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Steady viscous flow past a sphere at high Reynolds

numbers
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(Received 5 June 1987)

Numerical solutions are presented for steady incompressible flow past a sphere. At
high Reynolds numbers (results are presented up to R = 5000), the wake is found to
resemble a Hill's spherical vortex.

I. Introduction

Viscous flow past a circular cylinder becomes unstable around Reynolds number
R = 40 and past a sphere around R = 130. We are interested in the structure of the
steady (but unstable) solutions above these Reynolds numbers. Apart from studies
by the present author, the upper limit for (reasonably accurate) solutions for the
cylinder in the literature appears to be R = 120 (Ta 1975), and for the sphere R =
400 (Le Clair, Hamielec & Pruppacher 1970; Woo 1971).

An earlier study by the present author (Fornberg 1985, hereinafter denoted F85)
describes a calculation for the cylinder up to R = 600. This report describes a similar
calculation for the sphere, carried out up to R = 5000. In both cases, it is the
application of Newton's method to solve the discretized equations that enabled us to
obtain converged solutions well past the' barrier' where instabilities otherwise would
start to occur. Conventional iterative techniques tend, in the artificial time
introduced by the iterations, to pick up instabilities reminiscent of temporal ones.
The quadratic convergence of Newton's method precludes this from happening. With
the present evolution of supercomputers, the computational cost of this approach is
no longer prohibitive.

In the case of a cylinder, the wake bubble (the region with recirculating flow) was
found to increase linearly with R in both length and width above R ~ 300. In the
sphere case, both growth rates are much lower, possibly like log R. In both cases, it
appears likely that very high-Reynolds-number wake bubbles will be large, wide and
similar in structure to Euler solutions which can translate through the fluid without
any bodies present.

Portions of this work have appeared in preliminary form as part of a conference
contribution (Fornberg 1987).

2. Mathematical formulation

With a sphere of radius one and the Reynolds number based on the diameter, the
steady-state Navier-8tokes equations in cylindrical coordinates take the form

()2'I' ()2'I' 1 () 'I'
-;;;--;j'+-;;;--;j'---;-+y(J) = 0, (1)
uX uy yuy
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FIGURE I. Computational domain in (a) the physical X-plane and (b) its image in the Z-plane.
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Here, tp denotes a stream function and (tJ vorticity. The x-axis is the downwind
symmetry axis and y the distance from this axis.

Near the sphere, all the vorticity is concentrated within a region similar to the one
sketched in figure 1 (a). The conformal mapping

1 1Z = XI +X-. (3)

maps such regions in the physical (X = x+iy)-plane to rectangles in the (Z =
~+i1J)-plane (figure 1b). After an arbitrary conformal mapping, the governing
equations (1), (2) take the form

{02tP 02!l 1 { otP 0!1W+-a;ji:JJ(~,11)+y 1Ixag-~x--a;;jJ +y(tJ = 0, (4)

{02(tJ 02(tJ} 1{ 0(tJ 0(tJ} (tJ -a"t2+a;j2 J(~,11)-y 1Ix-ag-~xan -:?/"2

~

R {(0 tPo(tJ 0 tpo(tJ ) (tJ ( 0 tp 0 !I
}+2Y agan---a;;j-ag J(~,11)-y ~xag+1Ix--a;;j } = 0, (5)

whereJ(~,1I) = ~;+11;. These equations are further modified by separate changes of
variables in the ~- and 1I-directions :

For 0 ~ ~ ~ 2 (corresponding to the sphere surface if 11 = 0), ~(~) is a quintic

satisfying
~(o) = 0, ~(2) = 2,

}~'(o) = 0.7, ~'(2) = 0.1, (6)
~"(o) = 0, ~"(2) = 0.

For ~ ~ 2, ~(~) is a cubic satisfying the same conditions at ~ = 2 and an additional
one at the outer edge of the computed domain :

~(2) = 2, ~(6) = 10.8,
}~'(2) = 0.1, (7)

~"(2) = 0.

For 11 ~ 0, 1I(K) is a cubic satisfying

11(0) = 0, 1I(t) = 0.6,
}11'(0) = 0.1, (8)

11"(0} = 0.
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FIGURE 2. Part of the computational domain near the sphere of a rectangular grid in the

Z-plane.

By varying the (non-zero} constants in these transformations, the relative grid
densities in different parts of the flow field can be adjusted, for example to provide
sufficient boundary-layer resolution and to' offset' the grid singularity at the rear
stagnation point on the sphere surface. In all cases presented in this work, the
particular constants given above were used.

The domain size was also the same in all ca.ses ( except when changed to test for
errors from boundary conditions as explained in a later section}. In ({;", K}-spaoe, the
computational domain was [0, 6] x [0, t], corresponding in (g, fJ}-space to [0,
10.8] x [0, 0.6]. Three levels of resolution were used. The equidistant mesh spacings
were (~{;" = /6, ~K = h} ; (~{;" = h, ~K = 81) ; and (~{;" = 81, ~K = 2h) respectively.
Denoted G1, G2 and G3, these grids were of sizes 217 x 73,325 x 109 and 487 x 163
points respectively. The sequence of grids correspond to successive refinement with
a factor of i in each direction.

Figure 2 shows the size of the computational domain in physical space near the
sphere and the effect of the transformations on the grid density. However, for best
visibility, the grid displayed has only! the density of G 1 in each direction (i.e. it
corresponds to a 55 x 19 grid which would be obtained by using (~{;" = l, ~K = ~).

3. Numerical approximation of the governing equations
The governing equations are approximated by centred second-order finite

differences at all interior points. At each boundary, two conditions are suppli~d. At
the body surface they are IF = 0 and () IF /()fJ = 0, and along the axis of symmetry
IF = 0 and (IJ = 0. At the outflow boundary, simple extrapolations proved satisfactory
(as described in F85).The .vorticity decays exponentially to zero for increasing values of fJ. The' top ,

boundary is located sufficiently far out that the vorticity on or above it can be
ignored. Figure 2 shows the location used at all Reynolds numbers in this study. On
this boundary, (IJ is set to zero. The crucial issue is which second condition to apply.
At least in two dimensions, use of 'free-stream' or leading terms in far-field
asymptotic expansions proves unsatisfactory even when applied at large distances.
This becomes even more the case if the boundary is not uniformly far out but comes
close to the sphere, as with the present grid. The following approach applies equally
well to two dimensions as to three. It is also very easy to implement, even where
(possibly non-conformal) mappings have given the top boundary an arbitrary

shape.
Figure 3 illustrates th~ computational domain with the top two grid lines marked.

If we imagine marching equation (4) (with (IJ = 0) upwards from these two lines, the
initial conditions for IF on them should be such that we do not pick up any
exponentially growing modes. That is the case only if the values on these two lines
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FIGURE 3. Implementation of the boundary condition for I? on the top boundary: ( , ) grid-point
indexing; D, grid-point locations on the outermost two grid lines; 0, intersections of vortex rings
with the (x, y) plane.

i

obey a certain set of M linear constraints. With the notation in figure 3, it should be j

possible to write such constraints as ,

[ i IF1 N-l IF1 N i

IF2',:N-1 ] = A [IF~:N
] .(9)'

IFM,N-l IFM,N

It remains to determine the matrix A. Any solution to (4), with lI) = 0 and decaying
for increasing "I , can be inspected along the top two grid lines to yield a pair of vectors
satisfying (9). M such independent pairs, placed side by side, forms matrices B
and C satisfying B = AC. This relation can then be solved for A. One possibility
(which gives a well-conditioned matrix C) is to consider circular line vortices. The IF-
fields around such vortex rings are known explicitly, e.g. Batchelor (1967). Placing a
sequence of vortex rings as indicated in figure 3 provides all the data needed to solve
for A. In two dimensions, pairs of point vortices can be similarly used. This matrix
A constitutes the bottom-right square block in the matrix in figure 4(b) (described

below).
It should be noted that the matrix A is' universal' in the sense that it does not

depend on the flow field within the computational domain (or on the Reynolds
number), This is not a consequence of any asymptotic assumptions, which get
increasingly accurate the further out one moves into an irrotational domain. It relies
only on the fact that (1) and (4) become linear when lI) = 0. Full accuracy is achieved
even when the flow is rotational in the immediate vicinity inside (but not outside) the

boundary.

4. Solution of the algebraic system
The discretized equations are nonlinear. A convenient way to order the equations

and unknowns is described in F85. It gives a Jacobian matrix with the structure
shown in figure 4(a). This coefficient matrix is first reduced to roughly half its size
by eliminating all entries below the single diagonal (located in the top-right corner
block). The new structure is shown in figure 4(b). The sizes of the blocks are given
both for a general M x N grid and for the 487 x 163 grid. Standard row pivoted
Gaussian elimination was employed for the main banded part. The remaining border
elements were then eliminated. Table 1 summarizes the computational resources
needed for each Newton iteration.

The (grossly erroneous) IF = 0 as initial condition sufficed to get convergence at
R = 100. Subsequent increments of 100 (of 50 very close to the upper limit of R =
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FIGURE 4. (a) Structure of the linear system in Newton's method. (b) Structure of the reduced

Jacobian.
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Grid Computational resources required and performance

.CPU time, seQonds

Memory
Generation used by

Number of of each Sustained linear
arithmetic linear Linear Mflop solver ,

Name Size operations system solver rate Mbytes

G1 217 x 73 4.1 x 109 0.010 46 90 61
G2 325 x 109 2.1 x 101° 0.022 191 110 209
G3 487 x 163 1.1 x 1011 0.054 828 130 708

TABLE 1. Computational resources required for each Newton iteration. Speeds given for 2-pipe
CDC Cyber 205 using 64.bit precision.

.
5000) with just one iteration at each value of R were sufficient for continuation.
Convergence to full machine accuracy at any fixed Reynolds number required an
additional 3 to 4 iterations.

5. Equations for the pressure and the drag

In cylindrical {x, y)-coordinates, the pressure satisfies

2 ( <IJ) 1 1 Px=-R <IJ1/+y +Y2{'[1x'[1I/U-'[1u'[1xu)-ya'[1x'[1u, {10)

2 1 1Pu =-R <IJx+2 {'[I u '[I xx- '[I x '[I xu) +a ~. {11)

y y

Changing notation to let x denote complex positions in the {x, y)-plane, an arbitrary
conformal mapping z = z{x), z = �+i1/, transforms (10), {11) into

P'l =~{<IJs-{Imf(x))'~}

1
+ys{I(J(x)I' ('[Is '[1.,'1- '[1'1 '[Is.') -{Re h{x)) .{'P'i + ~)}

1
-ya{{Ref{x)) '[Is '[1'1+ {Imf(x)) ~}, {12)

P., =~{<IJs-(Imf{x))"~}

1
+2{1(J{x)l" ( '[1'1 '[Iss- '[Is '[IS'I) -(Im h{x)) .{ 'P'i + ~)}

y

1
+3{(Ref{x)) 'P'i+ {Imf{x)) '[Is 'P'I}' {13)

y

where dz (dZ)2 d2Z (J(x)
f{x) = "(1:;;' (J{X) = "(1:;; , h(x) = dX2"jg(;)T. (14)
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1 3With the mapping (3), f(x) = l(x-2-X-2) etc.

It is conventional to define a' non-dimensional ' pressure p as

-P-Poop -Tlj2' (15)
2P 00

where P is defined as in (10) and (11), Poo is the pressure at infinity (set to 0), P the
density and U 00 the fluid velocity at infinity (both set to 1). After assigning the
pressure to be zero at the top-right corner of the computational domain, (13) was
used to find p (= 2p) along the right (outflow) boundary. Integrating (12) (for
decreasing 6) then provided the results across the complete computational
domain.

The drag coefficient C D is the sum of two components, one arising from the viscous
forces and the other from the pressure distribution over the sphere. These components
take a particularly simple form in polar (r, (})-coordinates :

Cv = -~ [ (J)r-1 sin2 (}d(} (16)

and cP=~f:{((J)+~)r-1Sin2(}}d(}. (17)

In (6, "1)-coordinates, these equations become

Cv = -~[(J),,-062{1-(l6)2}id6 (18)

and CP=~ [{ ~ } 62{1-(l6)2}d6-lOv. (19)
° "1 ,,-0

6. Tests of accuracy

Main sources of errors include: (i) machine rounding errors; (ii) truncation errors
arising from finite differencing of derivatives; and (iii) boundary conditions
simulating infinite domains implemented at a finite distance.

The first error source proved negligible with use of 64-bit floating point precision.
After the Newton iterations had converged, future iterations displayed random
fluctuations in IF and (J), typically only about 10-10.

Regarding the second source, table 2 shows how the dimensions of the recirculation
region (length measured from the centre of the sphere, width across the full wake )
and the drag coefficient vary between the different grids for different Reynolds
numbers. (Computations on grid G 1 could be continued only to R = 2300 and on G2
to R = 3725 owing to the emergence of spurious singularities.) The results are
generally consistent with what one should expect from a second order scheme under
successive mesh refinements with factors of i. The error level should approximately
halve at each refinement. The error levels appear to be well below 1 %.

The errors arising from the outer boundary conditions were tested by increasing
the extent of grid G 1 from 217 x 73 to 225 x 81 and 233 x 89 points. The three
domains are denoted Dl, D2 and D3 respectively; all discretization levels, grid
transformations etc. were left unchanged. Figure 5 compares these extended domains
(D2 and D3) to the basic one (Dl) (The grid shown in Dl is the same 55 x 19 grid as

16-:!
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Wake length Wake width Drag coefficient

R 01 02 03 01 02 03 01 02 03

100 2.747 1.818 1.085
200 3.871 2.264 0.768
500 5.062 5.065 2.590 2.601 0.481 0.482

1000 5.489 5.497 5.502 3.285 3.303 3.312 0.319 0.319 0.319
2000 6.038 5.987 5.983 4.220 4.192 4.196 0.196 0.200 0.200
5000 6.797 5.462 0.113

TABLE 2. Wake dimensions (length measured from centre of sphere, width across the full wake) as
functions of computational grid density

3.

1510 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

FIGURE 5. Comparison between the computational domains Dl, D2 and D3.

Wake length Wake width Drag coefficient

R Dl D2 D3 Dl D2 D3 Dl D2 D3

100 2.747 2.744 2.744 1.818 1.816 1.816 1.085 1.085 1.084
200 3.871 3.868 3.867 2.264 2.262 2.262 0.768 0.768 0.768
500 5.062 5.060 5.058 2.590 2.587 2.586 0.481 0.482 0.482

1000 5.489 5.484 5.481 3.285 3.279 3.276 0.319 0.320 0.320
2000 6.038 6.027 6.016 4.220 4.206 4.195 0.196 0.197 0.198
5000
TABLE 3. Wake dimensions (length measured from centre of sphere, width across the full wake) as
functions of the position of the outer boundaries. All results are based on the grids with the same
density as 01 (i.e. L\I; = h, L\K = h).

shown in figure 2.) The results in table 3 indicate that the basic domain is of sufficient
extent for errors again to be less than about 1 %.

7. Results

Figure 6 shows the streamlines and figure 7 contours of equal vorticity at Reynolds
numbers 100, 200, 500, 1000, 2000 and 5000. Details of the vorticity fields near the
sphere are shown in figure 8 for Reynolds numbers 100, 500 and 5000. For 'P, the
contour values are

{0,0.2 1.0,4.0,9.0,16.0... (20)

-0.2, -0.4, -0.6, -0.8, -1.0, ...,
and for (11

:1::{0.1,0.2,0.3,0.5,0.7, 1,2,3,5,7,10,20,30,50}. (21)
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FIGURE 6. Streamlines.
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FIGURE 7. Contours of constant vorticity.
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FIGURE 8. Contours of constant vorticity near the sphere.

To provide a better impression of the structure of the wake, figure 9 displays the
vorticity fields as surface projections. The figures are based on grid a 1 for R = 100,
200, on 02 for R = 500 and on 03 for R = 1000, 2000 and 5000.

At the higher Reynolds numbers, the vorticity distribution in the wake bubble
resembles that of a Hill's spherical vortex (e.g. Batchelor 1967). Such vortices have
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FIGURE 11. Levels of ltJ/y within the recirculation region for different Reynolds numbers.
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FIGURE 12. Length and width of the recirculation region for different Reynolds numbers compared
to the diameters of Hill's spherical vortices with the same observed values for ltJ/y.

l1J/y = const. inside a spherical flow domain, l1J = 0 outside it. This resemblance can

be seen still more clearly in figure 10 which displays l1J/y instead of l1J alone.
If a Hill's spherical vortex is travelling with unit speed, its diameter d satisfies the

relation
1d = {30/1l1J/yl}". (22)

The constant levels of l1J/y observed within the wake bubbles are shown in figure 11.
Corresponding values for d are shown in figure 12 together with the wake length and
width (measured from the centre of the body and across the full wake respectively).
If the limit is indeed of the spherical vortex form and grows to infinite size, all the
three curves in figure 12 should ultimately approach each other.

Spurious mesh oscillations were noticeable for the vorticity near the leading
edge of the wake bubble in the R = 5000 case. For increased clarity in figure 7 (i),
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FIGURE 13. Pressure fields.
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FIGURE 15. Pressure along the centre of the wake.

R Cy Cp CD

100 0.5087 0.5765 1.0852
200 0.4093 0.3590 0.7683
500 0.3034 0.1784 0.4818

1000 0.2234 0.0952 0.3187
2000 0.1531 0.0473 0.2005
5000 0.0949 0.0183 0.1131

TABLE 4. Drag coefficients Cy, C p and C D calculated on the basic domain with the highest-
resolution grid used at each Reynolds number

8(c), 9(!) and 10(!), the vorticity data (on G3) were damped by three times
applying the smoothing operator with stencil

[~ : ~] / 16. 23
1 2 1 ( )
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FIGURE 16. Experimental values for CD compared to Stokes law and to the present results for
steady flow.

The pressure outside the sphere, over its surface and along the centreline of the
wake are shown in figures 13, 14 and 15 respectively. The contour lines in figure 13
differ by AP = 0.1; the dotted lines correspond to p = 0.

The values obtained for Cv, Cp and CD (=Cv+Cp) for various Reynolds numbers
are given in table 4 (based on the finest grid used at that Reynolds number). In

figure 16, the values for C D are compared to a summary of experimental (unsteady)
results compiled by Clift, Grace & Weber (1978; as reported in their figure 5.2).

8. Conclusions
Calculations leading up to those presented in F85 for the two-dimensional case of

flow past a cylinder have led to a reassessment of models for wake structures. New
models, based on the wide wakes which were observed, have been considered by
Peregrine (1985) and Smith (1985,1986, 1987). For the three-dimensional case of flow
past a sphere, fewer attempts at modelling have been made in the past. Our present
calculation suggests that the wake will take the form of a perturbed Hill's spherical
vortex. A finite-sized wake of this kind was proposed by Batchelor (1956).

Unless advances are made in the area of active flow control, no immediate
practical applications are anticipated for the (very low drag) flows we have observed.
Somehow maintaining axial symmetry is unlikely to suffice since Hill's spherical

vortices for Euler flow are unstable even in that case (Pozrikidis 1986).
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