
K-D Trees and KNN Searches
Or, “How Do We Figure Out What Nodes Are In Our Stencil?”

Naïve Nearest Neighbor Searches

• For every point
• Find the distance to ever other point

• Sort all those Distances

• Take the points corresponding to the K smallest

Naïve Nearest Neighbor Searches

• For every point (N)
• Find the distance to ever other point (N)

• Sort all those Distances (N log N – N2)

• Take the points corresponding to the K smallest (1)

• Total time O(N^3)

KD Tree

• Bisecting structure

• Each branchpoint is the median in some
dimension
• One set of descendants are to one side, and one to

the other

• Cycle the dimensions

Example via Wikipedia, calculated
by users KiwiSunset and MYguel,
2006 and 2008, respectively

KD Tree Construction

• Median finding is expensive
• O(N) or O(N log N)

• Sometimes a random subset is sorted and used to serve as splitting planes,
and the rest are just fitted in there

• Lose balance guarantees (necessary for strict complexity proofs for some
operations), but faster to construct

• Often balanced in practice

KD Tree Construction

• Adding Elements
• Can add elements dynamically, but it’s a bad idea to construct the original

tree this way

• Can break balance, and (AFAIK) not implemented in MATLAB

• Can be helpful for “online” applications

• Traverse down the tree, staying in a region where the new point should be
located
• When you reach a leaf go to one side or the other accordingly

Nearest Neighbor Search on a KD Tree

• For Each Point:
• Start at the root

• Traverse the Tree to the section where the new point belongs

• Find the leaf; store it as the best

• Traverse upward, and for each node;
• If it’s closer, it becomes the best

• Check if there could be yet better points on the other side:
• Fit a sphere around the point of the same radius as distance to current best

• See if that sphere goes over the splitting plane associated with the considered branchpoint

• If there could be, go down again on the other side. Otherwise, go up another level

• O(N log N)

K Nearest Neighbor Search on a KD Tree

• For Each Point:
• Start at the root

• Traverse the Tree to the section where the new point belongs

• Find the leaf; store it as the first element in the “Best” queue

• Traverse upward, and for each node;
• Put it at the proper point of the “Best” queue

• Check if there could be yet better points on the other side:
• Fit a sphere around the point of the same radius as distance to last element in “Best” queue

• See if that sphere goes over the splitting plane associated with the considered branchpoint

• If there could be, go down again on the other side. Otherwise, go up another level

• A bit worse

KNN Complexity

• Building the Tree: O(D N log N), but constant can be large

• Searching the Tree: ~ log N per query point, so ~ N log N in total

