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How does temporally structured private and social information shape collective decisions? To address
this question we consider a network of rational agents who independently accumulate private evidence that
triggers a decision upon reaching a threshold. When seen by the whole network, the first agent’s choice
initiates a wave of new decisions; later decisions have less impact. In heterogeneous networks, first
decisions are made quickly by impulsive individuals who need little evidence to make a choice but, even
when wrong, can reveal the correct options to nearly everyone else. We conclude that groups comprised of
diverse individuals can make more efficient decisions than homogenous ones.
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A central question in biology, sociology, and economics
is how the exchange of information shapes group decisions
[1–7]. Various organisms observe the choices of their peers
to guide their own decisions [8–11]: Argentinian ants form
trails by following their peers [12], African wild dogs
depart a congregation in response to their neighbor’s
sneezes [13], and pedestrians look to each other to decide
when to cross a road [14].
How do individuals combine private evidence and social

information to make decisions? To address this question we
have proposed a tractable model of collective decision
making and analyzed decisions in small networks [15].
Here we extend this work to large heterogeneous networks.
We show that in a group of identical agents, a wrong first
decision leads approximately half the network astray.
However, in heterogeneous networks a wrong first choice
is usually made by hasty, uninformed agents and only
convinces others who are similarly quick to decide.
Cautious agents can observe the decisions of early adopters
and make the right choice. Thus, in diverse groups
decisions by unreliable agents, even when wrong, can
reveal the better option.
Previous models of collective decision making ignored

temporal aspects of evidence accumulation [6,16,17] or did
not describe rational agents [18,19]. Our model incorpo-
rates both aspects and allows us to understand decision
makers’ departure from rationality [20].
Model description.—We consider an all-to-all network,

or clique, of agents, each deciding between two options
(Fig. 1). Like day traders, or strangers in a market, agents
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FIG. 1. Waves of collective decisions. (a) The first in a clique of
identical agents gathers sufficient private evidence but decides
incorrectly (red). (b) The first decision convinces a few agents to
agree. Since this wave is small, it reveals to undecided (blue)
agents that the first decision was likely wrong. (c) The difference
between decided and undecided agents leads the remaining agents
to choose correctly (green). (d) The first wave increases with N
(red) but comprises a smaller fraction of the population [blue;
Eq. (5)]. Here, the first decision is correct. (e) The time to the first
decision decreases with network size (red), allowing each agent
less time to accumulate private information [Eq. (4)]. Information
provided by an individual first wave decision also decreases [Rþ,
blue; Eq. (6)]. θ ¼ 0.7 in (d) and (e). Here, and below, solid and
dashed lines represent simulations and theory, respectively, and
shaded regions capture one standard deviation around the mean.
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make private observations and gather social evidence by
observing the choices of all other agents. They do not share
private information but know the statistics of the observa-
tions each agent makes. A decision cannot be undone.
An example provides intuition: consider a group of

people deciding between two products to buy. They study
the products’ specifications and read reviews, making a
sequence of private observations. They also observe which
product their friends choose. Each person combines private
observations (product reviews) with social information
(decisions of friends). They do not exchange information
directly but know the type of information their friends
gather, and thus how beliefs evolve [6,16]. Once purchased,
the product cannot be returned.
Evolution of beliefs: We assume N agents accumulate

noisy private observations and optimally combine them
with information obtained from observing the decisions of
their neighbors to choose between two hypotheses, Hþ or
H−. Either hypothesis is a priori equally likely to be
correct. Each agent, i, makes decisions based on their
belief, yiðtÞ, which equals the log-likelihood ratio (LLR)
between the hypotheses given all available evidence [21].
After a sequence of private observations, ξðiÞ1∶t, the belief is
yiðtÞ ¼ log½PðHþjξðiÞ1∶tÞ=PðH−jξðiÞ1∶tÞ�. If private observa-
tions are rapid and uncorrelated in time and between
agents, beliefs evolve as

dyi ¼ �αdtþ
ffiffiffiffiffiffi
2α

p
dWi; ð1Þ

where the sign of the drift equals that of the correct
hypotheses, and WiðtÞ are independent, standard Wiener
processes [22,23]. Each observer starts with no evidence,
so yið0Þ ¼ 0. We assume henceforth thatHþ is correct, and
that α ¼ 1. When H− is correct or α ≠ 1 the analysis is
similar.
Each agent, i, sets a threshold, θi, and chooses Hþ (H−)

at time Ti if yiðTiÞ ≥ θi½yiðTiÞ ≤ −θi�, and yiðtÞ ∈
ð−θi; θiÞ for 0 ≤ t < Ti. All other agents observe a decid-
er’s choice, but may not know their threshold. We consider
omniscient agents who know each other’s thresholds and
the case of consensus bias where each agent assumes all
others have the same threshold they do.
Belief updates from decision:Without loss of generality,

we assume the belief of agent i ¼ 1 is the first to reach
threshold at time t ¼ T [Fig. 1(a)].
Until this decision, beliefs of all agents, yiðtÞ with

i ¼ 2;…; N, evolve independently according to Eq. (1).
Upon observing the first decision, omniscient agents update
their belief by the evidence independently accumulated by
the first decider, yiðTÞ → yiðTÞ � θ1 [15] (see the
Supplemental Material, Sec. III [24]). Observing a positive
(Hþ) first decision causes any belief that satisfies
yiðT−Þ ∈ ½θi − θ1; θiÞ, to cross the positive threshold, θi,
evoking a positive decision by agent i. Agents subject to
consensus bias update their belief as yiðTÞ → yiðTÞ � θi.

Contrasting with previous work [15], we assume agents
make decisions in synchronous waves, ending all social
information exchange before accumulating further private
evidence: A wave of a1 agreeing agents follows the first
choice [Fig. 1(b)]. Each of the remaining N − a1 − 1
undecided agents then obtains information by observing
who followed the first decision and who remained unde-
cided. How do the undecided agents make use of this newly
revealed information?
Homogeneous populations.—To answer this question,

first suppose agents have identical thresholds, θi ¼ θ, for
all i, so that omniscience and consensus bias are equivalent.
Observing that agent i ≠ 1 follows a positive first decision
tells other agents that yiðT−Þ ∈ ½0; θÞ. Therefore observing
a first wave decision of agent i leads to an increment in
belief equal to [15]

LLR½yiðTÞ ∈ ð0; θÞ�¼def log
�
P½yiðTÞ ∈ ½0; θÞjHþ�
P½yiðTÞ ∈ ½0; θÞjH−�

�

¼ log

�R θ
0 pþðx; TÞdxR
θ
0 p−ðx; TÞdx

�
≡ RþðTÞ:

Here p�ðx; tÞΔx ¼ P½yiðtÞ ∈ ðx; xþ ΔxÞjH�� þOðΔx2Þ
is the conditional probability density for the belief of
agent i at time t. Since thresholds are symmetric,R
θ
0 p−ðx; tÞdx ¼ R

0
−θ pþðx; tÞdx, so observing an agent j

who remains undecided after the first decision reveals
yjðTÞ ∈ ð−θ; 0�, leading to an increment LLRfyjðTÞ
∈ ð−θ; 0�g≡ R−ðTÞ ¼ −RþðTÞ. Thus, in contrast to pre-
vious work [6,7,27,28], the first decision, but not sub-
sequent ones, reveals the exact information gathered by the
decider.
Agents know the statistics of private observations and

can compute pþðx; tÞ and p−ðx; tÞ. Thus agents know that
beliefs evolve according to Eq. (1) and that the belief
distribution prior to any decision satisfies:

∂tp� ¼∓ ∂xp� þ ∂2
xxp�; p�ð�θ; tÞ ¼ 0; ð2Þ

ifH� is correct, with p�ðx; 0Þ ¼ δðxÞ. Agents do not know
which hypothesis is correct, and compute the belief update,
RþðTÞ, using only belief distributions, p�ðx; tÞ.
Agents undecided after the first wave combine the

information from all observed decisions and indecisions.
Since private measurements are independent, information
obtained from agents in the first wave is additive. The
resulting belief increment is

cþ1 ¼defa1RþðTÞ þ ðN − a1 − 2ÞR−ðTÞ
¼ ð2a1 − N þ 2ÞRþðTÞ: ð3Þ

If a1 > N=2 − 1, the weight of new evidence favors the
choice of the first agent, and cþ1 > 0. Conversely, observing
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that more agents remain undecided provides evidence
against the first agent’s decision.
All undecided agents increment their belief by cþ1 ,

causing a second wave of a2 decisions, all of equal sign
[Fig. 1(c)]. Agents in the first wave agree with the first
decision, while agents in the second wave agree when the
sign of cþ1 matches the first decision. Observers undecided
after this second wave update their beliefs by a new
increment, cþ2 . Waves of decisions follow until either all
agents make a choice or no new agent makes a decision
after some belief update, cþk , k ≥ 2 [15]. Undecided agents
then continue to accumulate private information ([24],
Sec. V). Whether the first decision is right or wrong, we
show that in large populations the first two waves encom-
pass the entire population.
If the first agent wrongly chooses H−, computations are

similar: observing a decision in the first wave provides a
belief increment R−ðtÞ ¼ −RþðtÞ, and observing an unde-
cided agent provides an increment RþðtÞ, resulting in a
belief increment c−1 ¼ ð2a1 − N þ 2ÞR−ðTÞ. Further deci-
sion waves follow equivalently.
Decisions in large groups: As N grows, T → 0, and we

approximate the solution to Eq. (2) using the method of
images [29,30] [[24], Eq. (S3)]. Extreme value theory then
gives [31–35]:

E½T� ≈ θ2

4 lnN
: ð4Þ

The mean time decreases logarithmically with N,
allowing each agent less time to gather private information
[Fig. 1(e)]. When T is small the remaining beliefs are
distributed almost symmetrically around the origin. We find
that

E½a1jy1ðTÞ ¼ �θ� ≈ N − 1

2

�
1� θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π lnN

p
�
: ð5Þ

Slightly more than half of a large clique immediately
follows a correct first decision [Fig. 1(d)], and slightly less
than half the clique follows a wrong first choice.
The number of agents in excess of half the population

following a correct first decision scales as NðlnNÞ−1=2. But
as N grows agents in the first wave accumulate less private
information prior to their choice. For large N, the expected
social information communicated by each decision is ([24],
Sec. IX)

E½RþðTÞ� ≈ 2E½
ffiffiffiffiffiffiffiffiffi
T=π

p
� ≈ θ=

ffiffiffiffiffiffiffiffiffiffiffiffi
π lnN

p
: ð6Þ

As N increases, a1 grows [Fig. 1(d)], but each first wave
decision provides less information [Fig. 1(e)]. However, the
logarithmic decrease in R�ðTÞ is outweighed by the nearly
linear growth in a1: using Eqs. (3), (4), and (6), we find that
the expected belief update, ĉ�1 ≡ E½c�1 �, to undecided

agents in the second wave grows nearly linearly in N
([24], Sec. IX),

ĉ�1 ≈
θ2N

2π lnN
: ð7Þ

Here ĉ�1 is positive: if the first decision is correct, then
more than half the network is in the first wave, and both
ð2E½a1� − N − 2Þ and RþðTÞ are positive in Eq. (3). Both of
these terms are negative when the first decision is wrong.
Thus the second wave is self-correcting when the network
is sufficiently large, ĉ�1 > 2θ [Fig. 2(a)]. The belief incre-
ment diverges, and its sign agrees with that of the correct
choice, so that in large networks all undecided agents make
the correct choice in the second wave. We use Chebyshev’s
inequality to show that when N ≥ 4π½θ2ð1 − xÞ�−1 the
clique decides by the second wave with probability at least
x [Fig 2(b) and [24], Sec. XI].
Heterogeneous populations.—A population of decision

makers is rarely homogeneous. Some people decide
quickly based on little evidence. Others require substantial
information before choosing [36,37]. Does such diversity
impact decisions of the collective?
To model such diversity we assume that decision thresh-

olds are distributed over an interval ½θmin; θmax�. Agents
with a low threshold are more likely to decide first but also
to make a wrong choice [38]. The ensuing exchange of
social information depends on assumptions agents make
about each other: while populations under consensus bias
behave like homogeneous populations, omniscient agents

(a)

(c) (d) (e)

(b)

FIG. 2. Decision statistics for homogeneous and dichotomous
cliques. (a) Belief increment ĉ�1 . (b) Probability the full clique
decides after the second wave. Chebyshev’s inequality provides
an upper bound on N by which the probability is reached ([24],
Sec. XI). Inset: threshold θ at which ĉ�1 ¼ 2θ asN varies. (c) First
decision time for dichotomous threshold cliques for various γ
[Eq. (S10)]. (d) Fraction of accurate deciders in dichotomous
threshold cliques under consensus bias [Eqs. (S11) and (S12)].
(e) Belief increment of agents in the second wave in dichotomous
threshold cliques under consensus bias [Eq. (S12)]. Clique size
N ¼ 15 000 in panels (c)–(e).
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can leverage quick, unreliable decisions to improve the
response of the population.
Dichotomous threshold distribution: The case of agents

with either a high or a low threshold is tractable and sheds
light on more general examples. Before a decision the
belief of each agent evolves according to Eq. (1) with
absorbing boundaries at −θi < 0 < θi. We assume that γN
agents share threshold θmin and ð1 − γÞN share threshold
θmax for 0 < θmin < θmax and γ ∈ ð0; 1Þ. The first decision
is then likely made by an agent with a low threshold, and is
thus fast but unreliable ([24], Sec. XII). We use the
approximation E½T� ≈ θ2min=4 ln ðγNÞ which breaks down
when 0 < γ ≪ 1, but works well otherwise [Fig. 2(c)].
A clique under consensus bias is homogeneous from an

observer’s perspective and thus behaves like a homo-
geneous population. Indeed, the expected size of the first
wave is given by an expression similar to Eq. (5), E½a1� ≈
ðN − 1=2Þð1� ðθmin=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π ln γN

p ÞÞ ([24], Sec. XIII). The
expected belief increment in the second wave is ĉ�1 ≈
θ2minγN=2π ln γN ([24], Sec. XIV) which is analogous to
Eq. (7) and is governed by the timing of the first choice
[Fig. 2(e)]. In large populations decisions happen quickly,
before the belief distributions can interact with the boun-
daries. Therefore ĉ�1 is approximately independent of the

observer’s threshold: following the first wave all agents
make the same update.
As in homogeneous networks, ĉ�1 grows with N, and

when ĉ�1 ≥ 2θmax, we expect all agents to decide by the
second wave. If the first decision is correct, the entire clique
follows. A wrong first choice is followed by about half the
network [Fig. 2(d)], while the second wave decides
correctly. Hence under consensus bias, dichotomous cli-
ques behave like homogenous cliques with threshold θmin:
uninformed agents govern decisions, leading to fast,
inaccurate choices.
In contrast, omniscient agents correctly weigh evidence

revealed by a hasty first decider. We expect about half
of the low-threshold agents, γN=2, to decide in
the first wave. Indeed, we find E½a1� ≈ ðγN − 1=2Þ
ð1� ðθmin=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π ln γN

p ÞÞ. The evidence revealed by a few
low-threshold agents is unlikely to sway high-threshold
agents [Fig. 3(a)]. However, if the subpopulation of low-
threshold agents is sufficiently large, the difference
between those convinced and unconvinced by the first
choice triggers a correct decision in the rest of the
population [Figs. 3(b) and 3(c)].
Thus, in a network of omniscient agents, hasty observers

govern the speed of the first decision and comprise the first
wave. The remaining agents can then observe the choices of
the early adopters to make the right decision. The fraction
of wrong decisions can thus be smaller than in homo-
geneous networks.
In finite populations this argument requires γ and θmin to

be large enough for the first wave to convince the remainder
of the population [Fig. 3(a)] but small enough to buffer the
majority from following an incorrect first choice
[Fig. 3(b)]. Hence, the population makes the best decisions
at intermediate values of γ and θmin [star in Fig. 3(d)]. A
balance is reached when ĉ−1 ¼ 2θmax ([24], Sec. XVII),
which corresponds to a fraction of low-threshold agents
given by

γ ≈
4πθmax

N
lnN
θ2min

: ð8Þ

Maximal accuracy is achieved when this balance holds
[star, white line in Fig. 3(d)]. Almost all agents decide by
the second wave [Fig. 3(e)].
Finite populations with dichotomous thresholds can

sacrifice a small fraction of early adopters so the majority
makes a fast, correct choice. Agents in heterogenous
networks can thus decide more quickly and outperform
agents in homogeneous networks in recovering from a
wrong first choice [Figs. 3(c) and 4].
Different threshold distributions: With different distri-

butions supported on the interval ½θmin; θmax� the expected
time to the first decision is again governed by θmin. Under
consensus bias E½a1� ≈ N − 1=2½1� ðθmin=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π lnN

p Þ�
([24], Sec. XX). In either case, ĉ�1 satisfies Eq. (7) with

(a)

(d) (e)

(b) (c)

FIG. 3. Balancing hasty and deliberate decisions in dichoto-
mous cliques. (a) With few low-threshold agents, the remaining
agents receive insufficient information to decide after the first
wave. (b) With many low-threshold agents, a wrong first decision
sways much of the network. (c) With the right number of low-
threshold agents, a few hasty agents follow an incorrect decision,
but the difference between agreeing and disagreeing low-thresh-
old agents drives the rest to choose correctly. (d) Fraction of the
clique choosing accurately for a dichotomous threshold clique.
White line represents Eq. (8). (e) Fraction of the clique deciding
by the end of the second wave. Isoclines indicate time to first
decision. N ¼ 15 000 in (b) and (c).
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θmin replacing θ. For sufficiently large N, ĉ�1 > 2θmax.
Therefore, under consensus bias the clique again behaves
as a homogeneous clique with threshold θmin.
The omniscient case is more complicated, but simula-

tions show that trends observed in the dichotomous case
persist for a large class of threshold distributions. Hasty
agents decide first, and deliberate agents decide based on
which early adopters followed the first choice (Figs. 4 and
S10), leading to faster and more accurate choices than in
homogeneous networks.
Conclusion.—Our model of collective decision making

is analytically tractable and shows how diverse populations
can make better decisions than homogeneous ones, extend-
ing previous results [6,17–19]. Previous models often
described agents forced to make decisions in sequence
[27], while we assumed agents decide when faced with
sufficient evidence. Decision-makers in real social net-
works likely combine these strategies, leading to asyn-
chronous but clustered decisions.
Our work may describe why social organization emerges

in animal groups. For example, low decision thresholds
promote quick decisions based on little evidence, character-
istic of “bold” individuals observed across the animal
kingdom [39]. Such individuals may emerge as leaders
since they often decide first. “Shy” individuals who require
more evidence to make decisions may follow [40,41].
More realistic features can be included in our model:

observations could be correlated [42] and agents could
accumulate evidence at different rates, giving inhomo-
geneous drift and diffusion coefficients [22,23]. Our
framework can thus be extended to understand decisions
in diverse communities.
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