution.

The pseudo-spectral method usually splits the evolution equation into
linear and nonlinear parts and updates the solution by superposing the linear
contribution, calculated in Fourier space, and the nonlinear contribution, calcu-
lated in physical space, [59, 60]. Pseudo-spectral schemes have the advantages
that they are easy to understand analytically, spectrally accurate, and relatively
straightforward to implement. However pseudo-spectral schemes have a disad-
vantage in that the superposition of the linear and nonlinear contributions must
be done in the same domain, either physical space or Fourier space. This diffi-
culty becomes significant when one attempts to compute solutions of differential
equations in multiple dimensions. Moreover, the Fourier transform of inter-
mediate solutions exhibiting shock-like behavior possesses significant frequency
contributions across the entire spectrum as the shock becomes more and more
pronounced.

Our wavelet approach is comparable to spectral methods in their accu-
racy, and the automatic placement of significant wavelet coefficients in regions
of large gradients parallels general adaptive grid approaches. These observations
make a good case for developing numerical methods for computing solutions of

partial differential equations which are alternatives to the traditional methods.

11

This Chapter is outlined as follows. In Section 2.1 we use the semi-
group method to write the differential equation (2.0.1) as a nonlinear integral
equation and introduce an algorithm for approximating the integral, in terms
of certain operators, to any order of accuracy desired. Section 2.2 is concerned
with the construction of and calculations with the operators appearing in the
quadrature formulas derived in Section 2.1. Specifically we describe a means
for constructing the wavelet representation of the operators appearing in ap-
proximations introduced in Section 2.1, derive the vanishing-moment property
of these operators and describe a fast, adaptive algorithm for applying these
operators to functions expanded in a wavelet basis. In Section 2.3 we introduce
a new adaptive algorithm for computing the pointwise product of functions ex-
panded in a wavelet basis. The algorithms described in Sections 2.2 and 2.3 are
based on the wavelet representation of operators and functions which is reviewed
in Appendix A. In Section 2.4 we illustrate the use of these algorithms by pro-
viding the results of numerical experiments and comparing them with the exact
solutions. Finally in Section 2.5 we draw a number of conclusions based on our

results and indicate directions of further investigation.

12

2.1 The Semigroup Approach and Quadratures

This Section describes our approach for reformulating the partial dif-
ferential equation (2.0.1) as a nonlinear integral equation. Using the semigroup
method we recast the partial differential equation as a nonlinear integral equa-
tion in time. We approximate the integrals to arbitrary orders of accuracy by
quadratures with operator valued coefficients. These operators have wavelet
representations with a number of desirable properties described in Section 2.2.1

and 2.2.2.

2.1.1 The Semigroup Approach The semigroup method is a
well-known analytical tool which may be used to convert partial differential
equations to nonlinear integral equations and to calculate estimates associated
with the behavior of their solutions (see e.g. [30, 39]). The integral solution of

the initial value problem

up = Lu+ N f(u) (2.1.1)
u(z, to) = uo(z) (2.1.2)

is given by
u(z,t) = ety (z) + t; eDEN f(u(z, 7))dr, (2.1.3)

where £ and A are time-independent, constant coefficient differential operators.
Expressing solutions of (2.1.1) in the form (2.1.3) allows one to, among other
things, prove existence and uniqueness of solutions, compute estimates of the
magnitude of solutions, verify dependence on initial and boundary data, and
perform asymptotic analysis of the solution, see e.g. [39].

We are interested in using equation (2.1.3) as a starting point for an

efficient numerical algorithm. As far as we know, the semigroup method has

13

had limited use in numerical calculations. A significant difficulty in designing
numerical algorithms based directly on the solution (2.1.3) is that the operators
appearing in (2.1.3) are not sparse (i.e. the matrices representing these operators
are dense). We show in Sections 2.2.1 and 2.2.2 that in the wavelet system of
coordinates these operators are sparse and have properties that we use to design
fast, adaptive numerical algorithms. In the next Section we describe an approach

to approximating the integral in (2.1.3) to an arbitrary order of accuracy.

2.1.2 Quadratures As it follows from (2.1.3) we have to consider

approximating integrals of the form
t
I(z,1) = / eU=DEN (u(z, 7)) dr. (2.1.4)
to

As mentioned earlier, the differential operator A is assumed to be independent
of ¢t and the function f(u) is nonlinear. For example, in the case of Burgers’
equation N = % and f(u) = $u?, so that the integrand NV f (u) = uu, appears as
products of u and its derivatives. Therefore we seek approximations to integrals

of the form

I(t) = /tt ey (r)v(r)dr, (2.1.5)

0

where we have suppressed the explicit z dependence. In order to derive an
approximation to this integral, we partition the interval of integration [to,t] into
m equal subintervals with grid points at #; = tg + iAt, for i = 0,1,...,m. Let
us denote u(t;) and v(¢;) by u; and v;, respectively.

We seek an approximation to (2.1.5) of the form
I(t) = I(t) + O(At™) (2.1.6)

where

m
I(t) == Z C4,jUiV5, (2.1.7)
1,§=0

14

and where the coefficients ¢; ; are time-independent, operator-valued functions
of the operator £. Observe that we have included in (2.1.7) cross terms of
the form w;vj, 1 # j; usual quadrature approximations, e.g. the trapezoidal
rule, typically begin with (2.1.5) and only use products u;v;. In this Section we
describe a procedure for determining the coefficients c; ; which, for a given order
of accuracy, reduce the number of product terms of the form w;v; in (2.1.7) from

(m+1)2 tom + 1.

The operator coefficients ¢; ; are determined by comparing (2.1.6) and
(2.1.7) with a scheme of known order of accuracy constructed using Lagrange
polynomial approximations in ¢ of the functions u(¢) and v(t). Namely, substi-
tuting into (2.1.5) approximations of the form

m

u(t) = Y Li(tyu; + O(A™H) (2.1.8)
i=0
Zm
v(t) = Y Li(t)v; + O(AL™) (2.1.9)
=0
where
m
H b=t (2.1.10)
palerd t — tk
ki
yields the following approximation to I(%)
I(t) =1(t) + O(At™?) (2.1.11)

where

I(t) = / (=)L Z L;((T)usv;dr. (2.1.12)

1,7=0

Interchanging summation and integration gives

m
= Z fi,juivj, (2.1.13)

1,j=0

15

where

t
= / L L (1)L (r)dr (2.1.14)
to

can be computed explicitly.

The coefficients ¢; ; in (2.1.7) are determined by straightforward ex-
pansion techniques. Namely, one first fixes the order m of the approximations
(2.1.11) and (2.1.6) and then compares the coefficients of powers of At in these
two approximations. This leads to a system of equations for determining the
operator coefficients ¢; ; that, in general, has more than one solution. We then
choose a solution of this system of equations which consists of m + 1 non-zero
coefficients c; j. Substituting these ¢;; into equation (2.1.6) yields an approx-
imation to I(t) which is O(At™) accurate and consists of m + 1 terms of the
form w;v;. Thus, we arrive at an approximation to the integral (2.1.5) which is
of the same order of accuracy as the Lagrange approximation (2.1.13) yet uses

significantly fewer terms.

We conclude this Section by providing the results of two examples of

this procedure applied to Burgers’ equation
Up = Vlgy — Ulyg (2.1.15)

wherein £ = 1/6%2; and N = a%’ and f(u) = %uQ. The integral corresponding to

(2.1.5) which we wish to approximate is given by
t
I(t) = / e(t*T)Eu(T)uw(T)d'r. (2.1.16)
to

This procedure results in approximations to (2.1.16) which for m = 1 are of the
form

I(t) = 30,1 (u(to)ug(to) + ult1)us(t1)) + O((AL)?), (2.1.17)

16
which is equivalent to the standard trapezoidal rule, or
I(t) = $0c1 (u(to)ug(t1) +u(t)ug(to)) + O((At)?), (2.1.18)

which we actually use in our numerical experiments. The operator O ,, is given
by

Orm = (T — ™AL L7 (2.1.19)

where I is the identity operator. For m = 2 our procedure yields an analogue of

Simpson’s rule

2
I(t) = Zci,iu(ti)um(ti) + O((At)s) (2.1.20)
1=0
where
co0 = §O0c2—3L (2.1.21)
cip = 203 (2.1.22)
2 = 30r2+3L (2.1.23)

The detailed calculations leading to these expressions consist of a sequence of
simple but tedious algebraic manipulations and we have employed Mathematica
to perform these computations. The details of these derivations and program

listings for each of these examples can be found in Appendix B.

17

2.2 Wavelet Representations of Operator Functions

In this Section we recall two natural representations of operators in
wavelet bases and construct the wavelet representations of the operators ap-
pearing in the approximations to the integral (2.1.5), see e.g. equations (2.1.17)
and (2.1.20). In Section 2.2.1 we show how to compute the non-standard form of
the operator functions appearing in (2.1.5). We then establish in Section 2.2.2
the vanishing-moment property of the wavelet representation of these operators.
Finally, in Section 2.2.3 we describe a fast, adaptive algorithm for applying op-
erators to functions in the wavelet system of coordinates. In Appendix A we
provide a detailed review of material that may be required to understand this
Section. This Appendix reviews the terminology of multiresolution analysis and

the representation of functions and operators in wavelet bases.

2.2.1 The Non-Standard Form of Operator Functions In
this Section we construct the non-standard forms (NS-forms) of functions of
the differential operator ;. Following [48] we introduce two approaches for
computing the N S-forms of operator functions that are characterized by either

(i) computing the projection of the operator function on Vy, e.g.
Pof(82)Po, (2.2.1)
or, (ii) computing the function of the projection of the operator, e.g.

(R0 Fp). (2.2.2)

The difference between these two approaches depends on the properties of |@(£)|?
as a cutoff function, where (z) is the scaling function associated with a wavelet

basis. It might be convenient to use either (2.2.1) or (2.2.2) in applications.

18

The operator functions we are interested in are those appearing in
solutions of the partial differential equation (2.1.1). For example, solutions of

Burgers’ equation can be approximated to order At? by

u(z,t + At) = erhu(zr,t)—

20,1 [u(z, t)0su(z,t + At) +u(z, t + At)dyu(z, t)]
(2.2.3)

where £ = v92 and O is given by (2.1.19). Therefore, we are interested in

constructing the NS-forms of the operator functions
£(8y) = e (2.2.4)

and

f(0r) =0c1 = (I — e“’c) £t (2.2.5)

for example. In the following we assume that the function f is analytic. In
computing solutions of (2.1.1), via (2.2.3), we can precompute the non-standard
forms of the operator functions and apply them when necessary.

We note that if the operator function f is homogeneous of degree m (e.g.
m = 1 and 2 for the first and second derivative operators) then the coefficients

appearing in the N S-form satisfy relationships of the form

\

a{ = 2_mja?
ﬁj = 2-migo
! T (2.2.6)
wo= 27y
sl = 2_mjs?,

see (A.4.40) and (A.4.41). Thus the coefficients on scale j = 1,2,...,J are
scaled versions of the coefficients on scale 7 = 0. On the other hand, if the

operator function f is not homogeneous then we compute 32 w and compute

19

the coefficients O‘i,k" ﬂi,k" and 7i,k' via equations (A.4.41) for each scale j =
1,2,...,J. We note that if f is a convolution operator then the formulas for

s _, are considerably simplified (see [45]).

We first describe computing the NS-form of an operator function by
projecting the operator function into the wavelet basis via (2.2.1). To compute

the coefficients

+00 . . ,
sk p =277 /_ 0277z — k) f(0,)e(27 7z — K')dz (2.2.7)

oo

let us consider
F(@a)p(2 7z - m/ F(=ig2 T)p(e)e™i€¥ 2 Matde, (2.2.8)
where ¢(€) is the Fourier transform of ¢(z)

+00
P(€ = 7o / z)e®dz. (2.2.9)

Substituting (2.2.8) into (2.2.7) we obtain

b =27 [p(@1(=ig2)e™® | o= [™ plaia - R .

-0

(2.2.10)
Noting that si,k, = sifk, we arrive at
s] _/ (—i€277)|@(€)| 2 de. (2.2.11)
We can evaluate (2.2.11) by setting
s = / S F(=i279 (€ + 27R)) (€ + 27k 2, (2.2.12)

X ke

or

. 2w .
s] = /O g(€)etlde, (2.2.13)

20

where
g(&) = f(—i277 (& + 2nk))|@(€ + 2mk) . (2.2.14)
keZ

We now observe that for a given accuracy e the function |p(£)|? acts as a cutoff
function in the Fourier domain, i.e. |p(£)[? < € for |£| > 7 for some n > 0.
Therefore the infinite sum in (2.2.12) can be approximated to within e by the

finite sum
K

g(&) = Y f(—i277(& + 27k))|B(€ + 27k) %, (2.2.15)

k=—K
for large enough K. Using (2.2.15) (in place of ¢g(¢)) in (2.2.13) and uniformly

discretizing the interval [0,27] into N subintervals [£,,&n41] for &, = 2an/N

and n=0,1,... N — 1, we obtain an approximation to the coefficients 3{,
§=13 &) (2.2.16)

The coefficients §f can then be computed by applying the fast Fourier transform

to the sequence {g(&,)} computed via (2.2.15).

Let us now describe computing the NS-form of an operator function
via (2.2.2). In this case we can use the discrete Fourier transform to diago-
nalize the differential operator appearing in (2.2.2). Starting with the wavelet
representation on Vg of the discretization of 0, we can write the eigenvalues
explicitly as

L
Ak = 8o+ 2(3162“% + s,le_%i%), (2.2.17)
=1
where the wavelet coefficients of the derivative, s; = s?, are defined by (A.4.38).

Since

f(A) = Ff(NFL, (2.2.18)

where A is a diagonal matrix of the eigenvalues of A and F is the Fourier

transform, [39], we compute f(A;) and apply the inverse Fourier transform to

21

the sequence f(Ag)
N

(k=1)(1=1)
st =) fw)e™ v, (2.2.19)
k=1
to arrive at the projection of the operator functions f(9x) on the subspace Vy,
i.e. the wavelet coefficients s?. The remaining elements of the non-standard

form are then recursively computed using equations (A.4.41).

2.2.2 Vanishing Moments of the B/ Blocks In this Section
we establish the vanishing-moment property of the B? blocks of the NS-form
representation of differential operators and the Hilbert transform. Moreover, we
will establish this result for the N S-form representation of the operator func-
tions described in Section 2.2.1. This property of the B7-blocks is discussed in
Meyer [55]. In Section 2.2.3 we use the vanishing-moment property to design an
adaptive algorithm for multiplying the NS-form of an operator and the wavelet

expansion of a function.

Differential Operators For differential operators we show that the rows of
the BJ blocks of the N S-form have M vanishing moments, i.e.,
L
Y ImB =0 (2.2.20)
l=—L
for m =0,1,2,...,M — 1 and where 2L — 1 is the length of each row of the B’

block. We recall the following definition of 8; = 3

o= - l)%cp(w)dm, (2.2.21)

-0

(see e.g. (A.4.38)) and use the fact (see [54]) that for 0 <m < M —1

+o0
> 1Mp(z 1) = Pu(z), (2.2.22)

l=—x

22

where Pp,(z) is a polynomial of degree m. Since §; = 0 for |I| > Lg — 1 and

using (2.2.21) and (2.2.22) we have

:;o;lmﬁl = di
- Lo
[

where Pp,_1(z) is a polynomial of degree m — 1. Since the function t(z) is

Z Mp(z+1) | dz
l=—0o0

Y(z m
()P (z)dx (2.2.23)
orthogonal to polynomials of degree less than M and Pp,_;(z) is a polynomial

of degree at most M —2, these integrals are zero. We note that the same analysis

holds for derivatives of order p as long as such derivatives exist.

Hilbert Transform In the case of the Hilbert transform

(’Hf)(w)zip.v. it ds, (2.2.24)

—00 S—T
where p.v. indicates the principle value, we show that the rows of the B7 blocks

of the N S-form satisfy

+oo
> 1mp=0. (2.2.25)
l=—00
The f; elements of the N S-form of the Hilbert transform are given by
+o0o
B= [o - (He)(@)da. (2.2.26)

Proceeding as in the case of differential operators we find

+oo
Smp o= S [v -0 e) @)

l=—00 l=—00
Eoo / Hap) ()l +1)
+oo I
- [@ ¥ e+ ds
—00 l=—o00
= — [o) @) Pa(a)as (2.2.27)

23

To show that the integrals in (2.2.27) are zero we now show that
(Hv)(z) has at least M vanishing moments. Let us consider the generalized

function

| o) wpemetag = o (e, (2228)

o im

In the Fourier domain the Hilbert transform of the function g defined by

(Hg)(€) = —i sign(£)§(¢), (2.2.29)

may be viewed as a generalized function, derivatives of which act on test func-

tions f € C§°(IR) as follows

< & (—i sign()g(€)) f >=

—i Y (7)) FUTD0)gm = (0) + i [23 sign(€) §™(€) f(€)de.

(2.2.30)

In order to show that (#)(z) has M vanishing moments we recall that

in the Fourier domain vanishing moments are characterized by

(Z—mmf/;(f)k:o =0 form=0,1,...,M—1 (2.2.31)
where)(¢) is the Fourier transform of 4(z). Setting g(&) = 9(¢) in (2.2.30) we
immediately find that the sum on the right hand side of (2.2.30) is zero. We also
observe that the integrand on the right hand side of (2.2.30), i.e. sign(&)y(™ (¢),

is continuous at & = 0, once again because ¥ (z) has M vanishing moments. We

can then define functions W™ (¢) by
—i (M () £>0
W) (¢) = 0 £=0 (2.2.32)
i Ppm(€) €<,
for m = 0,1,..., M — 1, such that W(™)(¢) coincides with the m-th derivative

of the generalized function (2.2.29) on the test functions f € C§°(IR). Since

24

W) (¢£) are continuous functions for m = 0,1,..., M — 1, we obtain instead of
(2.2.28)
o0 . ~
/ (Hyp)(z)z™ e da = W™ (§). (2.2.33)
o

Since W™ (¢)|¢=o = 0 the integrals (2.2.27) are zero and (2.2.25) is proven.

Operator Functions We now consider the B’-blocks of the N S-form repre-

sentation of the operator functions described in Section 2.2.1 and show that
L

Y ImB =0 (2.2.34)

I=—L
for m =0,1,...,M — 1 where 2L — 1 is the length of each row of the B7 block.
Following the development of the differential operator case, see e.g. (2.2.23), we
use the definition of the ﬁi,k, coefficients (A.3.33) and the fact that 5 = 0 for
/| > Lg — 1 in the sum (2.2.34) to obtain

S Mg = / % (@ —) f(90) P (), (2.2.35)
oo —c0
where P, (z) is a polynomial of degree m, see (2.2.22).

Since the function f(-) is an analytic function of 9, we can expand f
in terms of its Taylor series. If f(0;) is then applied to Py (x) the series for
f(0z)Pp(z) is finite and yields a polynomial of degree less than or equal to m,
ie.

[(02) P (z) = Py (), (2.2.36)

where m’ < m. Then since 9(z) has m vanishing moments the integrals (2.2.35)

are zero.

2.2.3 Adaptive Calculations with the Non-Standard Form

In [48] it was shown that Calderén-Zygmund and pseudo-differential operators

25

can be applied to functions in O(—N log €) operations, where N is the dimension
of the finest subspace V| (that is assumed to be finite dimensional as in Section
2.2) and e is the desired accuracy. In this Section we describe an algorithm for
applying operators to functions with sub-linear complexity, e.g. O(CN;), where
N is the number of significant coefficients in the wavelet representation of the
function. Pseudo-code for the adaptive algorithm described in this Section can
be found in Appendix C.

We are interested in applying operators to functions that are solutions
of partial differential equations having regions of smooth, non-oscillatory be-
havior interrupted by a number of well-defined localized shocks or shock-like
structures. The wavelet expansion of such functions, see e.g. (A.2.12), then
consists of differences {d’} that are sparse and averages {s/} that may be dense.
Adaptively applying the N S-form representation of an operator to a function

expanded in a wavelet basis requires the rapid evaluation of
dj, = Z A?c+ld?c+l + Z Bi+13i+z (2.2.37)
! !
So= 2 Thudiy (2.2.38)
l

for j=1,2,...,J —1 and k € IF3».—; and on the the final, coarse scale

d’{ = Z Al{—kldi—kl + z Bl}]+15i+1 (2.2.39)
l l

= Y Tiadiu+ Y Tilasiy (2.2.40)
l l

for k € IFy,—s where n is the number of scales in the multiresolution analysis (see
Figure A.6). The difficulty in adaptively applying the N S-form of an operator
to such functions is the need to apply the B7 blocks of the operator to the
averages {s’} in (2.2.37). Since the averages are “smoothed” versions of the

function itself these vectors are not necessarily sparse and may consist of 277

26

significant coefficients on scale j. Our algorithm uses the fact (established in
Section 2.2.2, see also [55]) that for differential operators, the Hilbert transform
and the operator functions considered in Section 2.2.1, the rows of the B/ blocks
have M vanishing moments. This means that when the row of a BJ block
is applied to the “smooth” averages {s’}, the resulting vector is sparse, as is

illustrated in Figure 2.1.

Figure 2.1. For the operators considered in Section 2.2.2 the vanishing-moment
property of the rows of the B’ block yields a sparse result (up to a given accuracy
€) when applied to a smooth and dense vector {s’}.

Using the vanishing-moment property and the indices of the significant
wavelet coefficients {d’} we can identify coefficients {57} that make significant
contributions to (2.2.37). In this way we can replace the calculations with dense

vectors (2.2.37) by calculations with sparse vectors
dy, = Z Ap i + Z By 18k (2.2.41)
1 1
forj=1,2,...,J—1land k € IFgn ;.
In what follows we first define a subspace of V{ in order to determine

{37}. Then we describe a method for determining {3’} using the indices of the

significant wavelet coefficients {d’}.

27

Recall that the projection of f on Vj can be expressed as
(Pof)(z Z > A k(z) + > siese(@), (2.2.42)
J=1k€F,,_; kEF yn—
where J < n and n is the number of scales in the multiresolution analysis. For the
functions under consideration the magnitudes of many of the wavelet coefficients
di in (2.2.42) are below a given threshold of accuracy e. The representation of

f on Vg using only coeflicients above the threshold e can be expressed by

J

(Pof)e(z) =D > i k(z) + > sioik(@). (2.2.43)

I=1 {k:|d] | >€} kEFyn—y
The error in using (2.2.43) to represent the projection of the function f instead
of (2.2.42) is given by

1(Pof)el(@) = (Pof) ()3 = Z > ldf? <€N, (2.2.44)

I=1 {k:|d) | <e}
where N, is the number of coefficients below the threshold. The number of
significant wavelet coefficients may now be defined by Ny, = N — N,., where N
is the dimension of the space V.

We now define two subspaces of Vi that are used to identify the co-
efficients {57} that contribute to the adaptive calculation of the sum (2.2.41).
By definition the space Vg is spanned by the basis functions in the expansion
(2.2.42). We define the e-accurate subspace for f, denoted D} C V), as the

subspace spanned by the basis functions in the expansion (2.2.43), i.e
D=V, U {span {9 x(z)} : |d?€| >e1<j<Jk€Fqym ;}. (2.2.45)

Associated with D% % are subspaces S% ; for j = 0,1,...,J — 1 that are formed

by the span of the basis functions {@;or+a(2)}. The set of basis functions

28

{¢j2k+1 ()} is determined depending on the presence of basis functions ;1 1 ()

in the space D%, i.e. for each j =0,1,...,J —1
%5 = 1span {@jopia(7)} Yjp1k(z) € DYk € Fonin }- (2.2.46)
For j = J we define the space
S%s=V. (2.2.47)
In terms of the coefficients dffl the space 8% ; may be defined by

S% ; = {span {pjokr(z)} : |di+1| > e,k €Fyn_in} (2.2.48)

In this way we can use D% to ‘mask’ Vy forming S% ;. The coefficients {57}

that contribute to the sum (2.2.41) may now be identified as those coefficients

corresponding to basis functions in S%;
2.

We now show that significant wavelet coefficients {d’*'} and contribu-
tions of {B’s/} to (2.2.37) both originate from the same coefficients {s’}. In
this way we can use the indices of {d’*!} to identify the coefficients {57} that
contribute to the sum (2.2.41). We begin by noting that the Taylor series with

error term for f(z + 2/1) can be written

(z + 271) Z f 1) yjmpm 1(2) (z — z)M (2.2.49)

where z = 2(z,7,1) lies between = and x + 2/I. We begin by computing Ei =

2 ﬁiﬂsiﬂ using (2.2.49) and obtain

i . (m)(
dy = 279/ /_oo 277z — Z f 2ﬂm (Z 5“[1’”) dx +

I=—L

2 i Z ﬁk+l/ 0277z — k) fM)(2)(z — z)Mdz.

M! I=—L

29

By the vanishing-moment property, the first term is zero and we find after a
change of variables

i 279

dj. = ™ Z /BIH—I/ o(x)fM(2)(z — 20 (z + k) da, (2.2.50)

for k=0,1,2,...,2777 — 1.

To compute the differences & = > gls%k, 41 we use the averages
. ,) . .
Dy = 2_]/2/ 0277z — 2K') f (& + 271)dax. (2.2.51)
—0o0
Substituting the Taylor series (2.2.49) into (2.2.51) we obtain

. (m) (
!t = 2*9/2/ 277z — 2K') Z f) (@im) <Zgllm> dx +

i/2
21\;' Zgl/ 279z — 2k") fM)(2)(z — z)Mda.

Using the vanishing-moment property of the G = {g;} filter we obtain

dj+1 _

2;;{2 2. | e@r @) -2+) Mda, (2252)

for ¥ =0,1,2,...,2/-G+1) _ 1,

To show that |dJ, | < ¢ implies |E£| < Ce we consider two cases. If
|df;’1| <eand kis even, i.e. k=2nforn=0,1,2,...,277U+1) — 1 then we see
that Eén and dﬁ'l (2.2.52) only differ in the coefficients g; and ﬂ%n 4+ Since g
and ﬂ%n 4 are of the same order then |E]2n| < Ce for some constant C. In the
case where k =2n+ 1 for n=10,1,2,...,2770+) —1 we find

—j 92-3/2 00)
dons1 = S I_ZL B i1 / o +1)fM (2) (2 — 2 (@ + 2n))Mdz, (2.2.53)
which again is of the same order as djfl. Therefore, if |d]+1| < efor k' =

0,1,2,...,27=0U+)_1 then for some constant C, |d | < Ce,fork =0,1,2,...,27 77—

1.

30

2.3 Evaluating Functions in Wavelet Bases

In this Chapter we are concerned with the numerical approximation
of solutions of partial differential equations of the form (2.0.1) via a scheme
given, for example, by (2.2.3). Any numerical scheme of the form (2.2.3) uses
the operations of applying an operator to a function and computing functions
of the solution of the partial differential equation. In Section 2.2 we described
an adaptive algorithm for applying operators to functions expanded in a wavelet
basis. In this Section we describe an adaptive algorithm for evaluating the
pointwise product of functions represented in wavelet bases. More generally,
our results may be applied to computing functions f(u) where f is an analytic
function and u is expanded in a wavelet basis.

An approach for computing approximations to the solutions of non-
linear partial differential equations using Fourier methods is developed in [60],
wherein linear terms are evaluated in the Fourier domain and nonlinear terms
in the ‘physical’ domain. For example this approach applied to the Korteweg-de
Vries equation

Uy + Uy + €Uggy = 0 (2.3.1)

leads to a scheme of the form
u(z,t + At) — u(z, t — At) + oF H(BFu(x,t)) —yF (6Fu(z,t)) =0, (2.3.2)

where F(u) = 4(€) is the Fourier transform of u(z) (computed via the FFT)

and \
a = 2iult
B =k
(2.3.3)
v o= 2iAt
§ = k3
/

31

(see Equation (9), [60]). The usefulness of such an approach lies in the fact
that linear terms are updated in the Fourier domain. On the other hand, the
nonlinear contributions to the solution are computed in the z-domain. Since the
linear and nonlinear contributions must be combined in either z-space or &é-space,
this scheme requires an extra FFT per time step. We observe that the linear
and nonlinear terms in (2.3.2) are combined in ‘physical’ space. Approaches of
this form have been referred to as ‘pseudo-spectral’ schemes, see e.g. [58, 59].
An alternative to the pseudo-spectral scheme is the ‘product approx-
imation’ method used in combination with standard approximation methods,
see e.g. [61, 62]. The product approximation method can be illustrated by

considering the two point boundary value problem

—u"+ flu)=0 0<z<1

(2.3.4)
u(0) =u(1) =0
Introducing a discretization 0 = 2o < ... < xny = 1 we can write the standard
approximation to u(x) as
(S Uidhd5) + (F(C Ui i) =0 15 <N (2:3.5)

where U; = u(z;), {¢i(z)}Y, is the basis for the space of continuous piecewise
linear functions, and (f,g) f_ z)dz is the usual inner product. The

product approximation of u(xz) is defined by the equations

ZU b,) +Zf) Bisj) =0 1<j<N (2.3.6)

where u and f(u) are approximated independently by different piecewise linear
functions, [61]. The difference between approaches (2.3.5) and (2.3.6) is in the

representation of the nonlinear term.

32

In order to compute the product approximation (2.3.6) one need only
compute the inner products once and solve the resulting system of nonlinear
equations. On the other hand the contribution of the nonlinear term in the
standard approximation (2.3.5) must be computed at each step of the iteration.
The results in [61, 62] indicate that the product approximation method admits
higher local spatial accuracy than the standard approximation, e.g. O(Az*) as
compared to O(Az?). The high order accuracy notwithstanding, there are two
obvious drawbacks to schemes such as (2.3.5) and (2.3.6). The first is that at
each iteration a number of computations proportional to the number of elements
in the discretization must be employed in order to update the solution. In other
words all coefficients U; must be used in updating the solution via the numerical
scheme. Therefore the complexity of the algorithm is at least proportional to the
number of elements in the discretization since all coefficients U; must be included
in each computation. A second drawback to either the standard approximation
or the product approximation is the lack of adaptivity. In [61] it is observed
that the results of either approximation would be improved by introducing a

finer discretization in the vicinity of sharp gradients in the solution.

There several difficulties encountered when one computes f(u) when u

is expanded in an arbitrary basis. If u(z) is expanded in a basis

N
u(z) = Zuibi(x), (2.3.7)
i=1

where u; are the expansion coefficients and b;(z) are the basis functions, then in

general

Fu(e)) # 3 F)bile). (238)

33

For example if

=

1 o
u(z) = o= 3 e (2.3.9)
§=0

then the Fourier coefficients of the function f(u) do not correspond to the func-

tion of the Fourier coefficients
f ()€™, (2.3.10)

In order to compute f(u) in the wavelet system of coordinates we begin
with the assumption that u and f(u) are elements of VY, i.e. u, f(u) € Vo. We
can then write

u(z) = z sYp(z — k), (2.3.11)
k

where 32 are coefficients defined by

sY = /0:0 u(z)p(z — k)d. (2.3.12)

Let us impose the additional assumption that the scaling function is interpolating
so that

s = u(k). (2.3.13)

Since we have assumed that u and f(u) € Vj we obtain

fu) = fls)elz — k), (2.3.14)
k

i.e. f(u) is evaluated by computing the function of the expansion coefficients
f(s%). Below we will describe how to relax the requirement that the scaling
function be interpolating and still have property (2.3.14).

Typically f(u) is not in the same subspace as u. In what follows we
describe an adaptive algorithm for computing the pointwise square of a func-

2

tion, f(u) = w”. In this algorithm we split f(u) into projections on different

34

subspaces. Then we reconstruct ‘pieces’ of the wavelet expansion of u onto finer
subspaces where we calculate contributions to f(u) using an approximation to
(2.3.14). This is in direct comparison with calculating f(u) in a basis where the
entire expansion must first be projected into a ‘physical’ space and then f(u)
is computed (see above). Finally, in Section 2.3.2 we discuss an algorithm for

adaptively evaluating an arbitrary function f(u).

2.3.1 Adaptive Calculation of u? Since the product of two
functions can be expressed as a difference of squares, the algorithm for eval-
uating u? allows one to evaluate the pointwise product as well. The algorithm
we describe is an improvement over the algorithm found in [47].

In order to compute u? in a wavelet basis we first recall that the pro-
jections of u on subspaces V; and W are given by Pju € V; and Q;u € W for
7 =0,1,2,...,J < n, respectively. Let j; be the finest scale having significant
wavelet coefficients that contribute to the e-accurate approximation of u, i.e. the
projection of u can be expressed as

J .
P @)=Y Y dp@+ Y sleal). (2.3.15)
I=If {k:|d)|>e} kEF 3y
Let us first consider the case where v and u? € V| in which case we can expand
(Pyu)? in a ‘telescopic’ series

J
(Pou)® — (Pyu)® = Y (Pj_u)® — (Pju)”. (2.3.16)
J=Jf
Decoupling scale interactions in (2.3.16) using Pj_1 = Q; + P; we arrive at

J
(Pow)? = (Pru)® +) 2(Pju)(Qju) + (Qju)*. (2.3.17)
J=Jjr

Later, we will remove the condition that « and u? € V.

35

Remark: Equation (2.3.17) is written in terms of a finite number of
scales. If however j ranges over Z then (2.3.17) can be written
u? = 2(Pju)(Qju) + (Qju)?, (2.3.18)
JEL
which is essentially the paraproduct, see [50].

We observe that in (2.3.17) we need to compute products (Q;u)? and
(Pju)(Qju) where Qju and Pju are elements of subspaces on the same scale,
and thus have basis functions with the same size support. In addition we need
to compute (Pyu)?, however this computation involves only the coarsest scale
and is not computationally expensive. The difficulty in evaluating (2.3.17), as
compared with the Haar case (see [47]), is that the terms (Q,u)? and (Pju)(Q;u)
may not necessarily belong to the same subspace as the multiplicands, e.g. V.

However, since
Vj @Wj = Vj,1 C Vj,Q Cc...C Vj*jo C..., (2.3.19)

we may think of both Pju € V; and Q;u € W as elements of a finer subspace,
that we denote V;_j;, for some jo > 1. We can therefore compute the coefficients
of Pju and Qju in V;_j;, using the reconstruction algorithm. Then on V;_j,
we can calculate contributions to (2.3.17) using (2.3.14). The key observation is
that in order to apply (2.3.17) we may always choose jp in such a way that, to

within a given accuracy €, (Q;u)? and (Pju)(Q;u) belong to V,_j,.

In order to determine jy; we begin by assuming u € V;, and u approxi-
mates the solution of the partial differential equation (2.0.1). These assumptions
imply that in the Fourier domain, the support of ¢(£) overlaps the support of

4(€). We begin by showing that, for scaling functions with a sufficient number

36

of vanishing moments, the coefficients s and the values u(z;), for some z;, may
be made to be within € of each other.

The coefficients of the expansion of u € V, are given by

S{o — 27j0/2/ u(z)p(2 70z —)dz, (2.3.20)
—00

which in terms of 4(¢), (see e.g. (2.2.9)), can be written

50 =277/ / a(2770)p(E)e " dt. (2.3.21)
—00
The integral in (2.3.21) can be written
_ gio/2 Z / (2790 (¢ + 2nk)) G (€ + 2mk)eELde. (2.3.22)

Since we have assumed that u satisfies (2.0.1), we have that the support of 4 is
compact and centered about the £ = 0 term in (2.3.22). Therefore the infinite

series (2.3.22) consists of one term

sfo = 9io/2 /_ " a2 08 aE)e e, (2.3.23)

In order to evaluate (2.3.23) we recall that ¢(x) has M shifted vanishing

moments, i.e. [(z — a)"p(z)dz =0, where a = [0 zp(z)dz. We can then

write
o m AT —itx
/ (z —a)"p(z)dr = = 5Em / o(x)e " dz =0 (2.3.24)
o —1)™ ¢ oo £=0
form=1,2,..., M and arrive at
1 o™ ;
e13 _
97 e —0, 2.3.25
i oem (€) o ()
and

P(E)e ok |§:0 =1 (2.3.26)

37

Expanding ¢(€)e*®¢ in a Taylor series near £ = 0 we arrive at

_ i€ £M+1 oM+1 _ iat
PO =1+ gy genrer P)e ‘g:z (2.3.27)

where z = z(€) lies between ¢ and zero. Substituting (2.3.27) in (2.3.23) yields

8{0 — 2—]'0/2/ a(2dog)e) ge B j, (2.3.28)
where
2_.7'0/2 T~ i a 8M+1 ~ i
Ewmjo = m/_ﬂ (27 90¢)e tIF)£M+18£M+1 (‘P(g)e 6) . e,
(2.3.29)

is the error introduced by the Taylor expansion (2.3.27).

To describe the algorithm for computing the pointwise product, let us
denote by R;O() the operator to reconstruct (represent) a vector on subspace
V; or W; in the subspace V;_;,. On V;_;; we can then use the coefficients
R;:o (Pju) and R;:O(qu) to calculate contributions to the product (2.3.17) using

ordinary multiplication (as in (2.3.14)). To this end we compute the projections
(Pj—jou)® = 2(R, (Pju)) (R), (Qju) + (R], (Qu))?, (2:3.30)

for j = js,j;+1,...,J — 1, and on scale J we compute
(Pr—jou)® = (R, (Pyu)) + 2(R] (Pru)) (R}, (Qu)) + (R] (Qsu))*. (23.31)

As we have shown, P;_j,(Pj_jou)? = (Pj_j,u)? to within a given e.

We now proceed to decompose the projection on V;_j, for j = jr,...J
into the wavelet basis. This procedure is completely equivalent ot the decom-
position one has to perform after applying the NS-form. The algorithm for

computing the projection of u? in a wavelet basis is illustrated in Figure 2.3.1.

38

To demonstrate that the algorithm is adaptive, we recall that u has
a sparse representation in the wavelet basis. Thus, evaluating (Q;u)? for j =
1,2,...,J requires manipulating only sparse vectors. Evaluating the square of
the final coarse scale averages (Pyu)? is inexpensive. The difficulty in evaluating
(2.3.30) lies in evaluating the products R;O (Pju)(Rgo Qju) since the vectors Pju
are typically dense. The adaptivity of the algorithm comes from an observa-
tion that in the products appearing in (2.3.30) we may use the coefficients Q;u
as a ‘mask’ of the Pju (this is similar to the algorithm for adaptively apply-
ing operators to functions). In this way contributions to (2.3.30) are calculated
based on the presence of significant wavelet coefficients ju and therefore signif-
icant products ’R,;:O (P]u)(’l?,;0 Qju). The complexity of our algorithm is therefore

automatically adaptable to the complexity of the wavelet representation of u.

39

LT
L~
L
| |
; 0

\

Figure 2.2. Adaptively computing the square of a function in the wavelet basis.

40

2.3.2 Notes on the Adaptive Calculation of General f(u)
This Section consists of a number of observations regarding the evaluation of
functions other than f(u) = u? in wavelet bases. For analytic f(u) we can apply
the same approach as in Section 2.3.1 wherein we assume f(Pyu) € V(and

expand the projection f(Pyu) in the ‘telescopic’ series
J
F(Pow) — f(Pru) = > f(Pj—1u) — f(Pju). (2.3.32)
7j=1

Using P;_1 = Q; + P; to decouple scale interactions in (2.3.32) and assuming

f() to be analytic we substitute the Taylor series

(n)
f(Qju+ Pju) = Zf P“ ju)" + B n(f,u) (2.3.33)

to arrive at
f(Pou) = f(Pyu) + i > M(Q])"+ Ejn(f,u). (2.3.34)
j=1n=1 n!
We note that for f(u) = u? (2.3.34) is equivalent to (2.3.17).

This approach can be used for functions f(u) that have rapidly con-
verging Taylor series expansions, e.g. f(u) = sin(u), for |u| sufficiently small.
In this case, for a given accuracy € we fix an N so that |E; n(f,u)| < e. We
note that the partial differential equation (2.0.1) typically involves functions f(-)
that are not only analytic but in many cases polynomial in u and of degree p.
If this is the case then for each fixed j the series in (2.3.33) is of degree p and
E;n(f,u) =0 for N > p. In any event we are led to the need to evaluate the

sum
(n)

J N
U Piu
P)PERLLIT N (2:3.35)
. n!
j=1ln=1
appearing in (2.3.34) that can be done by using the algorithm described in

Section 2.3.1.

41

The approach described above can be used for functions f(u) that have
rapidly converging Taylor series expansions. If on the other hand the Taylor

series expansion of f(u) does not converge rapidly, e.g. f(u) = e*

, we are led
to consider the following alternatives. Let us consider the specific case where
f(u) = e" and examine two approaches to evaluating f(u). In the first approach

we begin, as above, by expanding ¢* in the ‘telescopic’ series
J
efou _ gfuu — Z efi-1v _ ehiu, (2.3.36)
j=1
and using Pj_1 = () + P; to decouple scale interactions. We then arrive at
J
efov — gbov 4 Z ePf“(er“ —1). (2.3.37)
n=1
Since the wavelet coefficients @Qju are sparse, the multiplicand e®it — 1 is sig-
nificant only where Qju is significant. Therefore we can evaluate (2.3.37) using
the masking algorithm described in Section 2.3.1 where in this case the mask is
determined by significant values of e?i% — 1. We note that the terms in (2.3.37)
involve exponentials of scalars, i.e. Pju and Qju, and can be computed in a
straightforward manner using the exponential function.

The difficulty in using such an approach depends on the relative size,
or dynamic range, of the variable u. If, for example, u(z) = asin(27z) on
0 <z <1 then e ® < u(z) < e*. Even for relatively moderate values of « the
function e may range over several orders of magnitude. Figure 2.3 illustrates
this behavior for a = 5.

A solution to calculating e* taking into consideration the possible dy-
namic range of e“ is to apply a scaling and squaring approach. Instead of

27

computing e* directly one calculates e v and repeatedly squares the result via

(e277%)2’ The constant j depends on the magnitude of u and is chosen so that

42

5.0
2.5 — —
=
e
B
= .0 —
>
=
=
=1
=
2.5 |— —
— 5.0 | | |
©.00 o.25 O.50 o.75 1.00

150.

e{alpha sin(2 pi x))
N
o

37.

Figure 2.3. Illustration of the large dynamic range in f(u) = e**™(27) gyer

0 <z <1for @« =5 Even for the relatively moderate o, f(u) = e* ranges
between 0.006 < e" < 150.

43

the variable u is scaled as, for example, —1 < 277y < 1. In this interval, cal-

culating ¢ ’% can be accomplished as described by equation (2.3.37) and the
masking algorithm of Section 2.3.1. Then one repeatedly applies the algorithm

. . —J . .
for the pointwise square to e? '“ to arrive at the wavelet expansion of e*.

44

2.4 Results of Numerical Experiments

In this Section we present the results of a number of numerical experi-
ments. In each example we approximate solutions of an initial value problem of
the form

up = Lu+ N f(u) (2.4.1)
u(z,0) = up(x) 0<z<1 (2.4.2)

with periodic boundary conditions
w(0,t) =u(l,t) 0<t<T. (2.4.3)

Each numerical experiment consists of the following steps. First one chooses a
discretization of the integral in the solution of (2.4.1)
u(z, t) = e~y (z) + tt eEDEN f(u(z, 7))dr, (2.4.4)
0
as discussed in Section 2.1. In each experiment described below we will identify
the discretization of (2.4.4). The wavelet representation of the operators appear-
ing in the approximation to (2.4.4) are computed via the methods outlined in
Section 2.2.1.
We then fix the wavelet basis and the parameters of the experiment.
This includes choosing the number of scales in the multiresolution analysis, n
(which defines Az = 27"), the depth of the decomposition, J < n, and the
accuracy with which the numerical experiment is performed, e. We have chosen
the wavelet basis having a scaling function with shifted vanishing moments, the
so-called ‘Coiflets’, in order to demonstrate the algorithm for evaluating f(u)
developed in Section 2.3. We choose the number of vanishing moments M and

the quadrature mirror filters {hy} and {gx}-

45

We project the initial condition (2.4.2) on V. This amounts to evalu-

ating the coefficients

s) = /oo uo(z)p(x — 1)dz. (2.4.5)

o0

For sufficiently smooth initial conditions we can bypass directly evaluating the
integral (2.4.5). Instead we use the shifted vanishing moments of the scaling

function ¢(-) to compute the coefficients s? to within € via
s) mu(l —), (2.4.6)

(see the discussion in Section 2.3.1). We note that in this case the discretization

of the initial condition is similar to traditional discretizations where one sets
U(zi, to) = uo(1Az), (2.4.7)

fori =0,1,2,...,2"—1. We use the initial condition (2.4.6) to start the iteration
and evaluate solutions of (2.4.4) at successive time steps.
Since approximations to the integral in (2.4.4) are implicit in time (see

(2.1.18)) we must solve an equation of the form
Ultye1) = BU,)) + U L), Ult), (2.48)

at each time step for U(¢;41). Note that we have dropped the explicit depen-
dence on U(t;). In (2.4.8) E is the explicit part of the approximation to (2.4.4)
and [is the implicit part that depends on the approximation of the integral. One
can use specialized techniques for solving (2.4.8), e.g. using preconditioners to
accelerate the convergence of the iteration. However, in our experiments we use

a straightforward fixed point method to compute U(¢;41). We begin by setting

U(tj1) = E(U(t5)) + I(U(25), U (%)), (2.4.9)

46

and repeatedly evaluate

Uk1(tj+1) = E(U(t5)) + I(U(t5), Uk(tj+1)), (2.4.10)
for kK =0,1,2.... We terminate the iteration when
Uk+1(tj+1) — Uk(tj+1)ll < Ce, (2.4.11)

for some constant C' (in our experiments we choose C' = 1), and where

2n
1Uk11(tj41) = Uk(ti0) 1 = 27" > (Ukra(®is tjg1) — Upl(zi t41))°. (24.12)
=1
When (2.4.11) is satisfied we set
U(tj+1) = Ugga(tj41)- (2.4.13)

Again we note that one can use a more sophisticated iterative scheme and a
different stopping condition for evaluating (2.4.8) (e.g. simply compute (2.4.10)

for a fixed number of iterations).

2.4.1 The Heat Equation We begin with this simple linear ex-
ample in order to illustrate several results and provide a bridge to the nonlinear
problems discussed below. In this Section we are concerned with the calculation

of numerical solutions of the heat equation on the unit interval
Up = Vlgy 0<z<1 0<t<1, (2.4.14)
for v > 0, subject to the initial condition
u(z,0) =up(z) 0<z<1 (2.4.15)
and the periodic boundary condition

u(0,t) =u(l,t) 0<t<1 (2.4.16)

47

There are several well-known approaches for solving (2.4.14) with (2.4.15) and
(2.4.16) and more general equations of this type having variable coefficients.
Equation (2.4.14) can be viewed as a simple representative of this class of equa-
tions and although it is used in this example we emphasize that the following
remarks are applicable to the case where v = v(z).

It is well known that such equations can be solved using finite differ-
ences. However, explicit finite difference schemes are conditionally stable and
the discretization must satisfy the stability condition vAt/Az? < 1, [28, 29].
This condition tends to require prohibitively small time steps. An alternate
finite difference approach is, for example, the implicit Crank-Nicolson scheme,
[28, 29], which is unconditionally stable and accurate to O(At? + Az?). At each

time step, the Crank-Nicolson scheme requires solving a system of equations
AU (tj4+1) = BU(t)) (2.4.17)

for j =0,1,2,...,M — 1, where we have suppressed the dependence of U(z,)

on z. The matrices A and B are given by

A = diag(—-%,14+a,—%
8~ 2) (2.4.18)

a

= diag($,1 -, §),

where o = I/AA;Z.

The wavelet based solution of (2.4.14) is formulated as follows. Fol-
lowing the discussion in Section 2.1, we can write the solution of (2.4.14) with
(2.4.15) and (2.4.16) as

u(z,t) = eug(z), (2.4.19)

where £ = v0,,. We compute (2.4.19) by discretizing the time interval [0, 1]

into M subintervals of length At = 1/M and repeatedly applying the N S-form

48

representation of the operator e via

U(tj+1) = 6At['U(tj), (2.4.20)
for 7=10,1,2,..., M — 1 using the projection of the initial condition,
U(0) = up(iAx). (2.4.21)

In this example our goal is to use the wavelet representation of the
operators appearing in the Crank-Nicolson scheme (2.4.17) to identify a source
of error in low order schemes. In the wavelet domain we compare the Crank-
Nicolson scheme (which we have taken as an example of a low order scheme)
with our ‘exact’, high order, unconditionally stable and explicit method (2.4.20).
The fact that the Crank-Nicolson scheme is unconditionally stable allows one to
choose At independently of Az; in particular one can choose At to be propor-
tional to Az. In order to emphasize our point we ‘mis-use’ the Crank-Nicolson
scheme in that we set Az = At and v = 1. On one hand, since Crank-Nicolson
is second order accurate in both time and space, such choices of the parameters
Az, At, and v appear to be reasonable. However, by analyzing the scheme in the
Fourier domain we find that high frequency components in an initial condition
decay very slowly.

For example, let us consider the following initial condition

8
o
IA

uo(z) = ! (2.4.22)
11—z T

IA
N

IA
IA
—

N[—

that has a discontinuous derivative at = % Figure 2.4 illustrates the evolution
of the initial condition (2.4.22) via (2.4.17) with At = Az and v = 1. The slow
decay of high frequency components in the initial condition is clearly illustrated

in Figure 2.4. We have implemented equation (2.4.20) and display the result in

49

Figure 2.5 for the case where v = 1.0, At = Az = 27" and n = 9. We note that
there is a proper decay of the sharp peak in the initial condition.

The slow decay of high frequency components in the initial condition
via the Crank-Nicolson scheme can be explained as follows. The matrices A
and B can be diagonalized by the Fourier transform so that the Crank-Nicolson
scheme (2.4.17) becomes

Ul(tj+1) = AU(ty), (2.4.23)

where A is the (diagonal) matrix of eigenvalues of A~'B. The eigenvalues of A

and B are given by

Ay = 1+ 2a sin2(2l—N) (2.4.24)
Ay = 1—2asin’({%)
and, thus, the elements of A are given by
1 — 2asin? (%
I (211;) (2.4.25)

T 14 2asin®(dT)
forl =1,2,...,N. We note that || < 1. Let us consider the highest frequency

eigenvalue that corresponds tol = N

1—-2«a
1+ 2

Ay = . (2.4.26)

To clarify our explanation let us choose ¥ = 1 and At = Az so that a = Aix.
Figure 2.6 illustrates the behavior of Ay as a function of . We see that as «
becomes large, or equivalently Az becomes small, the eigenvalue Ay tends to
—1. Eigenvalues with [close to N are the cause of the slow decay of the high
frequency components in the initial condition. We note that there are various
ad hoc remedies (e.g. smoothing) used in conjunction with the Crank-Nicolson

scheme to remove these slowly decaying high frequency components.

O0.50 F 7

0.30 F

U(x,t)

0.20 E

Figure 2.4. Solution of the heat equation using the Crank-Nicolson method

(2.4.17) with At = Az = 27% and v = 1.0. Note the slowly decaying peak in the
solution that is due to the eigenvalue Ay = —0.99902344.

O0.50 F 7

0.30 F

U(x,t)

0.20 E

Figure 2.5. Solution of the heat equation using the NS-form of the exponential
with At = Az = 2% and v = 1.0, i.e. equation (2.4.20).

50

51

Lambda_N

Alpha

Figure 2.6: Maximum eigenvalue of the matrix A~ !B as a function of a = A%c'

52

Let us explain the difference between the results of our wavelet based
approach and those of the Crank-Nicolson scheme in the wavelet basis. We may

consider the Crank-Nicolson scheme in the following explicit form
U(tj_|_1) = AilBU(tj), (2.4.27)

and construct the NS-form representation of the operator A~!B and compare it
with that of e2t£. The NS-form representation of an operator explicitly separates
elements of the operator that act on the high frequency components of u into
the finer scale blocks. These finer scale or high frequency blocks are located in
the upper left corner of the NS-form. Therefore, the blocks of the NS-form of
the operator A~ B (used in (2.4.27)) that are responsible for the high frequency
components in the solution are the significant entries in the upper left portion
of Figure 2.7. One can compare Figure 2.7 with Figure 2.8 which illustrates the
NS-form representation of the exponential operator used in (2.4.20).

We note that although the Crank-Nicolson scheme is not typically used
for this regime of parameters (i.e. v = 1 and At = Az), a similar phenomena
will be observed for any low order method, namely for a given cutoff the NS-form
representation of the matrix for the low order scheme will have more entries than
that of the exponential operator in the wavelet basis.

Let us conclude this example by reiterating that the wavelet based
scheme via (2.4.19) is explicit, and unconditionally stable, since we are comput-
ing the exponential of a negative definite operator. The accuracy in the spatial
variable of our scheme is O(h*M) where M is the number of vanishing moments,
h = Az = 27" and n is the number of scales in the multiresolution analysis.
Additionally, our scheme is spectrally accurate in time. Our scheme is adap-

tive simply by virtue of using a sparse data structure to represent the operator

53

Figure 2.7. NS-form representation of the operator A~ !B used in the Crank-
Nicolson scheme (2.4.17). Entries of absolute value greater than 10~ are shown
in black. The wavelet basis is Daubechies with M = 6 vanishing moments
(Ly = 18), the number of scales is n = 9 and J = 7. We have set v = 1.0 and
At = Az = 27?. Note that the top left portion of the Figure contains non-zero
entries which indicate high frequency components present in the operator A~1B.

' g

Figure 2.8. NS-form representation of the operator e/~** used in (2.4.20). En-
tries of absolute value greater than 10~® are shown in black. The wavelet basis
is Daubechies with M = 6 vanishing moments (L; = 18), the number of scales
isn=29and J="7. We have set v = 1.0 and At = Az = 279.

54

e’At0z: and the sparsity of the solution in the wavelet basis.
Referring to Figures 2.7 and 2.8 it is clear that the NS-form of the

AtL in our high order scheme is sparser than the NS-form for the

operator e
operator A~ B in the second order Crank-Nicolson scheme. In order to quantify
‘sparser’ we consider the compression ratio of a matrix defined by

N2

2.4.2
x (2.4.28)

c

where N = 2" (the dimension of the finest subspace Vi) and Nj is the number
of significant entries present in the matrix. The compression ratio for the NS-
form of the operator A~ !B for the Crank-Nicolson scheme shown in Figure 2.7
is ¢ = 10.7. The compression ratio for the NS-form of the exponential operator
for our scheme shown in Figure 2.8 is ¢ = 35.
Finally we note that if we were to consider (2.4.14) with variable coef-
ficients, e.g.
up = a(T)Ugy, (2.4.29)

Ata(z)L

the exponential operator e can be computed in O(N) operations using

the scaling and squaring method outlined in [49].

2.4.2 Burgers’ Equation Our next example is the numerical cal-

culation of solutions of Burgers’ equation on the unit interval
Ut = Vigy — Ullg 0<z<1 t>0, (2.4.30)
for v > 0, together with the initial condition
u(z,0) = ugp(z) =sin(2rz) 0<z<1 (2.4.31)
and periodic boundary conditions

u(0,t) = u(l,t) =0 ¢t>0. (2.4.32)

55

Burgers’ equation is the prototypical example of a nonlinear partial differential
equation incorporating both linear diffusion and nonlinear advection. Solutions
of Burgers’ equation consist of stationary or moving shocks and capturing such
behavior is an important simple test of a new numerical method. Additionally,
this is the reason why a number of wavelet based schemes have been applied to
this equation, see e.g. [63, 64].

Burgers’ equation may be solved analytically by the Cole-Hopf trans-
formation [33, 34] wherein it is observed that a solution of (2.4.30) may be
expressed as

u(z,t) = —2v—, (2.4.33)

where ¢ = ¢(z,t) is a solution of the heat equation with initial condition
#(z,0) = e wr J u@0)dz (2.4.34)

Remark: We note that if v is small enough, e.g. v = 1073, then
using (2.4.33) as the starting point for a numerical method turns out to be
a poor approach. This is due to the large dynamic range of the transformed
initial condition (2.4.34) (approximately 70 orders of magnitude for the initial
condition (2.4.31)). Consequently the finite arithmetic involved in a numerical
scheme leads to a loss of accuracy in calculating u(z,t) via (2.4.33), notably

within the vicinity of the shock.

Our numerical scheme for computing approximations to the solution of
(2.4.30) is formulated as follows. Following the discussion in Section 2.1 we may

write an O(At?) approximation to the solution of (2.4.30) as

U(tit1) = EU(t:)) + LU (%), U(tj41)), (2.4.35)

56

where

E{U®t) = eArU(t) (2.4.36)
IU®),U(tj11)) = 3001 (Ut)0:U(tis1) + U (1)U (ti11)) ,(2.4.37)

where £ = v0,,, and

Opy = (A1) £7". (2.4.38)

El

Since (2.4.35) is implicit in U(t;41) we are led to consider the iteration

Uk+1(tiv1) = E(U(t:)) + I(U (i), Ug(tj+1)), (2.4.39)
for k =0,1,2,... where we use
Uo(tiv1) = eXEU(t;) + Ora (U(t;)0:U (1)) (2.4.40)

as the initial guess. Note that we have suppressed the explicit x dependence
in these expressions. The stopping criteria for the iteration (2.4.39) is that the
standard deviation between two successive iterates be within e of each other,
ie.

[Uk+1(ti1) — U(tit1)|| <, (2.4.41)

where the left hand side is given by (2.4.12). When (2.4.41) is satisfied the

solution at t;,; is set to the final iterate,
U(tﬂ_l) = Uk+1(ti+1). (2.4.42)

We note that since the solution is expressed as the sum (2.4.35), and
E(U(t;)) is equivalent to the operator used in the solution of the heat equation,
the linear diffusion in (2.4.30) is accounted for in an essentially exact way. Thus
we may attribute numerical artifacts in the solution to the nonlinear advection

term in (2.4.30).

57

Evaluating the iteration (2.4.39) is done as follows. We first compute
the linear contribution (2.4.36) using the adaptive multiplication algorithm de-
scribed in Section 2.2.3. We then compute each summand in the right hand side
of (2.4.37)

U(t;)0xUk(tiv1) + 05U () U (tis1), (2.4.43)

using the pointwise product algorithm described in Section 2.3 and multiply
this result by the NS-form representation of O ; again using the adaptive mul-
tiplication algorithm described in Section 2.2.3. We note that the number of
operations needed to perform each of these operations is proportional to the
number of significant wavelet coefficients present in the representation of the

appropriate functions and operators.

In order to illustrate the applicability of our approach we may vary a
number of parameters. In order to demonstrate the algorithm for evaluating
f(u) developed in Section 2.3 We have chosen the wavelet basis having a scaling
function with shifted vanishing moments, the so-called ‘Coiflets’. In our experi-
ments we fix the number of vanishing moments to M = 6 which is equivalent to
choosing L; = 18. The choice of basis and number of vanishing moments fixes
the quadrature mirror filters {hy} and {gr}. We have also chosen € = 107% so
that only coefficients of absolute value greater than e are used in our calculations
of the solution u(z,t). For a given N the value of J is chosen so that Ly is less
that the dimension of either subspace V; or Wy, i.e. Ly < 2N=J_In this case
the filter does not overlap itself in the decomposition/reconstruction algorithms.
The choices of At and v are made in such a way that we may illustrate the
flexibility of our algorithm to variations in these variables.

For each of the following examples, we illustrate the accuracy of our

58

approach by comparing the approximate solution u,, with the exact solution u,

using
2n 1

|ty — el =27 Z (e (5, 1) — ue(zs,1))%. (2.4.44)
i=0

The approximation u,, is computed via (2.4.39) and the exact solution u, is
computed via, see e.g. [31],

J"OO %efG(T];SC,t)/QVdn

u(z,t) = *ffooo G dy (2.4.45)
where
n R
G(n;z,t) = / F(n')dn' + % (2.4.46)
0

and F(n) = ug(n) is the initial condition (2.4.31). The initial conditions have
been chosen so that (2.4.46) may be evaluated analytically and we compute the

integrals in (2.4.45) using a high order method.

Example 1. In this example n = 10, J = 4, At = 0.001, v = 0.1. We refer
to Figures 2.9-2.12. The large value of v controls the evolution of the solution
and does not permit a sharp shock to form. Figure 2.9 illustrates the projection
of the solution on V{ computed using e = 1079, Figure 2.10 illustrates the
error (2.4.44) per time step in the wavelet solution u,, as compared with the
exact solution u.. The number of operations per time step used to update the
solution is proportional to the number of significant coefficients in the wavelet
representation of the solution. Figure 2.11 illustrates the number of significant
coefficients per time step needed to represent the solution in the wavelet basis.
Figure 2.12 illustrates the number of iterations per time step required to satisfy
the stopping criterion (2.4.41). We note that the compression ratio (2.4.28) for
the NS-form representation of the first derivative, exponential and nonlinear

operators are 14.2, 17.3, and 26.3, respectively.

59

Example 2. In this example n = 10, J = 4, At = 0.001, and v = 0.01. We
refer to Figures 2.13-2.16. Figure 2.13 illustrates the projection of the solution
on Vi computed using e = 1075. Figure 2.14 illustrates the error (2.4.44) per
time step in the wavelet solution u,, as compared with the exact solution u.. The
number of operations per time step used to update the solution is proportional to
the number of significant coefficients in the wavelet representation of the solution.
Figure 2.15 illustrates the number significant coefficients per time step needed
to represent the solution in the wavelet basis. Figure 2.16 illustrates the number
of iterations per time step required to satisfy the stopping criterion (2.4.41). We
note that the compression ratio (2.4.28) for the NS-form representation of the
first derivative, exponential and nonlinear operators are 14.2, 15.4, and 21.3,

respectively.

Example 3. In this example n = 10, J =4, At = 0.001, v = 0.001. We refer
to Figures 2.17-2.19. Decreasing the viscosity by a factor of 10 as compared with
v in Example 2 causes the shock to appear more quickly and to be steeper than
in the previous examples. Moreover using n = 10 scales to represent the solution
in the wavelet basis is insufficient to represent the high frequency components
present in the solution. Figure 2.17 illustrates the projection of the solution on
Vi beyond the point in time where the solution is well represented by n = 10
scales. The data in this Figure was computed using ¢ = 10~%. We see that high
frequency oscillations have appeared in the projection which may be viewed as a
local analogue of the well-know Gibbs phenomenon. Figure 2.18 illustrates the
number of significant coefficients per time step needed to represent the solution
for various values of e. Figure 2.19 illustrates the number of iterations per

time step required to satisfy the stopping criterion (2.4.41). We note that the

60

compression ratio (2.4.28) for the NS-form representation of the first derivative,
exponential and nonlinear operators are 14.2, 15.4 and 21.3, respectively. In

Example 4 we resolve the shock by introducing more scales.

Example 4. In order to resolve the shock and represent high frequency com-
ponents present in the solution, as illustrated by Example 3, we must introduce
more scales. In this example we set n = 15 and J = 9 and leave At = 0.001
and v = 0.001. The subspace Vy may now be viewed as a discretization of the

215 grid points with the step size Az = 2715, We refer to

unit interval into
Figures 2.20-2.23. Figure 2.20 illustrates the projection of the solution on Vj
computed using € = 1075, Figure 2.21 illustrates the error (2.4.44) per time
step in the wavelet solution u,, as compared with the exact solution u.. Figure
2.22 illustrates the number of significant coefficients per time step needed to
represent the solution u(z,t) in the wavelet basis. Again we note that the num-
ber of operations needed to update the solution is proportional to the number
of significant coefficients. Figure 2.23 illustrates the number of iterations per
time step required to satisfy the stopping criterion (2.4.41). We note that the
error increases as the shock forms and then decreases as the viscosity causes the
solution to decay and become more smooth. We note that the compression ratio

(2.4.28) for the NS-form representation of the first derivative, exponential and

nonlinear operators are 442.2, 3708.5 and 1364.9, respectively.

Example 5. In thisfinal example we compute the solution to Burgers’ equation

for the initial condition
) 1.
u(z,t) = sin(2nx) + 2 sin(4rz). (2.4.47)

This initial condition leads to the formation of left and right moving shocks.

61

In this example n = 12, v = 0.001, At = 0.001, J = 6, and ¢ = 1076. We
refer to Figures 2.24-2.27. Figure 2.24 illustrates the projection of the solution
on V. Figure 2.25 illustrates the error (2.4.44) per time step in the wavelet
solution u,, as compared with the exact solution u.. The number of operations
per time step used to update the solution is proportional to the number of
significant coefficients in the wavelet representation of the solution. Figure 2.26
illustrates the number of significant coefficients per time step needed to represent
the solution in the wavelet basis. Figure 2.27 illustrates the number of iterations
per time step required to satisfy the stopping criterion (2.4.41). We note that the
compression ratio (2.4.28) for the NS-form representation of the first derivative,

exponential and nonlinear operators are 442.2, 3708.5 and 1364.9, respectively.

62

Figure 2.9. The projection on Vy of the solution of Burgers’ equation at various
time steps computed via the iteration (2.4.39). In this experiment N = 210
v =0.1, At = 0.001, J = 4, and € = 1075, This Figure corresponds to Example 1
of the text and Figures 2.10, 2.11, and 2.12 below.

Error

Time Step

Figure 2.10. The error (2.4.44) per time step in the approximation (2.4.39) as
compared with the exact solution (2.4.45). This Figure corresponds to Example 1
of the text and Figure 2.9 above.

63

Number of Coefficients

o I I I I
(@) =20 4O SO SO IRele)
Time Step

Figure 2.11. The total number of significant wavelet coefficients per time step.
We note that the solution is sufficiently smooth that the number of significant
coefficients is the same for e = 107%,1075, and 10~*. This Figure corresponds
to Example 1 of the text and Figure 2.9 above.

Herations

(@] L L L L
(@) 20 =4O SO SO 1T OO0
Time Step

Figure 2.12. The number of iterations per time step needed to satisfy the stop-
ping criterion (2.4.11). This Figure corresponds to Example 1 of the text and
Figure 2.9 above.

64

Figure 2.13. The projection on V of the solution of Burgers’ equation at various
time steps computed via the iteration (2.4.39). In this experiment N = 210
v = 0.01, At = 0.001, J = 4, and € = 1075, This Figure corresponds to
Example 2 of the text and Figures 2.14, 2.15, and 2.16 below.

> mz3s=<10 2
1Lo0o=<10 2 —
1Las=<10 2 —
S
[l
hnLoo=<10 2 —
= 51=<10 S —
1.01 =109 ! ! ! !
o = = =) = 10

Time Step

Figure 2.14. The error (2.4.44) per time step in the approximation (2.4.39) as
compared with the exact solution (2.4.45). This Figure corresponds to Example 2
of the text and Figure 2.13 above.

65

Number of Coefficients

(@] L L L L
(@) 1T OO 200 00 40O 500
Time Step

Figure 2.15. The total number of significant wavelet coefficients per time step.
This Figure corresponds to Example 2 of the text and Figure 2.13 above.

lerations
N W
L

o I I I I
(@) Rele) 200 Slele] 400 500
Time Step

Figure 2.16. The number of iterations per time step needed to satisfy the stop-
ping criterion (2.4.11). This Figure corresponds to Example 2 of the text and
Figure 2.13 above.

66

-2 | | |
0.00 0.25 0.50 0.75 1.00

Figure 2.17. The projection on V| of the solution of Burgers’ equation at various
time steps computed via the iteration (2.4.39). In this experiment N = 20, v =
0.001, At = 0.001, J = 4, and € = 10~ ®. An analogue of the Gibbs phenomenon
begins because the shock cannot be accurately represented by n = 10 scales.
We note that the scheme remains stable in spite of the oscillations. This Figure
corresponds to Example 3 of the text and Figures 2.18 and 2.19 below. The
shock is resolved in Example 4, below, by introducing more scales.

67

G O O

Number of Coeffornts

Figure 2.18. The total number of significant wavelet coeflicients per time step.
This Figure corresponds to Example 3 of the text and Figure 2.17 above.

eratons

o == =2s 130 1= =
Tirme Step

Figure 2.19. The number of iterations per time step needed to satisfy the stop-
ping criterion (2.4.11). We note that as high frequency components appear in
the solution the number of iterations rapidly increases. This Figure corresponds
to Example 3 of the text and Figure 2.17 above.

68

Figure 2.20. Resolution of the shock developed in Example 3. The projection on
V) of the solution of Burgers’ equation at various time steps computed via the
iteration (2.4.39). In this experiment N = 2! v = 0.001, At = 0.001, J = 9,
and € = 107%. We note that increasing the number of scales resolves the shock.
This Figure corresponds to Example 4 of the text and Figures 2.21, 2.22, and

2.23 below.

2. 0O>=<1T0O

1T.68>=10O

1.2>=10O

8.0>=<10

4. O>=<10O

(=}

S

R
Time Step

S

Figure 2.21. The error (2.4.44) per time step in the approximation (2.4.39) as
compared with the exact solution (2.4.45). This Figure corresponds to Example 4

of the text and Figure 2.20 above.

69

500

G ele]

S0O00

200

Number of Coefficients

(@] L L L L
(@) 1T OO 200 00 40O 500
Time Step

Figure 2.22. The total number of significant wavelet coefficients per time step.
This Figure corresponds to Example 4 of the text and Figure 2.20 above.

1O
= _
s =

o

=

=2

=

==
a4 _
> _
o I I I I

(@] 100 200 300 4O O 500

Time Step

Figure 2.23. The number of iterations per time step needed to satisfy the stop-
ping criterion (2.4.11). This Figure corresponds to Example 1 of the text and
Figure 2.9 above.

70

Figure 2.24. The projection on V of the solution of Burgers’ equation at various
time steps computed via the iteration (2.4.39). In this experiment N = 22
v = 0.005, At = 0.001, J = 6, ¢ = 1075, and the initial condition is given by
u(z,t) = sin(27z) + 1 sin(4rz). This Figure corresponds to Example 5 of the
text and Figures 2.25, 2.26, and 2.27 below.

4. 0o=<10 "2
Z.O0<10 = —
S o o=<10 21 —
| -
1TLo=<107 2 —
(@) | | | |
o = “ = = 10

Time Step

Figure 2.25. The error (2.4.44) per time step in the approximation (2.4.39) as
compared with the exact solution (2.4.45). This Figure corresponds to Example 5
of the text and Figure 2.24 above.

71

500

400 -

SO00 — —

200 — —

Number of Coefficients

(@] L L L L
(@) 1T OO 200 00 40O 500
Time Step

Figure 2.26. The total number of significant wavelet coefficients per time step.
This Figure corresponds to Example 5 of the text and Figure 2.24 above.

=)
>
92}
=
=
=
=
> —
4 —
o 1 ! ! !
(@] 100 200 300 4O O 500

Time Step

Figure 2.27. The number of iterations per time step needed to satisfy the stop-
ping criterion (2.4.11). This Figure corresponds to Example 5 of the text and
Figure 2.24 above.

72

2.4.3 The Forced Heat Equation Our third example is the nu-

merical calculation of solutions of the so-called forced heat equation
up = Vugy + f(u) 0<z<1 ¢t>0 (2.4.48)
for v > 0, together with an initial condition
u(z,0) =up(z) 0<z<1 (2.4.49)
and periodic boundary conditions
u(0,t) =u(l,t) =0 ¢>0. (2.4.50)

It is well-known that solutions of this type of problem exhibit blowing-up be-
havior, see e.g. [35, 36] and references therein. For various specific nonlinear
functions f(u) = uP, f(u) = e*, etc. the behavior of the solution has been
studied in detail and a number of specialized numerical techniques have been
developed, see e.g. [37, 38]. which use for example repeated rescaling, However
these numerical schemes typically rescale the solution using thresholding mech-
anisms, which depend on the particular choice of the function f(u) and tend to
be rather ad hoc.

In this Section we apply our approach to the simple test case where
f(u) =u?, v =0.001 and At = 0.01. We fix n =12, J =5, and e = 10 ¢ and
use ‘Coiflets’ in order to apply the multiplication algorithm described in Section
2.3. We have included this example in order to illustrate the straightforward
applicability of our approach: we have simply used the algorithms much in the
same way one would use a ‘canned’ FFT subroutine. In each example we have
use the stopping criterion (2.4.41).

Figure 2.28 illustrates the evolution of the solution of (2.4.48) with the

73

initial condition

ug(z) = 14 e~ a(@=1/2)?, (2.4.51)

where ¢; = 500. We note that one may view the relationship between the
subspaces V; and W; as an analogue of a rescaled coordinate system. Ad-
ditionally, the only ‘algorithmic’ parameter introduced by our approach is the
cutoff e. Figure 2.29 illustrates the evolution of the solution of (2.4.48) with the

initial condition
up(z) =1+ %e_cl(w_l/‘l)z 4 emcr(@=3/4)°, (2.4.52)

where ¢; = 500. We note that our algorithm automatically distinguishes be-
tween the humps by placing significant wavelet coefficients in the vicinity of

large gradients in the solution.

74

(@)

.O
o.O .2 O. 4 O.6 o.8 1.0

Figure 2.28. The projection on Vy of the solution of (2.4.48) with f(u) = u?
and using the initial condition (2.4.51). In this experiment N = 22, J = 5,
v =0.001, At = 0.01 and € = 1075

(@)

.O
o.O .2 O. 4 O.6 o.8 1.0

Figure 2.29. The projection on Vj of the solution of (2.4.48) with f(u) = u3
and using the initial condition (2.4.52). In this experiment N = 22, J = 5,
v = 0.001, At = 0.01 and € = 1075.

75

2.5 Conclusions

In this Chapter we have introduced new algorithms for the fast, adap-

tive numerical solution of nonlinear partial differential equations of the form

u = Lu+ N f(u) (2.5.1)
u(z,0) = ug(x) 0<z<1 (2.5.2)
w0,8) =u(l,) 0<t<T (2.5.3)

for the unknown function v = u(z,t). The differential operators £ and N are
assumed to be time-independent and the function f(u) is nonlinear. The solution
u(z,t) of (2.5.1) with (2.5.2) and (2.5.3) typically possess smooth and shock-like
behavior and we have demonstrated an approach which combines the desirable
features of finite difference approaches, spectral methods and front-tracking or
adaptive grid approaches usually applied to such problems.

We have introduced two new efficient, generic algorithms which use
wavelet expansions of the functions and operators to compute solutions of (2.5.1).
These algorithms take advantage of the fact that wavelet expansions may be
viewed as a localized Fourier analysis with multiresolution structure which ac-
commodates both smooth and shock-like behavior in the solution. In smooth
regions few wavelet coefficients are needed and in singular regions large variations
in the solution require more wavelet coefficients. The need for fast, adaptive algo-
rithms for computing solutions of (2.5.1) motivated us to develop the algorithms
introduced in this Chapter. These algorithms have complexity proportional to

the number of significant coefficients in the wavelet expansions of solutions of

(2.5.1).

76

To summarize, in Section 2.1 we used the semigroup approach to ex-
press the solution of (2.5.1) with (2.5.2) and (2.5.3) in terms of the nonlinear
integral equation

u(z,t) = ey (z) + tt eEIEN f(u(z, 7))dr. (2.5.4)

0

We introduced a method for approximating the nonlinear integral equation to
an arbitrary order of accuracy. The results of Section 2.1 are exemplified by
equations (2.1.17)-(2.1.20) which are solutions of (2.5.1) written in terms of op-
erators. The matrices representing these operators have dense representations
in traditional approaches (e.g. finite differences) and lead to computationally
expensive algorithms. As far as we know a direct efficient or adaptive numer-
ical method for solving (2.5.1) based on the semigroup approach has not been
formulated.

In Section 2.2 we compute the nonstandard form representation of
the operators appearing in the approximations of (2.5.4). We then prove the
vanishing-moment property of the B7 blocks of the NS-form representation of
differential operators and the Hilbert transform. Additionally we prove this re-
sult for the NS-form representation of the operator functions appearing in the
approximation of (2.5.4). This property is the basis for a rapid, adaptive al-
gorithm for applying the NS-form representation of operators to the wavelet
expansion of the solution u(z,t) of (2.5.1). Section 2.2.3 and Appendix C pro-
vide a description of this algorithm and the corresponding pseudocode. Applying
operators to functions via this algorithm is computationally proportional to the
number of significant coefficients in the wavelet representation of the function.
This complexity is a significant increase the efficiency of similar algorithms in

traditional numerical methods.

7

In Section 2.3 we described an adaptive approach to computing func-
tions f(u) where u(z,t) is expanded in a wavelet basis. In particular we ad-
dressed the question of computing the pointwise square, i.e. f(u) = u?. We
showed that the coefficients of the projection of u(z,t) onto subspaces W; may
be used to identify or ‘mask’ coefficients in subspaces V;. These masked co-
efficients are then used in conjunction with the wavelet coeflicients on W; to
evaluate u? via the so-called paraproduct, (2.3.17)

J
(Pow)? = (Pru)? + 3 2(Pyu)(Qu) + (Qu)™. (2.5.5)
J=js
Once again the computational complexity of computing (2.5.5) is proportional to
the number of significant coefficients in the wavelet representation of u(z,t). We
then conclude with a discussion of the problem of adaptively computing more
general functions f(u) in wavelet bases using a number of operations which is

proportional to the number of coefficients in the wavelet representation of u(z, t).

In order to illustrate our algorithms we compute approximations to
the solutions of several model equations in Section 2.4. We first illustrated our
methodology by approximating the solution of the linear heat equation and com-
paring our results with the exact solution and the approximation arrived at by
the well-known Crank-Nicolson method. The purpose of this comparison is to il-
lustrate that the wavelet representation of operators for diffusion-type equations
are sparser for high order methods (for a given accuracy) than the corresponding
operators for lower order methods. Additionally we compute approximations to
the solutions of Burgers’ equation and a version of the forced heat equation. In
the case of Burgers’ equation we provide a number of examples which illustrate

the impact of different viscosities on the parameters associated with the choice

78

of wavelet basis and the accuracy of the approximation. Decreasing the viscos-
ity results in the formation of a sharper shock. In traditional front-tracking or
adaptive grid approaches, decreasing the viscosity requires one to incorporate
new grid points near the shock; this may be done in an essentially ad hoc fash-
ion. In traditional our wavelet based approach decreasing the viscosity requires
the introduction of a greater number of scales in the wavelet representation of
the solution. In our wavelet based approach new basis functions or wavelet co-
efficients are automatically and adaptively introduced based on the sharpness of
the solution. Moreover, the number of calculations required to introduce new
basis functions is proportional to the number of coefficients needed to represent
the solution at the previous time step. The example of the forced heat equation
was included to illustrate the genericity and flexibility of our algorithms and the

overall approach.

2.5.1 Future Directions There are several directions for this
course of work which we have left for the future. For example, one may consider
nonperiodic boundary conditions instead of the periodic boundary condition
(2.5.3). We note that variable coefficients in the linear terms of the evolution
equation (2.5.1) may be accommodated by computing the NS-form of the corre-
sponding operators. Another direction has to do with the choice of the wavelet
basis. One of the conclusions which we have drawn from this study is that there
seems to be a number of advantages to using basis functions which are piecewise
polynomial. In particular the spline family of bases appears to be attractive as
well as multiwavelets. In both cases there are also disadvantages and an ad-
ditional study might be necessary to understand such a tradeoff. Yet another

generalization is to consider multidimensional problems. An example of this

type of problem is the Navier-Stokes equations.

79

BIBLIOGRAPHY

[1] J. von Neumann. Theory of Self-Reproducing Automata, edited and com-
pleted by A. Burks. University of Illinois Press, Champaign, IL, (1966).

[2] B. Madore and W. Freedman. Computer Simulation of the Belousov-
Zhabotinskii Reaction. Science 222, p615 (1983).

[3] J. Greenberg and S. Hastings. Spatial Patterns for Discrete Models of Diffu-
sion in Excitable Media. SIAM J. Appl. Math. 34, p515 (1978).

[4] J. Hardy and Y. Pomeau. Thermodynamics and Hydrodynamics for a Mod-
eled Fluid. J. Math. Phys. 13, p1042 (1972).

[6] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice Gas Automata for the
Navier-Stokes Equation. Phys. Rev. Lett. 56, p1505 (1986).

[6] J. Hardy, O. de Pazzis, Y. Pomeau. Time evolution of a two-dimensional
model system: I. Invariant states and time correlation functions. J. Math.
Phys. 14, p1746 (1973).

[7] H.A. Lim. Lattice Gas Automata of Fluid Dynamics for Unsteady Flows.
Complex Systems 2, p45 (1988).

[8] B. Boghosian and C. Levermore. A Cellular Automata for Burgers’ Equation.
Complex Systems 1, p17 (1987).

[9] J. Lebowitz, E. Orlandi, E. Presutti. Convergence of stochastic cellular au-
tomata to Burgers’ equation: fluctuations and stability. Physica D 33, p165
(1988).

[10] J. Greenberg and S. Hastings. Spatial Patterns for Discrete Models of Dif-
fusion in Excitable Media. SIAM J. Appl. Math. 34, p515 (1978).

[11] N. Margolus, T. Toffoli, and G. Vichniac, Cellular automata supercomput-
ers for fluid dynamics modeling, Phys. Rev. Lett. 56, p1696 (1986).

[12] S. Wolfram. Theory and Application of Cellular Automata. World Scientific,
Singapore (1986).

131

[13] Cellular Automata: Theory and Experiment. Proceedings of a Workshop
Sponsored by the Center for Nonlinear Studies, Los Alamos National Labo-
ratory. Physica D 45, September 1990.

[14] K. Steiglitz, I. Kamal, and A. Watson. Embedding Computation in One-
Dimensional Automata by Phase Coding Solitons. IEEE Trans. on Comput-
ers. 37, (1988).

[15] J. Park, K. Steiglitz, and W. Thurston. Soliton-Like Behaviour in Au-
tomata. Physica D 19, p423 (1986).

[16] M.J. Ablowitz and H. Segur. Solitons and the Inverse Scattering Transform.
SIAM, Philadelphia (1981).

[17] L. Faddeev and L.A. Takhtajan. Hamiltonian Methods in the Theory of
Solitons. Springer-Verlag (1987).

[18] T. S. Papatheodorou, M. J. Ablowitz, and Y. G. Saridakis. A Rule for the
Fast Computation and Analysis of Soliton Automata. Stud. Appl. Math. 79,
pl173 (1988).

[19] A. S. Fokas, E. Papadopoulou, Y. G. Saridakis, M. J. Ablowitz. Stud. Appl.
Math. 81, p153 (1989).

[20] J. M. Keiser. On the Computation of Periodic Particles for Cellular Au-
tomata. Masters Thesis, Clarkson University (1989).

[21] M.J. Ablowitz and J.M. Keiser. On Particles and Interaction Properties of
the Parity Rule Filter Automata. PAM report 68 (1990).

[22] M.J. Ablowitz, B.M. Herbst, and J.M. Keiser. Solitons, Numerical Chaos
and Cellular Automata, in Integrable and Super-Integrable Systems. Ed.
B.A. Kuperschmidt. World Scientific (1990).

[23] C. H. Goldberg. Parity Filter Automata. Complez Systems 2, p91 (1988).

[24] M.J. Ablowitz, J.M. Keiser and L.A. Takhtajan. A class of stable multi-
state time-reversible cellular automata with rich particle content. Phys. Rev.
A 44, p6909 (1991).

[25] R. Lidl and H. Niederreiter. Introduction to Finite Fields and their Appli-
cations. Cambridge University Press (1986).

132

[26] M. Bruschi and P.M. Santini. Cellular automata in 141, 241 and 3+1
dimensions, constants of motion and coherent structures. Physica D 70, p185
(1994).

[27] M. Bruschi and P.M. Santini. Integrable cellular automata. Physics letters,
A 169, p151 (1992).

[28] J. Stoer and R. Burlisch. Introduction to Numerical Analysis. Springer-
Verlag, (1980).

[29] G. Dahlquist and A. Bjorck. Numerical Methods. Prentice-Hall, (1974).

[30] A. Pazy. Semigroups of Linear Operators and Applications to Partial Dif-
ferential Equations. Springer-Verlag, (1983).

[31] G.B. Whitham. Linear and Nonlinear Waves. Wiley, (1974).

[32] J.M. Burgers. A mathematical model illustrating the theory of turbulence.
Adv. Appl. Mech. 1, p171 (1948).

[33] E. Hopf. The Partial Differential Equation u; + uu, = pug,. Comm. on
Pure and Appl. Math. 3, p201, (1950).

[34] J. D. Cole. On a quasilinear parabolic equation occurring in aerodynamics.
Quart. App. Math. 9, p225 (1951).

[35] J. Bebernes and A. Lacey. Finite-Time Blowup for a Particular Parabolic
System. SIAM J. Math. Analysis 21, pl415 (1990).

[36] J. Bebernes and S. Bricher. Final Time Blowup Profiles for Semilinear
Parabolic Equations via Center Manifold Theory. SIAM J. Math. Analysis
23, p852 (1992).

[37] M. Berger and R. V. Kohn. A Rescaling Algorithm for the Numerical Cal-
culation of Blowing-up Solutions. Comm. Pure and Appl. Math. 41, p841
(1988).

[38] W. Huang, Y. Ren, and R. Russell. Moving Mesh Methods Based on Moving
Mesh Partial Differential Equations. J. Comp. Phys. 113, p279 (1994).

[39] K. Yosida. Functional Analysis. Springer-Verlag, (1980).

[40] P. Constantin, P.D. Lax, A. Majda. A Simple One-dimensional Model for
the Three-dimensional Vorticity Equation. Comm. Pure and Appl. Math. 38,
p715 (1985).

133

[41] S. Mallat. Multiresolution Approximation and Wavelets. Technical Report,
GRASP LAB, Department of Computer and Information Science, University
of Pennsylvania.

[42] I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm.
Pure and Appl. Math. 41 p909 (1988).

[43] I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Series in Applied
Mathematics. SIAM (1992).

[44] B. Alpert. Sparse Representation of Smooth Linear Operators. Ph.D. The-
sis, Yale University (1990).

[45] G. Beylkin. On the representation of operators in bases of compactly sup-
ported wavelets. STAM J. Numer. Anal. (1992).

[46] G. Beylkin. Wavelets and Fast Numerical Algorithms. Proceedings of Sym-
posia in Applied Mathematics, 47 (1993).

[47] G. Beylkin. Wavelets, Multiresolution Analysis and Fast Numerical Algo-
rithms. A draft of INRIA Lecture Notes, (1991).

[48] G. Beylkin, R. R. Coifman, and V. Rokhlin. Fast wavelet transforms and
numerical algorithms I. Comm. Pure and Appl. Math., 44:141-183, 1991.
Yale University Technical Report YALEU/DCS/RR~696, August (1989).

[49] G. Beylkin, R. R. Coifman and V. Rokhlin. Wavelets in Numerical Analysis.
Wavelets and Their Applications, p181 Eds. M.B.Ruskai et. al. Jones and
Bartlett, (1992).

[50] J. M. Bony. Calcul symbolique et propagation des singularités pour les
équations aux dérivées partielles non-linéaires. Ann. Scient. E.N.S., 14 p209
(1981).

[51] R.R. Coifman and Y. Meyer. Au dela des opérateurs pseudo-différentiels. In
Astérisque, 57, (seconde édition revue et augmentée). Société Mathématique
de France.

[52] I. Daubechies and J. Lagarius. Two-scale difference equations, I. Global
regularity of solutions & II. Local regularity, infinite products of matrices
and fractals. SIAM J. Math. Anal., (1991).

[63] Charles K. Chui. An Introduction to Wavelets. Academic Press (1992).

134

[64] Y. Meyer. Wavelets and operators. Cambridge studies in advanced mathe-
matics, 37 (1992).

[65] Y. Meyer. Le Calcul Scientifique, les Ondelettes et les Filtres Miroirs en
Quadrature. Centre de Recherche de Mathématiques de la Décision. Report
9007.

[66] M.V. Wickerhauser. Adapted Wavelet Analysis from Theory to Software.
A. K. Peters, Ltd. Wellesley, Massachusetts (1994).

[57] Eisenstat, et al. Yale Sparse Matrix Package, I. The Symmetric Codes. Yale
Technical Report #112.

[68] H.-O. Kreisss and J. Oliger. Comparison of accurate methods for the inte-
gration of hyperbolic equations. Tellus 24, p199 (1972).

[59] B. Fornberg. On a Fourier Method for the Integration of Hyperbolic Equa-
tions. SIAM J. Numer. Anal. 12, p509 (1975).

[60] B. Fornberg and G.B. Whitham. A numerical and theoretical study of
certain nonlinear wave phenomena. Phil. Trans. R. Soc. Lond., 289, p373
(1978).

[61] I. Christie, D.F. Griffiths, A.R. Mitchell, and J.M. Sanz-Serna. Product
Approximation for Non-linear Problems in the Finite Element Method. IMA
Journal of Numerical Analysis 1, p253 (1981).

[62] I. Christie and J.M. Sanz-Serna. Petrov-Galerkin Methods for Nonlinear
Dispersive Waves. Journal of Computational Physics 39, p94 (1981).

[63] R.L. Schult and H.-W. Wyld. Using Wavelets to Solve the Burgers’ Equa-
tion: A Comparative Study. Physical Review A, 46, p12 (1992).

[64] J. Liandrat, V. Perrier and Ph. Tchamitchian. Numerical Resolution of Non-
linear Partial Differential Equations using the Wavlet Approach. Wavelets
and Their Applications. Eds: M.B. Ruskai, G. Beylkin, R. Coifman, I.
Daubechies, S. Mallat, Y. Meyer and L. Raphael. Jones and Bartlett Pub-
lishing, Inc. (1992).

APPENDIX A

PRELIMINARIES AND CONVENTIONS OF WAVELET
ANALYSIS

In this Appendix we briefly review the notation associated with wavelet
basis expansions of functions and operators. We begin in Appendix A.l1 by set-
ting the notation associated with multiresolution analysis, which is the frame-
work for wavelet analysis. The representation of functions expanded in wavelet
bases is described in Appendix A.2. Expansions of operators in wavelet bases
take two natural forms and in Appendix A.3 we describe the construction and
properties of the standard and non-standard forms of operators. In Appendix
A.4 we review [45] and discuss the construction of the non-standard form of

differential operators.

A.1 Multiresolution Analysis

We start with the notion of a multiresolution analysis (MRA). An MRA
is a decomposition of a Hilbert space, e.g. L2(IR), into a chain of closed sub-
spaces

...CVoCViCcVygCV_;CV_LC.... (A.l.l)

that satisfy properties specified in Appendix A. We define an associated sequence

of subspaces W; as the orthogonal complements of V,; in V;_1,
V,.1=V,PpwW;. (A.1.2)

Repeatedly using (A.1.2) shows that subspace V; can be written as the direct
sum of subspaces W ;:

V=P w;. (A.1.3)
i'>j

136

For functions of one variable, the set of dilations and translations of
the scaling function ¢(-), {¢;x(z) = 279/2¢0(27z — k) } e z, forms an orthonor-
mal basis of V; and the set of dilations and translations of the wavelet (),
{jr(z) = 279/24p(27Ix — k)}ge z, forms an orthonormal basis of W;. The

scaling function ¢(z) satisfies the two-scale difference equation

L—1
o(z) = V2 Z hrp(2z — k) (A.1.4)

k=0

and the wavelet (x) is defined by

L—1
p(z) = V2 grp(2x — k). (A.1.5)

k=0

The sets of coefficients H = {h;} and G = {gx} are called Quadrature Mirror
Filters (QMF’s) that, once chosen, define a particular wavelet basis. The integer
L is the length of the QMF and is related to the number of vanishing moments
M of the wavelet ¢(z), e.g. L = 2M for Daubechies wavelets, [42].

Here we have fixed the integer L < oo which means that we are consid-
ering compactly supported wavelets. Although some of our algorithms specifi-
cally rely on the finite support of wavelets, similar considerations are applicable

to wavelets without compact support.

A.2 Representation of Functions in Wavelet Bases
The projection of a function f(z) onto subspace V; is given by
(Pif)(z) = 3 siejn(z) (A.2.6)
ke Z
where P; denotes the projection operator onto subspace V;. The set of co-
efficients {si}ke z, which we refer to as ‘averages’, is computed via the inner

product
. +00
sfc = [f(@)pjk(z)d. (A.2.7)

137

It follows from (A.1.3) and (A.2.6) that we can also write (P;f)(z) as a sum of
projections of f(z) onto subspaces W, j' > j

(Pif) (@) =3 df pjr () (A.2.8)

'>j ke XL

where the set of coeflicients {dfc} ke 7, which we refer to as ‘differences’, is com-
puted via the inner product
. +00
d = f(@)jk(x)d. (A.2.9)
o

The projection of a function on subspace W is denoted (Q;f)(x), where Q; =
Pj_1 - Bj.

For numerical purposes we define a ‘finest’ scale, 7 = 0, and a ‘coarsest’

scale, 7 = J, such that the infinite chain (A.1.1) is restricted to

V; € Vyj1 C ... C Vy (A.2.10)

We will also consider a periodized version of the multiresolution analysis that is
obtained if we consider periodic functions. Such a periodization is the simplest,
but not the most efficient or elegant, way to consider the multiresolution analysis
of a function on an interval. The problem with periodization is that an arbitrary
smooth function on an interval is not necessarily periodic and we can therefore
introduce an artificial singularity at the boundary. A more elegant approach
would use wavelets on the interval, [42], or multiwavelets, [44]. We choose to
consider the periodization described here since it is the easiest way to describe
the adaptive algorithms we are developing and the approach does not change
substantially if we use other bases. We will therefore consider functions of period
N = 2" and their projections on V3. With a slight abuse of notation we will
denote these periodized subspaces also by V; and W .

We can then view the space V(as consisting of 2" ‘samples’ or lattice

points and each space V; and W; as consisting of 2n=J lattice points, for j =

138

1,2,...,J. On each subspace V; and W; the coefficients of the projections
satisfy
S?f N S??“””' (A.2.11)
d?c = dk—|—2n—j
for each j = 1,2,...,J and k € Fon—; =% /2" I &, i.e. IFyn—; is the finite field
of 277 integers, e.g. the set {0,1,...,2" 7 —1}.
The expansion into the wavelet basis of the projection of a function

f(z) on Vj is given by a sum of successive projections on subspaces W, j =

1,2,...,J, and a final ‘coarse’ scale projection on V,
J .
(Pof) (=)= Y dpiplz)+ D slesr(z). (A.2.12)
Jj=1 kE]Fanj kEF2n_J

Given the set of coefficients {s)}iecF,n., i-e. the coefficients of the projection of
f(z) on Vg, we use (A.1.4) and (A.1.5) to replace (A.2.7) and (A.2.9) by the

following recursive definitions of sj, and d7,

L-1

sho= Y sl (A.2.13)
=1

i L-1 -

dfc = Zglsﬁ%ﬂ, (A.2.14)

=1

where j =1,2,...,J and k € Fgn;.

Given the coefficients s° = Pyf € V; consisting of N = 2" ‘samples’
the decomposition of f into the wavelet basis is an order N procedure, i.e.
computing the coefficients di and si recursively using (A.2.13) and (A.2.14) is
an order N algorithm. Computing the J-scale decomposition of f via (A.2.13)
and (A.2.14) by the Laplacian pyramid scheme is illustrated in Figure A.1.

Figure A.2 illustrates a typical wavelet representation of a function
with N =2", n =13 and J = 7. Although we have generated this Figure using
‘Coiflets’, see e.g. [42], with M = 6 vanishing moments and an accuracy (cutoff)

of € = 1079, the distribution of significant coefficients is typical for other wavelet

139

{sk} — {si} — st} — {si} — {si}
N N N N
{d}} {di} {di} - {di'}-

Figure A.1. Projection of the coefficients {s}} into the multiresolution analysis
via the Laplacian pyramid scheme.

bases. The top Figure is a graph of the projection of the function f on subspace
V), which we note is a space of dimension 2'3. Each of the next J = 7 graphs
represents the projection of f on subspaces W;, for j = 1,2,...7. Each W} is
a space of dimension 21377, i.e. each consists of 2137/ grid points. Even though
the width of the graphs is the same, we note that the number of grid points that
discretize W is twice the number of grid points that discretize W;,,. Since
these graphs illustrate coefficients df; which are above the threshold of accuracy,
€, we note that the spaces Wi, Wo, W3, and W, consist of no significant
wavelet coefficients. This illustrates the ‘compression’ property of the wavelet
transform: regions where the function (or its projection (Pyf) = fo) has large
gradients are transformed to significant wavelet coefficients. The final (bottom)
graph represents the significant coefficients of the projection of f on V ;. This

set of coefficients, {sg }eer. g, is typically dense and in this example there are 61

267

significant coefficients.

140

0.0035
7680

0.122 ’\\/\//\;
00000

11
8064

Figure A.2. Graphical representation of a ‘sampled’ function on Vg and its
projections onto W; for j = 1,2,...7 and V7. Entries above the threshold of
accuracy, € = 1075, are shown. We refer to the text for a full description of this

Figure.

141

A.3 The Standard and Non-Standard Form of Operators

In order to represent an operator 7 : L2(R) — L2(IR) in the wavelet
system of coordinates, we consider two natural ways to define two-dimensional
wavelet bases. First, we consider a two-dimensional wavelet basis which is ar-
rived at by computing the tensor product of two one-dimensional wavelet basis

functions, e.g.
Vit ke (T Y) = Pj0(2) 0 1 (y) (A.3.15)

where j,j', k, k' €Z. This choice of basis leads to the standard form (S-form) of
an operator, [45, 48]. The projection of the operator 7" into the multiresolution

analysis is represented in the S-form by the set of operators

T ={4;, {Bﬁf }j’Zj-l-la {F§ }j’2j+1}je %> (A.3.16)

where the operators A4;, Bgl, and I‘;:’ are projections of the operator T into the

multiresolution analysis as follows

Aj = QjTQj : Wj — Wj
Bl = QTQy : Wj—>W, (A.3.17)

forj=1,2,...,nand 7 =j+1,...,n
If n is the finite number of scales, as in (A.2.10), then (A.3.16) is

restricted to the set of operators

Ty = {A;,{BI' Y} {riy By T T}, s (A.3.18)

J'_J+1’ '_J+1’

where Tj is the projection of T' on V. Here the operator T;, is the coarse scale

projection of the operator T" on V,,,

T, = P,TP,:V, — V,. (A.3.19)

The subspaces V; and W appearing in (A.3.17) and (A.3.19) can be periodized

in the same fashion as described above.

142

e operators A;, -'I, :’, and T appearing in (A.3. an .3.
Th A; Bg I‘; d T g A.3.16 d (A.3.18

are represented by matrices o7, ﬂj’j', fyj’j' and s/ with entries defined by

oy = [i@ K @y)dedy |
@@ = [[ip@) K (,9)p) p(y)dedy A520)
Yo = [Jein@ K@y p(y)dedy
sy = L oin@)K(@,y)ew(y)dedy

where K (z,y) is the kernel of the operator T. The operators in (A.3.18) are
organized as blocks of a matrix as shown in Figure A.3.

In [45] it is observed that if the operator 7' is a Calderén-Zygmund
or pseudo-differential operator then, for a fixed accuracy, all the operators in
(A.3.16) are banded. In the case of a finite number of scales the operator T,
and possibly some other operators on coarse scales can be dense. As a result the
S-form has several ‘finger’ bands, illustrated in Figure A.4. These ‘finger’ bands
correspond to interactions between different scales. For a large class of operators,
e.g. pseudo-differential, the interaction between different scales (characterized
by the size of the coefficients in the bands) decays as the distance |j —j'| between
the scales increases. Therefore, if the scales 7 and j' are well separated, then
for a given accuracy, the operators Bgl and F;:’ can be neglected. For compactly
supported wavelets, the distance |j — j'| is quite significant; in a typical example
for differential operators |j — j'| = 6. This is not necessarily the case for other

families of wavelets. For example, Meyer’s wavelets [54] are characterized by

(2m) 7124 sin(Fr (¢ - 1)) F <[] <F

3 — 3
D) =1 (2m) 2/ cos(Fu(21E| - 1)) & <|g| < (A.3.21)
0 otherwise

where v is a C'™ function satisfying

v(z) = - (A.3.22)

143

and
v(iz) +v(l—z) =1, (A.3.23)
for example
0 <0
v(z) =9 sin*(Zz) 0<z <1 (A.3.24)
1 r>1

(see e.g. [42]). In this case the interaction between scales for differential oper-
ators is restricted to nearest neighbors where |j — j/| < 1. On the other hand,
Meyer’s wavelets are not compactly supported in the time domain which means
the finger bands will be much wider than in the case of compactly supported
wavelets. The control of the interaction between scales is better in the non-
standard representation of operators, which we discuss below.

Another property of the S-form which has an impact on numerical
applications is due to the fact that the wavelet coefficients are not shift invariant.
Even if the operator T is a convolution then the Bgl and I‘;:, blocks of the S-
form are not convolutions. Thus the S-form of a convolution operator is not an

efficient representation, especially in multiple dimensions.

144

2 3 4 5
A B
1 1 Bl Bl Bl
[_2
3 4| 5
! A2 BZ BZ BZ
3
r 3 4| 5
1 r2 Aj 83 83
4 4 4 5
r, r, M, Ay B,
5 5 5 51
|',I r2 r3 r 4

Figure A.3: Organization of the standard form of a matrix.

145

Figure A.4: Schematic illustration of the finger structure of the standard form.

146

An alternative to forming two-dimensional wavelet basis functions using
the tensor product (which led us to the S-form representation of operators) is to
consider functions which are combinations of the wavelet, (-), and the scaling
function, ¢(-). We note that such an approach to forming basis elements in
higher dimensions is specific to wavelet bases (tensor products as considered
above can be used with any basis, e.g. Fourier). The wavelet representation of
an operator in the non-standard form (NN .S-form) is arrived at using bases formed

by combinations of wavelet and scaling functions, for example, in L?(IR?)

bk (@) Yin (y)
Vik(T) i (Y) (A.3.25)
Pik(@) Yiw(y)

where j, k, k' €Z. The NS-form of an operator T is obtained by expanding T

in the ‘telescopic’ series

T =) (Q;TQ;+Q;TP; + PTQ;), (A.3.26)
JEXL
where P; and (); are projectors on subspaces V; and Wj, respectively. We

observe that in (A.3.26) the scales are decoupled. The expansion of T" into the

N S-form is thus represented by the set of operators
where the operators A;, B;, and I'; act on subspaces V; and W as follows
Aj = QjTQj : Wj — Wj
B; = Q;TP; : V;—=>W; (A.3.28)
Fj = R?TQJ : W]' — Vj
see e.g. [48].
If J < n is the finite number of scales, as in (A.2.10), then (A.3.26) is

truncated to
J
To = Y_(Q;TQ; + QTP; + F;TQ;) + PyTP;, (A.3.29)
j=1

147

and the set of operators (A.3.27) is restricted to
Ty = {{AjaBjaP }_7 17TJ} (A330)

where Ty is the projection of the operator on V and T is a coarse scale pro-

jection of the operator T
TJ:PJTPJ:VJ—)VJ (A.3.31)

using, e.g. in L2(IR?), the basis functions

1k(x) ©1p(Y), (A.3.32)

for k, k' €.
The operators A;, B;,I'; and T; appearing in the N S-form are repre-

sented by matrices o/, 37,~7, and s/ with entries defined by

ai,k’ = ffK(iB,y)%, (I)lﬁg,k'(y)dwdy \
ﬁkk = K@ is@gix sy | A3
Y = JIE@)0x@)bm(y)dedy
sl = K@ y)ei@)ein(y)dzdy

in L2(IR?). The operators in (A.3.30) are organized as blocks of a matrix as

shown in Figure A.5.

148

Figure A.5. Organization of the non-standard form of a matrix. A;, Bj, and I';,
j =1,2,3, and T3 are the only non-zero blocks.

149

The price of uncoupling the scale interactions in (A.3.26) is the need
for an additional projection into the wavelet basis of the product of the N .S-form
and a function. The term non-standard form comes from the fact that the vector
to which the N S-form is applied is not a representation of the original vector in
the wavelet basis. Referring to Figure A.6 we se that the N S-form is applied to
both averages and differences of the wavelet expansion of a function. In this case
we can view the multiplication of the NS-form and a function as an embedding

of matrix-vector multiplication into a space of dimension
M =2" 727+ 1) (A.3.34)

where n is the number of scales in the wavelet expansion and J < n is the depth
of the expansion. This result must then be projected back into the original space
of dimension N = 2". We note that in general M > N and for J = n we have
M =2N —1.

1

A, B, d d
1 ~1

r, s s
2 2

A B d d

r s? $?

NANBs| | o a®

ol Ts| |S° s?

Figure A.6: Application of non-standard form to a vector.

150

It follows from (A.3.26) that after applying the NS-form to a vector

we arrive at the representation

(To fo)(z Z S dipiul +Z S Sk (A.3.35)

J=1k€F ,_; J=1keF,,_;

The representation (A.3.35) consists of both averages and differences on all scales
which can either be projected into the wavelet basis or reconstructed to space V.
In order to project (A.3.35) into the wavelet basis we form the representation,

see (A.2.12),

J

(To fo)(z 2 dabj ke (x > siesr(a), (A.3.36)

J=1keF,, keIF2n_ ;

using the decomposition algorithm described in Appendix A.2 as follows. Given
the coefficients {8/}7_; and {d’}/_,, we decompose {3'} into {52} and {d?} and
form the sums {s?} = {32 4+ 2} and {d?} = {d? 4+ d?}. Then on each scale
j=2,3,...,J —1, we decompose {s7} = {47 + 57} into {577} and {d’*'} and
form the sums {s7t'} = {8/t + 51} and {d/T'} = {d'+! 4+ d'T'}. The sets
{s7} and {&’ }3-]:1 are the coefficients of the wavelet expansion of (T fo)(z), i.e.
the coefficients appearing in (A.3.36). This procedure is illustrated in Figure
AT

{8 = {s'}={8'+5} — {={2+8} - o {J}={"+3}
p R o p L
{d*} = {d* +d'} {d*} ={d*+d°} .- {d7} = {d’ +d’}

Figure A.7. Reprojection of the product of the N S-form and a function into a
wavelet basis.

An alternative to projecting the representation (A.3.35) into the wavelet

basis is to reconstruct (A.3.35) to space Vy, i.e. form the representation (A.2.6)

(Pof)(x) =D sho(a (A.3.37)
ke

151

using the reconstruction algorithm described in Appendix A.2 as follows. Given
the coefficients {éj}]J-:1 and {Jj}jzl, we reconstruct {d’} and {3’} into {371}
and form the sum {s/~'} = {§/~! + 57!}, Then on each scale j = J —1,J —
2,...,1 we reconstruct {3/} and {d’} into {7~'} and form the sum {s/~1} =
{§7=1 + 571}, The final reconstruction (of {d'} and {s'}) forms the coefficients

{s°} appearing in (A.3.37). This procedure is illustrated in Figure A.8.

e R 1 B A B CA T IS)
N X SN
[@y={d'+d} o P ()

Figure A.8. Reconstruction of the product of the NS-form and a function to
space Vy.

In our work we are interested in developing adaptive algorithms, i.e.
algorithms such that the number of operations performed is proportional to the
number of significant coefficients in the wavelet expansion of solutions of partial
differential equations. The S-form has ‘built-in’ adaptivity, i.e. applying the
S-form of an operator to the wavelet expansion of a function, (A.2.8), is a mat-
ter of multiplying a sparse vector by a sparse matrix. A simple algorithm for
this purpose is described in Appendix C. On the other hand, as we have men-
tioned before, the S-form is not a very efficient representation of, for example,
convolution operators.

In the following Sections we address the issue of adaptively multiplying
the N S-form and a vector. Since the N S-form of a convolution operator remains
a convolution, the A7, B/, and IV blocks may be thought of as being represented
by short filters. For example, the NS-form of a differential operator in any di-
mension requires O(C) coefficients as it would for finite difference schemes. We
can exploit the efficient representation afforded us by the N S-form and use the
vanishing-moment property of the B/ and IV blocks of the N S-form of differen-

tial operators and the Hilbert transform to develop an adaptive algorithm. In

152

Section 2.2.1 we describe two methods for constructing the N S-form representa-
tion of operator functions. In Section 2.2.2 we establish the vanishing-moment
property which we later use to develop an adaptive algorithm for multiplying
operators and functions expanded in a wavelet basis. Finally, in Section 2.2.3
we present an algorithm for adaptively multiplying the N.S-form representation

of an operator and a function expanded in the wavelet system of coordinates.

A.4 The Non-Standard Form of Differential Operators

In this Section we review the wavelet representation of differential op-
erators OF in the non-standard form (N S-form), and specifically consider the
construction and properties of the NS-form of the differential operator 02. The
rows of the N S-form representation of differential operators may be viewed as
finite-difference approximations on subspace V of order 2M — 1, where M is the
number of vanishing moments of the wavelet 1(x). This Appendix is a review
of material found in [45].

The N S-form representation of the operator 02 consists of matrices
A BITJ for j =0,1,...,J and a final ‘coarse scale’ approximation 7. The
elements of these matrices are denoted ag,l, ﬁlj’l, and ’Yzj,l7 for 7 =0,1,...,J, and

3%], ;» and are computed using the definitions

z)dz

ai:,k’ = o bik(® dmp%,

) (z)
/81]%,}6/ = f ¢9, (37) mp‘f’], k' (7)dz > (A.4.38)
'Y/Jg,k' = f_ Pj,k k() wpz:b], (z)dx
Sin = [% oo Pi.k (x)dszJ, (z)dz.)
Using
. = 2792270y — k
pir(e) = 2Ip(2a— I ot

Pie(z) = 279227z — k)

153

and changing variables we can rewrite (A.4.38) as

oAy = oy = [t — k- k)L (z)ds

(z — () /()
kk = H = [ivine— k=) fEep@id | (A0
Nig = Thew = JTooik(@— (k—k)) 51 p(z)da
sg;,k, = sl o= [2 ik — (k- k)L p(z)ds.

/
We note that ai,k,, ﬁi,k,, and '71]9',19' depend on the difference k — k' which we
will write as [= k — k’. The operator 02 is homogeneous of degree p and it is
therefore sufficient to evaluate (A.4.40) on scale j = 0 and recursively compute

the elements a{, ﬁlj, and ’ylj for scales j = 1,2,...J via

of = 27Paf
o= e (A.4.41)
¥o= 277y
s{ = 2’"‘7’5?
V.

We note that if we were to use any other finite-difference representation as
coefficients on Vy, the coefficients on V; would not be related by scaling and
would require individual calculations for each j. We can simplify calculating the
coefficients a{ , ﬂlj , and 7{ for scales 7 = 1,2,...J using the 2-scale difference

equations (A.1.4) and (A.1.5). We are led to

ag = 22 Zk! ()gkgk’SZz—f—k k!
ﬂl] = 22 Z gkhk'82z—|—k K (A.442)
W= 25420 Shizo Ik Shipk g

Therefore the representation of 0% is completely determined by s? in (A.4.40) or
in other words, by the representation of 0f projected on the subspace V.
To compute the coefficients s? corresponding to the projection of 0F on

V) it is sufficient to solve the system of linear algebraic equations
L2

s =20 |59+ 5 Y ask—1(5%_opr1 + 5% 12k—1) | (A.4.43)
k=1

154

and

S =(=1)Pp!, (A.4.44)
l

where ag;_1 are the autocorrelation coefficients of H defined by

L—1—n
an=2 Y hihin, n=1,...,L—1 (A.4.45)
=0

We note that the autocorrelation coefficients a,, with even indices are zero,
aok :0, kzl,...,L/2—1. (A446)

The resulting coefficients s? corresponding to the projection of the operator 0%
on V may be viewed as a finite-difference approximation of order 2M — 1. The
solution of equations (A.4.43) and (A.4.44) has been thoroughly studied and the
details can be found in [48].

APPENDIX B

DERIVATION OF QUADRATURE APPROXIMATIONS

In this Appendix we present a detailed description of the steps taken to
compute the quadrature approximations (2.1.17)-(2.1.20). These steps consists
of a sequence of simple, but tedious, calculations which were performed using
Mathematica . Section B.1 describes the analytic derivation of approximations
of the form (2.1.17) and provides detailed Mathematica listings of the programs
used for the algebra. Section B.2 discusses approximations of the form (2.1.20)

and includes the corresponding Mathematica programs.

B.1 Derivation of Approximation —m =1

In the case where m = 1, equation (2.1.7) becomes

A

I(t) = Or,1 (co040,0 + co,1 401 + 10410 +c1,1411) (B.1.1)
where A; ; = u;v; and
Opy = (T-eA) £
The Lagrange based approximation (2.1.13) is given by

I(t) = At (fo,040,0 + fo1 o, + f10410 + f1,141,1), (B.1.2)
where
fig = /t t e EL ()L (7)dr. (B.1.3)
We observe that equation (B.l.l; is an order At? approximation to I(z,t) and
(B.1.2) is an order A#® approximation.
We determine the coefficients c; ; by comparing like coefficients in pow-

ers of At of the approximations (B.1.1) and (B.1.2) by computing the difference

2(Ao,0 +A11) + (A10+ Aoj1)
6

I(t)—I(t) =

156

A A A A
(Ao, 0c0,0 + Ao,ico1 + Arpci0 + 1’161’1)]At+

3A0’0 + Al,O + A(),l + Al,l
(12
Ao, oco,0 + Ao,1c0,1 + A1 pc1,0 + Ar1c1,1
2
+ O(A®). (B.1.4)

) LA

In (B.1.4) we have substituted the expressions for the functions f;; and the
Taylor series expansion to order At? for the exponential function.

In order to simplify this expression, we substitute the order At? Taylor
series expansions for ug and vy expanded about the point u; and v1, respectively,
e.g.

At?

uy = uy — Atu) +

where primes denote differentiation with respect to ¢. Equation (B.1.4) then

becomes

I(t)—1(t) = [uivi(1 —S.)]At (B.1.5)
% [—’u,ll’l)l(l — 260,0 — 260,1) —_ viul(l — 200,0 —_ 261,0)] At2

|
+ oA, (B.1.6)

where S, = EZ’]-:O Cij-
Requiring that coefficients of order At and At? be zero implies the

following system of equations for the c; ;

1 = cpo+tctceoten
1 = 260,0 + 20(),1 (B17)
1 = 260,0 + 261,0

which has a solution

C1,1 = Coo

157

1-2
€1 = ———5229 (B.L8)
B 1——20@0
1,0 = B .

Substituting these expressions into equation (2.1.7) gives an O(At?) approxima-

tion to (2.1.16)
I(t) = 0,1 ((5 = c0,0) (Ao + A1) + co,0(Aop + A1), (B.1.9)

where ¢y o may be chosen arbitrarily. It makes sense to choose ¢y so that the
number of terms in the approximation (B.1.9) is minimal. For cpo = 5 (B.1.9)

becomes

A

I(t) = Oﬁ,l%(UOUO + u1v1) (B.1.10)

and for ¢y = 0 we have

N

1(t) = Or,13(ugv1 + u1vp). (B.1.11)
Observe that equation (B.1.10) is analogous to the trapezoidal rule.

B.1.1 Mathematica Programs for m = 1 We begin with the

m = 1 case by setting the order of the approximation,

In[1]:

m=1
Out[1]= 1

We define the n'* order Taylor series expansion of e* about ¢ = 0 by

In[2]:=n = 10
Out[2]= 10

In[3]:= rexp = {E~(t_) -> Sum[t~j / j!,{j,0,n}]1}
t_
Out[3]1= {E ->
2 3 4 5 6 7 8 9 10
t t t t t t t t t
14+t + —— 4 —— + ==+ ——— + ——— + ———— 4 ————— + —————- + —————— }

2 6 24 120 720 5040 40320 362880 3628800

Finally the n'* order Taylor expansions of the functions u(t) and v(t) about the

point ty are defined by

158

In[4]:= ul[t_,t0_] :=
Normal [Series[u[t1],{t1,t2,n}]1] /. {t1 -> t,t2 -> t0}

In[5]:= vi[t_,t0_] :=
Normal [Series[v[t1],{t1,t2,n}1] /. {t1 -> t,t2 -> t0}
We note that in what follows h = At, c[i][j] = ¢;—1,j-1, and f[i][j] = fi—1,j—1 for
i,j =0,1.
We first construct the approximation I(¢) given by (2.1.7). In the case
where m = 1 the operator O, is

In(6]:=0lm= (E"(mL h) - 1)/L
h L

Using the Taylor expansions of u(t) and v(t) we compute I(t) by

In[7]:= Ihat = OLm*Sum[Sum[
c[j1[il*ul[h*(j-1) ,hl*v1[h*(i-1),h],{i,1,m+1}],{j,1,m+1}]

h L
Out[7]= ((-1 + E) (ulh] v[h] c[2][2] +
2 3 (3 4 (4
h uw’[h] h w [] b u [h]
v[h] c[1]1[2] (ulh] - h w’[h] + ———-—- = —————————— + -
2 6 24
5 (5) 6 (8) 7 (7 8 (8) 9 (9
h uw [h u [h uw [l h uw [h u [h]
—————————— e e e e ¢
120 720 5040 40320 362880
10 (10)
h u [h]
————————————) + ulh] c[2]1[1]
3628800
2 3 (3 4 4D
h v’’[k] h v [l h v [h]
(vlh] - h v’[h] + ———————= = —————————— + ————————— -
2 6 24
5 (5) 6 (6) 7 (7 8 (8) 9 (9
h v [h v [h v [l h v [h v [k]
—————————— e e e e ¢

120 720 5040 40320 362880

159

10 (10)
h v [h]
————————————) + c[1]1[1]
3628800
2 3 (3 4 (4)
h w’[h] h u [h] h uw [h]
(ulh] - h w[h] + ————————= =~ + ————————— -
2 6 24
5 (5) 6 (8) 7 (7 8 (8) 9 (9
h u [h] h u [h] h u [h] h u [h] h u [h]
—————————— e e e e ¢
120 720 5040 40320 362880
10 (10) 2 3 (3
h u [h] h v’’[h] h v [h]
————————————) (w[h] - h v [h] + - = —————————— +
3628800 2 6
4 (4) 5 (5) 6 (6) 7 (7 8 (8)
h v [h v [h v [l h v [h v [h]
_____________________ 4 e e e
24 120 720 5040 40320
9 (9) 10 (10)
h v [n] h v [n]
—————————— + ————————---))) / L
362880 3628800

In order to compute the Lagrange based approximation I(t), (B.1.2),
we first define the Lagrange polynomials via (2.1.10) using

In[8]:= P[t_,i_,m_] :=
Product [(t-k),{k,0,i-1}]*Product[(t-k) ,{k,i+1,m}]

In[9]:= L[t_,i_,m_] := P[t,i,m]/(P[t,i,m] /. t-> i)

The table 11 defined by

In[10]:= 11 = Table[1l[i] = L[t,i,m],{i,0,m}]

consists of Lagrange polynomials. In the case where m = 1 the table 11 consists
of the well-known linear interpolants

Out[10]= {1 - t, t}

160

The functions f; ; = f[i + 1][j + 1],4,5 = 0,1 defined by (2.1.14) are computed
using

In[11]:= For[j=1,j<=m+1,++j, For[i=1,i<=m+1,++i, £[i][j] =

Expand [E” (m*L*h) *Integrate [E~ (-Lxt*h)*11[[i1]*11[[j]],{t,0,m}]1]1]1]
For m = 1 we can enumerate the four f; ; as

In[12]:= £[1][1]

h L h L h L
-2 2 E 2 E E
Out[12]= —-———- I el L e + -
3 3 3 3 2 2 h L
h L h L h L
In[13]:= f[1]1[2]
h L h L
2 2 E 1 E
Out[13]= ---—- - —————- + ————- + -
3 3 3 3 2 2 2 2
h L h L h L h L
In[14]:= £[2][1]
h L h L
2 2 E 1 E
Out[14]= ---—- - —————- + - + -
3 3 3 3 2 2 2 2
h L h L h L h L
In[15]:= £[2]1[2]
h L
-2 2 E 2 1
Out[15]= -———- + ommmmmm — e - oo
3 3 3 3 2 2 hlL
h L h L h L

The Lagrange based approximation (2.1.13) is defined by
In[16]:= Ibar = h*Sum[Sum[
f[j1[i1*ul[h*(j-1) ,h]*v1[h*(i-1),h],{i,1,m+1}],{j,1,m+1}];
The difference I(¢) — 1(t) is computed via

In[17]:= dif = Expand[(Ibar - That) /. rexp];

161

where we have explicitly used the Taylor series expansion of the exponential
function. The coeflicients of powers of At, coefhp[j], are computed by

In[18] := For[j=1,j<=5,++j,coefhp[j] = Coefficient[dif,h,j-1];]

For terms of order 1 we find
In[19]:= Simplify[coefhp[1]]
Out[19]= O

The coefficient of order At is found to be

In[20] := Simplify[coefhp[2]]

Out[20]= ulh] v[h] (1 - c[11[1] - <[11[2] - c[2]1[1] - c[21[2])

which leads to the first constraint of the set (B.1.7), i.e.

m=1
j{: Cij =1.

i,j=0
This condition is defined as a rule via, e.g.,

In[22]:= rsum = {c[1]1[1] -> 1 - c[11[2] - c[2]1[1] - c[2]1[2]1};

Using the sum rule, rsum, we find at order At? that
In[23]:= Simplify[coefhp[3] /.rsum]
v[h] u’[h]
Out[23]= ——————--—- - v[h] c[2][1] uw’[h] - v[h] c[2]1[2] u’[h] +
2

ul[h] v’ [h]
> mmmmmmm— - ulh] c[11[2] v’[h] - ulh] c[2]1[2] v’[h]

Observing that this expression involves only u(h)v'(h) and u'(h)v(h) terms, we
first extract the coefficient of the u(h)v'(h) term

In[24]:= Simplify[
Coefficient[Coefficient[coefhp[3] /. rsum, u[h]l,1],v’[h],1]]

1

Out[24]= - - c[11[2] - c[2][2]
2

Then we extract the coefficient of the u'(h)v(h) term

162
In[25] := Simplify[
Coefficient[Coefficient[coefhp[3] /. rsum, w’[h],1],v[h],1]]
1

Out[25]= - - c[2][1] - c[2][2]
2

Outputs Out[20], Out[24], and Out[25] are identified as the constraints

on the coefficients ¢; ;, namely equations (B.1.7)

1 = cypo+co1terotern
1 = 260,0 + 2¢p,1
1 = 200’() + 201’0

We solve this system of equations using the Mathematica Reduce function

In[26] := Reduce[{c[1]1[1] + c[1][2] + c[2][1] + c[2][2]==1,
2 c[11[1] + 2 c[1]1[2] == 1,
2 c[11[1] + 2 c[2]1[1] == 1}]

which yields a solution to this system of constraints on the coefficients c; ;,

1 -2 cl[1][1]

> c[2]1[1] == ===

Output Out[26] is identified as the result (B.1.8),

C1,1 = Co0
1—2co

co,1 = 9
1-— 20(),0

1,0 = T

B.2 Derivation of Approximation — m = 2

In this next example we look for an approximation to (2.1.16) which

is at least order At®. We find that Of,, defined by (2.1.19) is insufficient

163

to guarantee this order. Using our procedure, we identify the source of this
inconsistency and illustrate a solution by suitably modifying (2.1.19). As in
the previous example, we determine a set of conditions on the coefficients c; ;
by comparing like coefficients in powers of At. Repeating the same steps as
in the previous example, namely computing the difference between I and 1,
substituting the definition of f; ;, substituting the Taylor series expansions of
the exponential function, and substituting the expansions of the ug, us and vy, vo

about u; and v gives

I(t) - I(t) = 2uvi(1—S,)At

+ 2uviL(1—-S.) +
wiv1(co0 + co,1 + Co2 — €20 — €21 — C22) +
viur(cop + €10 + €20 — Co2 — C1,2 — C2.2)] AL

+ 2[§u1v1£2(1 —S.)
%E(u'lvl(—l + 3(co,0 + €01 + co2) — 3(c2,0 + 22 + 22))

+viut (=14 3(co,0 + 1,0 + ¢2,0) — 3(co2 + 1,2 + ¢2,2)))
+3ui vt (1 — 3(cop — co2 — c2,0 + 2,2))
+ 5 (ufv1 (1 — 3(co,0 + co1 + co2 + 20 + €21 + €2,2))
tu1v) (1 — 3(co0 + €10 + €20+ co2 + 12 + 02,2)))]At3

+ O(Ath). (B.2.12)

We now find relationships between the coefficients c¢; ; so that coeffi-
cients of At, At?, and At® are zero. For terms of order At, we find the same
condition as in the previous example, namely the sum of the coefficients ¢; ; must
be one,

m
Se= Y cj=1 (B.2.13)
i,j=0

Using (B.2.13) we find the following two conditions for terms of order At?

l—cpo—cp—c2 = 2(0270 +co1 + 6272) (B.2.14)

l—co1—coo—cii = 2(cio+co1+co2)

164

(B.2.15)

Requiring the coefficients ¢; ; to satisfy relations (B.2.13),(B.2.14) and (B.2.15),

the difference (B.2.12) is now zero to order At3,

I(t)—I(t) =

[—%E(u'lvl + viuq)

2,0 ,..1

+5uyvy (1 —3(co0 — o2 — €20 + c2,2))

+2(ufv1(1 = 6(co0 + 2,1 + €2.2))

+u1v{ (1 —6(co2 + 1,2 + c2,2))

+ O(Ath.

At

(B.2.16)

We see that requiring the lower order terms to be zero in equation (B.2.12) has

introduced a term which is independent of the coefficients ¢; ; and is of order

At ie.

—2L(uhvr + viug) At

(B.2.17)

Let us first remove the dependence on the coefficients c; ; in (B.2.16)

by requiring the following conditions

1

1

1

3(co,0 — co,2 — 2,0 + C2,2)
6(co,0 +co,1 +c2,2)

6(co2 + c1,2 + €2,2),

(B.2.18)
(B.2.19)

(B.2.20)

in addition to (B.2.13) through (B.2.15). Relations (B.2.13) through (B.2.15)

and (B.2.18) through (B.2.20) define a set of six equations in nine unknowns

which has a solution given by

C,0 =
0 =
c,1 =
Co2 =
C20 =

c1 =

2 — 31,2 — 3ea,1 — 9e2.2)
2+ 3c19 + 6c2,1 4+ 12¢09)
—2+6c12 + 3c21 +12¢99)
1 —6¢cp,0 — 6c22)

1-— 60271 — 60272)

(
(
(
(
(
(

WIN O = W= W W

2 — 361,2 - 362,1 - 662,2)

(B.2.21)

165

To specify an approximation we fix four coefficients and use (B.2.21) to define
the remaining coeflicients.

The difference (B.2.16) is then
I(t) — I(t) = —2L(u}v1 + viur) AL + O(At?), (B.2.22)

In order to account for the A¢3 term, we modify the form of the approximation

(2.1.7) by observing that
wivr +viug = (uw)’|y, - (B.2.23)

We may approximate the derivative (uv)’|s, in a number of ways. The simplest

is to use the forward and backward differences of the product uv,

(W)l = (W)l + At(wv)'|s, + 55 (uw)"|s, + O(AF)

2 (B.2.24)
(uv)|t0 = (’U/U)|t1 - At(uv)lltl + ATt(uv)”|t1 + O(At3)

in order to form an order At? approximation to the derivative of the product,

(wv)'ls, = W}QZ;A:OUO +O(AtY). (B.2.25)

Using (B.2.25) in the right hand side of (B.2.22) yields
—2L(ujv + viup) At + O(AtY) = —3L(ugvg — ugvy) At? + O(AtY). (B.2.26)
Therefore we modify (2.1.7) to include a term of order A#?, i.e. we define

Inew, (t) = I(t) + 1L (ugva — ugug) AL?, (B.2.27)

which leads to

N

(t) — I(t) = O(AL). (B.2.28)

Note that (B.2.25) is one way to approximate the derivative (uv)’|y.
Another approximation is arrived at by computing products of the Taylor ex-

pansions of the individual terms in (uv)’|;, (B.2.23). For example substituting

u, = 504+ 0(AR) 329
v, = 230+ O(At?)

166

in equation (B.2.23) yields,

1
(uv)'|, = Z—At(uzvl — uguy + uvz — uvg) + O(AF?). (B.2.30)

Using (B.2.30) in the right hand side of (B.2.22) yields

—%E(u'lvl +vlu) A+ O (ALY = —%E(uwl — ugvy + U1 — u1vp) At? + O(At?).
(B.2.31)

Therefore we modify (2.1.7) to include a term of order A#?, i.e. we define
jnewz (t) = j(t) + %L(’U,Q’Ul — UgU1 + U129 — ul’U())AtQ, (B.2.32)

which also leads to

I(t) — I(t) = O(AtY). (B.2.33)

It makes sense to fix four coefficients in (B.2.21) so that the number
of terms in the approximation (2.1.7) is minimal. For example, setting cpo =

1 _ 2 _ 1 _ . . .
5:C11 = 5,022 =3 and ¢ 0 = 0 we arrive at an approximation of the form

I(t) = Oco (%UO'UO + %ulvl + %UQ'UQ)

-l-%ﬁ (’U,Q’UQ - ’LL()’U()) At? + O(Atg), (B.2.34)

which can be recognized as a three-point generalization of the Simpson’s rule.
Note that in (B.2.34) we have used (B.2.27).

To formulate an alternative to (B.2.34), which is not obtainable by stan-
dard quadrature approaches, we may form a linear combination of two ‘asym-
metric’ approximations. One such approximation which is arrived at by fixing
co,0 = c1,1 = 0 = c22 = 0 and c3 9 = 0, which yields an approximation of the

form

Ii(t) = Ocp (%(umn + u1v2) + £(u1vg + ugvy) — %UOUZ)

+3 L (ugvs — uguo) At? + O(AL). (B.2.35)

167

Setting cpo = c1,1 =0 =cz2 = 0 and ¢p o = 0, yields

L(t) = 05,2 (%(uovl + uivg) + %(’ul’Uo + uguy) — %UQ'UO)
+%E (’UQ’UQ - uO’U()) At2 + O(Ats) (B236)

Then an order A#® approximation to I(z,t) is given by a linear combination of

(B.2.35) and (B.2.36),

It) = 3(I(z,t) + Ix(z,1))
= %OL‘,,Q (%(umn + u1vg + urve + ugv1) — %(Uo’l& + u2’00))

+%£ (’U,Q’UQ — ’u,()’l)()) At? + O(At?’). (B.2.37)

Again we note that in (B.2.35), (B.2.36), and (B.2.37) we have used (B.2.27).
If we use (B.2.30) to approximate the derivative (uv)'|y, for the case

where cpo = c1,1 = 0=cy2 =0 and cp2 = 0, we arrive at

I(t) = 30c2(3(uov1 +urvo + u1va + ugvr)

—%(’U/O’UQ + U,Q’U())) + %E('UQ'Ul — UVl + U1V — ’UqU())AtQ

+0(Ath. (B.2.38)
We may combine terms and considerably simplify this expression by defining
OF m = Oc,m + LAE. (B.2.39)
Then equation (B.2.38) becomes

I(t) = %022(110’1)1 + ’ll,l’l)()) + %OZ’Q('UQ'UQ + ’u,2’1)1) — %O/_j’g(uovg + U,Q’U()) + O(At3).
(B.2.40)

B.2.1 Mathematica Programs for m = 2 We now detail the
Mathematica calculations for the case where m = 2. Due to the lengthier out-
puts from Mathematica for this example, we will suppress all but the most
illustrative output. Again, we begin with the definitions of the order of approx-

imation, m = 2, the order of the Taylor series expansions, n = 10, and the

168

definitions of the series expansions of the exponential function and unknown
functions, u(t) and v(t).

In[1]l:=m = 2;

In[2]:=n = 10;

In[3]:= rexp = {E~(t_) -> Sum[t"j / j!,{j,0,n}]};
In[4]:= uil[t_,t0_] :=

Normal [Series[ul[t1],{t1,t2,n}]] /. {t1 -> t,t2 -> t0};
In[5]:= vi[t_,t0_] :=

Normal [Series[v[t1],{t1,t2,n}]] /. {t1 -> t,t2 -> t0};

The quadrature approximation I(t), equation (2.1.7), is defined by
In[6]:=0lm= (E"(@Lh) - 1)/L;
In[7]:= That = OLm*Sum[Sum[
c[31[il*ul[h*(j-1) ,h]*v1[h*(i-1),h],{i,1,m+1}],{j,1,m+1}];
The approximation I(t), equation (2.1.13) is defined in terms of the
Lagrange polynomials

In[8]:= P[t_,i_,m_] :=
Product [(t-k) s {k, 0, i-1}]1*Product [(t-k) , {k, i+1 ,m}] ;

In[9]:= L[t_,i_,m_] := P[t,i,m]/(P[t,i,m] /. t—> i);

which are placed in the lookup table 11,

In[10]:= 11 = Table[1[i] = L[t,i,m],{i,0,m}];

The functions f; ; = fli+1][j+1],7,7 = 0,1,2, defined by (2.1.14), are computed
using

In[11]:= For[j=1,j<=m+1,++j, For[i=1,i<=m+1,++i, £[i][j] =

Expand [E” (m*L*h) *Integrate [E~ (-L*t*h)*11[[111*11[[j1],{t,0,m}]111];
The approximation I(t), equation (2.1.13) is given by

In[12]:= Ibar = h*Sum[Sum[

f[j1[i1*ul[h*(j-1) ,h]*vi[h*(i-1),h],{i,1,m+1}],{j,1,m+1}];

The difference I(¢) — 1(t) is computed via

In[13]:= dif = Expand[(Ibar - Ihat) /. rexp];

169

where we have explicitly used the Taylor series expansion of the exponential
function. The coeflicients in powers of At, coefhp[j], are computed by

In[14]:= For[j=1,j<=5,++j,coefhp[j] = Coefficient[dif,h,j-1];]

For terms of order 1 we find
In[15] := Simplify[coefhp[1]]
Out[15]= 0

The coefficient of order At is found to be

In[16] := Simplify[coefhp[2]]

Out[16]= 2 ulh] v[h]l (1 - c[11[1] - c[11[2] - c[11[3] - c[2]1[1] -
> cl2][2] - c[2]1[3] - c[3]1[1] - c[31[2] - <c[31[3])

which is the same condition as in the m = 1 case, namely

m=2
jz: Cij =1.

i,j=0
In order to simplify further calculations, let us recompute the coeffi-
cients of powers of At subject to the rule that the sum of the coefficients is 1.
We first define the rule via, e.g.,
In[17]:= rsum = {c[11[1] -> 1 - c[11[2] - c[11[3] - c[2]1[1] -
c[2][2] - c[2]1[3] - c[3]1[1] - c[31[2] - c[3]1[3]1%}
Then we define a new variable coefhp2[j] via

In[18]:= For[j=1,j<=5,++j,coefhp2[j] = Simplify[coefhp[j] /. rsum];]

We note that the order 1 coefficient remains zero,
In[19] := Simplify[coefhp2[1]]
Out[19]= 0O
However, due to the sum rule, rsum, the order At coefficient is now zero
In[20] := Simplify[coefhp2[2]]
Out[20]= 0O
Using the variable coefhp2[j], we continue with terms of order At2,

In[21]:= Simplify[coefhp2[3]]

170

Out[21]= 2 (v[h] w’[h] - v[h] c[2][1] w’[h] - v[h] c[2][2] u’[h]
v[h] c[2]1[3] w’[h] - 2 v[h] c[31[1] uw’[h] - 2 v[h] c[3]1[2] u’[h]
2 v[h] c[3]1[3] w’[h] + ulh] v’>[h] - ulh] c[11[2] v’[h] -

2 ulh] c[11[3] v’[h] - ulh] c[2]1[2] v’[h] - 2 ulh]l c[2]1[3] v’[h]
ulh] c[31[2] v’[h] - 2 ulh] c[31[3] v’[h])

Observing that only u(h)v'(h) and u'(h)v(h) terms are present, we collect coef-
ficients of these terms via

In[22]:= Simplifyl[
Coefficient [Coefficient[coefhp2[3],u’[h],1],v[h],1]]

Out[22]= 2 (1 - c[2]1[1] - c[21[2] - c[2][3] - 2 c[3][1] -
2 c[31[2] - 2 c[31[3D)

In[23]:= Simplify[
Coefficient[Coefficient[coefhp2[3],ulh],1],v’[h],1]]

Out[23]= 2 (1 - c[11[2] - 2 c[1]1[3] - c[2][2] - 2 c[2][3] -
cl[31[2] - 2 <[31[3D

Outputs Out[22] and Out[23] identify two additional constraints on the coeffi-
cients, namely those of equations (B.2.14) and (B.2.15),

l—cip—cia—cie2 = 2(ea0+co1+c22)

l—co1—co2—c11 = 2(cie+co1+cop2)

We define two new rules based on these conditions by

In[24]:= r21 = {c[2]1[1] -> 1 - c[2][2] - <[2][3] - 2 c[3]1[1] -
2 c[3][2] - 2 c[3][31};

In[25]:= r12 = {c[11[2] -> 1 - 2 c[11[3] - c[2]1[2] - 2 c[2][3] -
c[3][2] - 2 c[3]1[3]};
Once again, we simplify the coefficients coefhp2[j] subject to these two new
rules via
In[26]:= For[j=1,j<=5,++],
coefhp3[j] = Simplify[coefhp2[j] /. Flatten[Join[r21,r22]11];]

We now see that coefficients through order At? are zero

171

In[27]:= coefhp3[1] (* At order 1 x)
Out[27]= 0

In[28] := coefhp3[2] (* At order h x)
Out[28]= 0

In[29] := coefhp3[3] (* At order h"2 *)
Out[29]= 0

For terms of order At? we find

In[30] := coefhp3[4]

Out[30]= (-2 L v[h] u’[h] - 2 L ulh] v’[h] + 8 u’[h] v’[h] -

6 c[2]1[2] w’[h] v’[h] - 12 c[2]1[3] w’[h] v’[h] -

12 c[31[2] u’[h] v’[h] - 24 c[31[3] u’[h] v’[h] + v[h] uw’’[h] -
6 v[h] c[31[1] w’’[h] - 6 v[h] c[3]1[2] u’’[h] -

6 v[h] c[3]1[3] u’’[h] + ulh] v’’[h] - 6 ulh]l c[1]1[3] v’>’[h] -
6 ulh]l c[2][3] v’’[h] - 6 ulh] c[3]1[3] v’’[h]) / 3

We extract the coefficients of combinations of the functions u, v and their deriva-

tives using

In[31]:= Coefficient[Coefficient[coefhp3[4],ulh],1],v’[h],1]
-2 L

Out[31]= --—-—-
3

In[32] := Coefficient[Coefficient[coefhp3[4],u’[h],1],v[h],1]

-2 L

Out[32]= --—-—-
3

In[33]:= Coefficient[Coefficient[coefhp3[4],u’[h],1],v’ [h],1]
8

Out[33]= - - 2 c[2][2] - 4 c[2][3] - 4 c[3]1[2] - 8 c[3][3]
3

In[34]:= Coefficient[Coefficient[coefhp3[4],ulh],1],v’’[h],1]
1

Out[34]= - - 2 c[1]1[3] - 2 c[2][3] - 2 c[3][3]
3

In[35]:= Coefficient[Coefficient[coefhp3[4],u’’[h],1],v[h],1]
1

Out[35]= - - 2 c[3]1[1] - 2 c[3]1[2] - 2 c[3][3]

3

172

Outputs Out[31] and Out[32] contribute to the order At3 term which is indepen-
dent of the coefficients c; j, see (B.2.17). Outputs Out[33], Out[34], and Out[35]
identify three additional conditions on the coefficients.

We now have a set of six equations in nine unknowns defined by the
sum rule, line In[17], and the conditions appearing in outputs Out[22], Out[23],
Out[33], Out[34], and Out[35]. These equations may be written in terms of the
following variables,

In[36]:= rell = c[11[1] + c[11[2] + c[11[3] + c[2]1[1] +
c[2][2] + c[2]1[3] + c[3]1[1] + c[3]1[2] + c[3]1[3]1;

In[37]:= rel2 = 2 (1 - c[2]1[1] - c[2][2] - c[2]1[3] -
2 c[31[1] - 2 c[3]1[2] - 2 c[3]1[3]);

In[38]:= reld = 2 (1 - c[11[2] - 2 c[1][3] - c[2]1[2] -
2 c[2][3] - c[31[2] - 2 c[3]1[3]);

In[39]:= reld = 8/3 - 2 c[2]1[2] - 4 c[2]1[3] - 4 c[3]1[2]
- 8 c[3][3];

In[40]:= rel5 = 1/3 - 2 c[1]1[3] - 2 c[2]1[3] - 2 c[3]1[3];

In[41]:= rel6 = 1/3- 2 c[3]1[1] - 2 c[3][2] - 2 c[3]1[3];

The Mathematica Reduce function is now used to solve these equations,
In[42] := Reduce[{rell==1,rel2==0,rel3==0,reld==0,relb5==0,rel6==0}]
2 - 3 c[2]1[3] - 3 c[31[2] - 9 c[3]1[3]
Out[42]= c[1][1] == —mmmmmmm oo &

-2 + 3 c[2][3] + 6 c[3][2] + 12 c[3][3]

> e[21[1] == —mmmm oo L2

> e[I[2] == —mmmmmm oo L2

> 18] == —====mmmmmmmmmmmmmeee - at

173

1 -6 c[3]1[2] - 6 c[3][3]
> c[B11] == —m-mmmmmmmmmmmm e L2

> c[21[2] == —mmmmmmm e

which are the solutions appearing in equation (B.2.21).

APPENDIX C

PSEUDOCODE LISTINGS

In this Appendix we provide pseudocode which describes the adaptive
algorithms discussed in Chapter 2. Appendix C.1 contains pseudocode which
describes the multiplication of the N S-form representation of an operator and a
function expanded in a wavelet basis. Appendix C.2 contains pseudocode which
describes the pointwise square of a function expanded in a wavelet basis. Ap-
pendix C.3 discusses the sparse data structures used to program our algorithms
and provides, as an illustration, a relatively simple program for computing the
pointwise product of two sparse vectors. In this Appendix we assume that pa-
rameters which describe the multiresolution analysis and numerical experiment,
e.g. J,¢,n, the quadrature mirror filters, etc., have been specified. The format

of our pseudocode closely follows the pseudocode described in [56].

C.1 Pseudocode for Multiplying Operators and Functions
The first algorithm we describe is for multiplying the N S-form repre-
sentation of an operator and a function expanded in a wavelet basis. The pro-

cessing of this algorithm consists of evaluating equations (2.2.39) and (2.2.40),

namely
& = Ad+Bg (C.1.1)
¥ = Tid, (C.1.2)
forj=1,2,...,J —1, and
' = A'd' + B (C.1.3)

¢ = Mdl +17§, (C.1.4)

175

for j = J. The algorithm uses as input the masked averages {5’} and the
differences {d’}, for each scale j = 1,2,...,J. Additionally we use the ‘filters’
corresponding to the A7, BJ, and I'V blocks for each scale j = 1,2,...,J and
the final scale average T”. The coefficients {3/} and {d’} are then reprojected
into the wavelet basis using the successive reconstruction/summation procedure
illustrated by Figure A.8.

The algorithm for applying the NS-form of an operator to a function
expanded in a wavelet basis may be described by the pseudocode shown in
Figure C.1. The ‘auxiliary functions’ listed in the pseudocode shown in Figure
C.1 are described as follows. The function Convolve(x,f,1f) computes the
periodized convolution of the vector x with the filter f of length 1f. The function
Reconstruct (x(j),y(j) ,m,z(j-m)) uses the averages x and differences y on a
given subspace j to reconstruct the averages z on subspace j —m. The function
Cutoff (x,epsilon) removes all elements from vector x which have absolute
value less than epsilon. The function DecomposeAndSum(x,a,d) successively
projects the vector x into the multiresolution analysis calculating the averages
a and differences d. On each scale the newly computed averages and differences

are added to those already present.

C.2 Pseudocode for Computing the Pointwise Square of a Function
The algorithm for computing the pointwise square of a function evalu-

ates equation (2.3.17),

(P = (P + 3" 20 (@) + (@) (c:25)
J=if
The algorithm uses as input the masked averages {5’} and the differences {d’}
for each scale j = 1,2,...,J. The coefficients {(37)?} which are present on the
left hand side of (C.2.5) are then successively projected into the wavelet basis
and added as illustrated by Figure 2.3.1.

The algorithm for calculating the pointwise square may be described

176

Let danswer(J) = Convolve{d(J),alpha(J),lalpha(J)} +

Convolve{sbar(J) ,beta(J),lbeta(J)}

Convolve{d(J) ,gamma(J) ,lgamma(J)} +
Convolve{sbar(J) ,tfinal(J),1final(J)}

Let sanswer(J)

For j = J - 1 To jfirst Step -1

Let danswer(j) = Convolve{d(j),alpha(j),lalpha(j)} +
Convolve{sbar(j),beta(j),lbeta(j)}

Let stilde(j) = Convolve{d(j),gamma(j),lgamma(j)} +
Convolve{sbar(j),tfinal(j),1final(j)}

Reconstruct(stilde(j+1) ,danswer(j+1),1,sanswer(j))
Let sanswer(j) = sanswer(j) + stilde(j)

Cutoff (sanswer(j) ,epsilon)
Cutoff (danswer(j) ,epsilon)

Next j

DecomposeAndSum(sanswer,sanswer ,danswer)

Figure C.1. Pseudocode for the multiplication of the NS-form representation of
an operator and a function expanded in a wavelet basis.

177

by the pseudocode shown in Figure C.2. The ‘auxiliary functions’ listed in
the pseudocode shown in Figure C.2 are described as follows. The function
SparseVectorProduct(x,y,z) computes the pointwise product of two sparse
vectors x and y and places the result in another sparse vector z. The function
SparseVectorScale(x,c) scales each element of the sparse vector x by the
amount c. The function SparseVectorSum(x,y,z) computes the pointwise sum

of two sparse vectors x and y and places the result in another sparse vector z.

C.3 Sparse Data Structures

A dense vector of length N may be considered to be sparse if the
number of significant (non-zero) values N present in the vector is much less
than N. A sparse vector may then be uniquely described by the values and the
positions in the dense vector of each of the Ny significant elements. A sparse
vector s may then be represented by two significantly shorter vectors; one sv for
the values and one si for the corresponding indices. A sparse vector may then
be represented by two vectors sv and si each of length N;. The memory needed
to represent the vector s is 2IN; + 1 as compared with V. This representation of
a sparse vector, which we use in the implementations of our algorithms, is based
on the format described in [57].

With the dramatic savings in memory comes programmatic difficulties;
programming with sparse data structures may be tedious. We now provide an
example of a subroutine which computes the pointwise product of two sparse
vectors and places the result in another sparse vector. The inputs are z,ix, nx
and y, 1y, ny, the parameter eps = € is the minimum value of any element, and
the output is another sparse vector z,iz,nz.

In this example we first initialize three pointers into the vectors z,
y, and z. The pointers ixpr and iypr tell us where we currently are in the
corresponding vector, and izpr points to the next possible valid position for a

product of z and y elements. The main body of the subroutine is defined by the

178

For j = jfirst To J
Reconstruct (sbar(j),zero(j),jO,stemp(j-j0))
Reconstruct (zero(j),d(j),jo,dtemp(j-jO))
SparseVectorProduct (stemp(j-j0) ,dtemp(j-j0) ,stilde(j-3j0))
SparseVectorScale(stilde(j-j0),2)
SparseVectorSquare(dtemp(j-j0) ,dtilde(j-j0))
SparseVectorSum(stilde(j-j0) ,dtilde(j-jO) ,ssum(j-30))
Cutoff (ssum(j-jO) ,epsilon)

Next j

SparseVectorSquare (stemp(J-jO) ,stemp (J-j0))

SparseVectorSum(ssum((J-j0) ,stemp(J-jO) ,ssum(J-j0))

Cutoff (ssum(J-jO) ,epsilon)

DecomposeAndSum(ssum, sanswer ,danswer)

Cutoff (sanswer,epsilon)
Cutoff (danswer,epsilon)

Figure C.2. Pseudocode for the adaptive pointwise square of a function expanded
in the wavelet basis.

179

loopdo 10 k = 1, nx + ny. The upper limit of the do loop isnx + ny because
we must consider products involving any possible pairs of z and y elements. If
we have exhausted either = or y we know that any new products would involve a
zero term and we therefore exit the loop. If there are elements remaining in both
z and y we then determine if the current z and y indices coincide. If the indices
do not coincide we increment the pointer corresponding to the lesser index and
go on to the next product. However, if the indices coincide then we compute the
product and place its value in the current position in the z vector.

We then test whether or not this newly computed value is greater than
the cutoff eps. If it is then the newly computed value is a valid element of the
sparse vector and the index corresponding to this product is set via iz(izpr)
= ix(ixpr) and the pointer into the resultant is incremented. If the newly
computed value has absolute value less than eps then nothing else is done to the
resultant vector. In either case the pointers into z and y are incremented and
the loop is repeated. We note that if the newly computed value has absolute
value less than eps then the element in the z vector is overwritten the next time
two = and y indices coincide.

It is clear that if one where to implement the pointwise product of
two vectors of length 7 in the dense format the result would be However for the
purposes of Chapter 2 the number of elements n would be on the order of 2'6, see
e.g. the discussion on Burgers equation in Section 2.4.2, and simply multiplying

two vectors requires O(2'¢) operations.

180

subroutine sparse_prodv(x,ix,nx,y,iy,ny,z,iz,nz,eps)
implicit real*8 (a-h,o-z)

real*8 x(*), y(*), z(%)

integer ix(x), iy(*), iz(x)

ixpr = 1
iypr = 1
izpr = 1

do 10 k = 1, nx + ny
if ((ixpr .gt. nx) .or. (iypr .gt. ny)) goto 20

if (ix(ixpr) .eq. iy(iypr)) then
z(izpr) = x(ixpr)x*y(iypr)

if (abs(z(izpr)) .gt. eps) then
iz(izpr) = ix(ixpr)
izpr = izpr+1

endif

ixpr = ixpr + 1
iypr = iypr + 1

else if (ix(ixpr) .1lt. iy(iypr)) then
ixpr = ixpr + 1

else
iypr = iypr + 1

endif

10 continue
20 continue
nz = izpr - 1

return
end

Figure C.3. FORTRAN subroutine for multiplying two sparse vectors and
putting the result in a third sparse vector.

181

subroutine dense_prodv(x,y,z,n,eps)
implicit real*8 (a-h,o0-z)
real*8 x(¥), y(*x), z(%)
do 10k =1, n
z(k) = x(k)*y(k)
if (abs(z(k)) .1lt. eps) z(k) = 0.0

10 continue

return
end

Figure C.4. FORTRAN subroutine for multiplying two dense vectors and putting
the result in a third dense vector. Compare with Figure C.3.

