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Interactions of dispersive shock waves �DSWs� and rarefaction waves �RWs� associated with the
Korteweg–de Vries equation are shown to exhibit multiphase dynamics and isolated solitons. There are six
canonical cases: one is the interaction of two DSWs that exhibit a transient two-phase solution but evolve to a
single-phase DSW for large time; two tend to a DSW with either a small amplitude wave train or a finite
number of solitons, which can be determined analytically; two tend to a RW with either a small wave train or
a finite number of solitons; finally, one tends to a pure RW.
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Shock waves in processes dominated by weak dispersion
and nonlinearity have been experimentally observed in plas-
mas �1�, water waves �2�, and more recently in Bose-Einstein
condensates �3,4� and nonlinear optics �5�; these dispersive
shock waves �DSWs� have yielded novel dynamics and in-
teresting interaction behavior, which has only recently begun
to be studied theoretically �cf. �6,7��. Here we consider
DSWs that are described by the Korteweg–de Vries �KdV�
equation

ut + uux + �2uxxx = 0, 0 � � � 1. �1�

Individual DSWs are characterized by a soliton train front
with an expanding oscillatory wave at its trailing edge; these
waves have been well studied �cf. �8,9�� using wave averag-
ing techniques, often referred to as Whitham theory �10,11�.

When illustrative, we contrast DSW interaction with clas-
sical or viscous shock waves �VSWs�, which are dominated
by weak dissipation and nonlinearity, using Burgers’ equa-
tion

ut + uux − �uxx = 0, 0 � � � 1. �2�

The interaction of VSWs is an entire field and has been ex-
tensively studied �cf. �12��, while little is known about DSW
interactions.

In this paper, we use analytic, asymptotic, and numeric
methods to investigate Eqs. �1� and �2� using the “steplike”
initial data

u�x,0� = u0�x� = �h0, x � 0

h1, 0 � x � L

h2, x � L ,
� �3�

where h0, h1, and h2 are distinct, real, and non-negative. This
gives six canonical cases, which we denote as

I� �: h0 � h1 � h2, II� �: h0 � h2 � h1,

III� �: h1 � h0 � h2 , IV� �: h2 � h0 � h1,

V� �: h1 � h2 � h0, VI� �: h2 � h1 � h0,

where an icon of the initial step data is shown in parentheses.
When convenient, and without loss of generality, we
take hi to be 0, 1 and 0�h��1 �by using a scaling
symmetry and Galilean invariance�. The case of a well �e.g.,
h0=h2=0�h1� and a box �e.g., h0=h2=0�h1� with vanish-
ing boundaries was studied in �7�, where the asymptotic so-
lution was constructed analytically.

This paper is organized as follows. We first discuss
case I � �, where two DSWs interact and exhibit a
two-phase region that evolves into effectively a one-phase
solution for large time. Single-phase Whitham theory is then
introduced to describe the DSW with a small amplitude wave
train that develops in case II � �. We then briefly discuss
multiphase Whitham theory to describe the two-phase region
in case I � �. In case III � �, the interaction
produces a DSW with a finite number of solitons, which
remarkably can be determined analytically using inverse
scattering transform �IST� theory �cf. �13��. There is no ana-
log for emerging solitons in VSWs. We then use Whitham
and IST theory to describe the interactions in cases
IV � �, V � �, and VI � �. Finally, we comment
on the numerical scheme we used to solve Eqs. �1� and �2�.

In case I � �, two one-phase DSWs form and propa-
gate to the right �see Fig. 1�a�

1�b�

1�c�
1�c�

1�d� 1�e�

�. When the shock front of the
left DSW reaches the expanding oscillatory tail of the right
DSW, they interact and form a quasiperiodic two-phase so-
lution �see Fig. �. The shock front of the left DSW sub-
sequently overtakes the shock front of the right DSW and
forms a one-phase solution to the right of the two-phase re-
gion �see Fig. �. To the left of the two-phase solution, an
essentially one-phase DSW tail emerges �see Fig. �;
although the tail is weakly modulated by a quasiperiodic
wave, its behavior is essentially one-phase. For large time,
the two-phase region closes and a one-phase DSW remains
�see Figs. and �; Whitham theory indicates that the
amplitude of the two-phase modulations decreases with time
and results in an effectively one-phase DSW. This closing of
the two-phase region is suggested by the rigorous �Whitham
theory� results in �15�, though the authors studied smooth
initial data. The computation of the boundaries of the
one- and two-phase regions using multiphase Whitham
theory is discussed later in this paper.*shockwaves@douglasbaldwin.com
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Although the �initial� shock front speed is different for
DSWs and VSWs �2h0 /3 and h0 /2, respectively�, the aver-
aged DSWs are similar in behavior to VSWs �see Figs.
1�a�–1�d��; in both, two shock waves merge to form a single
shock wave.

For case II � �, a large DSW forms on the left
and a small rarefaction wave �RW� forms on the right
�see Fig. 2�a�

2�b�

2�c�

2�d�
2

�. The front of the DSW then interacts with the
trailing edge of the RW; the interaction decreases the
DSW’s speed and height �see Fig. �. The front of the
DSW is faster than the front of the RW and overtakes it
�see Fig. �. The size of the interaction region continues to
expand with a DSW emerging in front with a small ampli-
tude wave train behind, whose amplitude is proportional to
t−1/2 �see Fig. �. As in case I � �, the averaged DSW
and the VSW �see Fig. � both tend to a single DSW �VSW�
once the front of the DSW �VSW� passes the front of
the RW.

�8�

We can use the one-phase Whitham equations to
characterize the interaction of the DSW and RW in case
II � �. In this context, Whitham theory consists of look-
ing for a fully nonlinear single-phase or multiphase solution
whose parameters �amplitude, wave number, and frequency�
are slowly varying with respect to the phase�s� and then de-
riving new equations for the evolution of the slowly varying
wave properties. The one-phase Whitham equations for
Eq. �1� are

�ri

�t
+ vi�r1,r2,r3�

�ri

�x
= 0, i = 1,2,3, �4a�

where

v1 = V −
2

3
�r2 − r1�

K�m�
K�m� − E�m�

,

v2 = V −
2

3
�r2 − r1�

�1 − m�K�m�
E�m� − �1 − m�K�m�

,

v3 = V +
2

3
�r3 − r1�

�1 − m�K�m�
E�m�

, �4b�

V= �r1+r2+r3� /3, m= �r2−r1� / �r3−r1�, K�m� is the complete
elliptic integral of the first kind, and E�m� is the complete
elliptic integral of the second kind. Then, the asymptotic so-
lution is

ua�x,t� � r1 + r2 − r3 + 2�r3 − r1�dn2
„K�m��/�;m… ,

� = ���r3 − r1�/�6�2�/K�m�where �x=�, �t=−�=−�V, , and
ri are slowly varying functions of x and t. We can make a

3

�1�

regularization of case II � � is shown in Fig. ; the ri
are taken to be nondecreasing,

and
ūa�x ,0�=u�x ,0� for all x�R.

ri�x ,0��ri+1�x ,0� where
ri=ri+1 is interpreted in the limiting sense ri→ri+1

and ri
[3,16] that result in a global solution. A global dispersive

global dispersive regularization for the initial value problems
�3� by choosing appropriate initial data for the

In order to study the interaction we evolve the ri numeri-
cally. A simple and effective method for evolving the ri is to
discretize the initial data regularization along the dependent
variable, ri, and then compute the shift in x of each data point
using Eq. �4 4

10

7

�. Figure compares a numerically evolved
Whitham approximation with direct numerics for case
II � �; the first-order Whitham approximation does not
capture the small quasiperiodic modulations in the tail be-
cause they are higher-order effects. Both direct numerics and
the Whitham approximation agree and show that for large
enough time, the amplitude of the tail in case II � � is
proportional to t−1/2; this is typical of a uniform linear wave
train when the total energy remains constant �cf. � �� and
was observed in the context of a well with vanishing bound-
aries �e.g., h0=h2=0�h1� in � �
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FIG. 1. Plots �a�–�d� show the numerically computed solution of
Eq. �1� and �e� the boundary of the one- �light gray� and two-phase
�dark gray� regions computed using Whitham theory. The averaged
solution, ū, is computed using Whitham averaging �cf. �14�� and
shown as dotted lines in �a�–�d�; the solution of Eq. �2� with �=� is
shown as dashed lines in �a�–�d�. In all plots, �2=0.001, h0=1, h1

=0.4, h2=0, and L=8. The vertical axis in �e� is log-time and the
horizontal axis is −t�x� t+8 �and matches the domain in �a�–�d��.
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FIG. 2. Plots of the numerical and averaged Whitham solutions
of Eq. �1� for case II � �, where �2=0.001, h0=1, h1=0,
h2=0.5, and L=5.
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Multiphase Whitham theory is more complicated than
one-phase Whitham theory and dates back to 1970 �17

18
6

14

�;
multiphase Whitham equations were developed for the KdV
equation in � �. The interaction of two DSWs from certain
steplike data was recently analyzed in � � for the nonlinear
Schrödinger equation. The one- and two-phase regions and
the averaged solution in case I � � are found by numeri-
cally evolving the two-phase Whitham equations for the
KdV �see � ��,

�ri

�t
+ vi�r1, . . . ,r5�

�ri

�x
= 0, i = 1,2, . . . ,5, �5�

where vi= �2ri
3−	ri

2−
1ri−
2� / �ri
2−�1ri−�2�, 	=� j=1

5 rj,
and �1, �2, 
1, and 
2 are solutions of

	I1
1 I1

0

I2
1 I2

0
	�1

�2

 = 	I1

2

I2
2
, 	I1

1 I1
0

I2
1 I2

0
	
1


2

 = 	2I1

3 − 	I1
2

2I2
3 − 	I2

2
 ,

with

Ij
k = �

r2j−1

r2j �k

��� − r1��� − r2��� − r3��� − r4��� − r5�
d� . �6�

In case III � �, a small RW forms on the left and a
large DSW forms on the right. The front of the RW then
interacts with the tail of the DSW and reduces the amplitude
of the waves—essentially cutting off the top of the box.
Since the front speed of the RW is less than the front speed
of the initial DSW, a finite number of solitons can escape the
interaction �see Fig. 5�. These solitons have no analog in the
VSW solution of case III � �. We can compute the pre-
cise number, height, and speed of these escaping solitons for
all time using IST theory.

From IST theory, the number of solitons correspond to the
time-independent number of zeros of a�k� �which is the num-
ber of poles of the reflection coefficient R
b�k� /a�k�� in the
upper half k plane. Associated with Eq. �1�, the data a�k� is
defined by


�x;k� 
 a�k��̄�x;k� + b�k���x;k� ,


̄�x;k� 
 ā�k���x;k� + b̄�k��̄�x;k� ,

corresponding to the eigenfunctions


�x;k� � e−ik0x, 
̄�x;k� � eik0x, as x → − � ,

��x;k� � eik2x, �̄�x;k� � e−ik2x, as x → + � ,

which satisfy the Schrödinger scattering problem,

wxx + w�u/6 + k2�/�2 = 0. �7�

The solution of Eq. �7�, at t=0, with the potential u from Eq.
�3�, is

w�x� = �Aeik0x + Be−ik0x, x � 0

Ceik1x + De−ik1x, 0 � x � L

Eeik2x + Fe−ik2x, x � L ,
�

where k0=�h0 /6+k2 /�, k1=�h1 /6+k2 /�, and k2

=�h2 /6+k2 /�. The eigenfunctions 
, 
̄, �, and �̄ are
determined by requiring that w and w� are continuous across
x=0 and x=L. Indeed, 
 is found by taking A=0 and B=1
and then solving for C, D, E
b�k�, F
a�k�, so that

a�k� = eik2Lk0 + k2

2k2
�cos�k1L� − i

k1
2 + k0k2

k1�k0 + k2�
sin�k1L�� .

Note that the branch cut in a�k� corresponds to the DSW in
case III � � and the RW in case V � �. Since
eik2L�k0+k2� / �2k2��0, the zeros of a�k� occur when
tan�k1L�= ik1�k0+k2� / �k1

2+k0k2�.
It can be shown that the zeros of a�k� are purely imagi-

nary; thus, we let k= i� �where ��R and ��0�. For case
III � �, where h1=1�h0=h� and h2=0, the zeros of
a�i�� occur when

tan��1/6 − �2L/�� =
�1/6 − �2���2 − h�/6 + ��

1/6 − �2 − ���2 − h�/6
. �8�

If we denote the zeros determined using Eq. �8

8

8

� as
�1 ,�2 , . . . ,�N, then the corresponding solitons in case
III � � have height 12�i

2 and speed 4�i
2. The number of

periods for �h� /6����1 /6 of the right-hand side of Eq.
� �, L�1−h� / ����6�, is an estimate of the number of soli-
tons. The number, height, and speed of the solitons deter-
mined using Eq. � � exactly correspond to the solitons ob-
served using direct numerics �for various values of h�, L, and
��.
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FIG. 3. The initial data regularization of case II � � for
h0�1, h1=0, and h2=1; the dashed line is the initial condition,
u0�x�, and the solid lines are r1, r2, and r3. The figure also gives the
speed of the front and back of the DSW and RW at t=0.
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FIG. 4. Plot �a� shows the Whitham approximation and �b�
direct numerics of the solution of Eq. �1� for case II � � with
the same initial condition as Fig. 2.
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In case IV � �, a small DSW forms on the left and a
large RW forms on the right �see Fig. 6�a�

6�b�

�. As in case
II � �, the front of the DSW interacts with the trailing
edge of the RW and decreases the DSW’s amplitude and
speed. Unlike case II � �, the front of the DSW does not
overtake the front of the RW. The DSW becomes a small
amplitude tail on the left of the RW and decreases in ampli-
tude proportional to t−1/2 �see Fig. �.

For case V � �, a large RW forms on the left and a
small DSW forms on the right; the front of the RW interacts
with the tail of the DSW and results in a RW and a finite
number of solitons. The solitons correspond to the number of
zeros of Eq. �8� where h0=0 and h1=1�h2=h�.

In case VI � �, two rarefaction waves form; the small
amplitude oscillatory tail �see, for instance, the RW in Fig.
6�a�� of the right RW interacts with the front of the left RW;
the tails of the right and left RW then interact to form a small
amplitude, modulated, quasiperiodic tail; this modulation de-
creases with time and case VI � � tends to a pure RW for
large time.

We numerically solve Eqs. �1� and �2� using an adaptation
of the modified exponential time-differencing fourth-order

Runge-Kutta �ETDRK4� method �see �19��. When this nu-
merical scheme was used to compute a known exact solu-
tion, it was accurate to more than six decimal digits.

For spectral accuracy when using the ETDRK4
method, the initial data must be both smooth and
periodic. Therefore, we differentiate Eq. �1� with respect
to x and define v
ux to get vt+ �uv�x+�2vxxx=0. Transform-
ing to Fourier space gives v̂t= i�2k3v̂− ikuv̂
Lv̂+N�v̂ , t�,
where we define �Lv̂��k�
 i�2k3v̂ and N�v̂ , t�=N�v̂�

−ikF��h0+�−�

x F−1�v̂�dx��F−1�v̂��. It is important that
the integral in N is computed using a spectrally
accurate method. Moreover, we approximate the
initial step data with the analytic function 2wv�x ,0�
= �h2−h1�sech2��x−L� /w�+ �h1−h0�sech2�x /w�, where w is
small. See �19� for details about how this L and N are used
to numerically compute the solution of Eq. �1�.

For large time, cases I � � and II � � go to a
single DSW, while cases IV � � and VI � � go to a
single RW; this is consistent with VSW theory. However,
unlike VSW theory, cases III � � and V � � form a
finite number of solitons in addition to the DSW or RW,
respectively. Moreover, unlike VSW theory, case I � �
exhibits a transient two-phase region and cases II � �
and IV � � have a small amplitude tail that decays at a
rate proportional to t−1/2.
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