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A general procedure is presented for computing axisymmetric swirling vortices which are
steady with respect to an inviscid flow that is either uniform at infinity or includes shear.
We consider cases both with and without a spherical obstacle. Choices of numerical
parameters are given which yield vortex rings with swirl, attached vortices with swirl
analogous to spherical vortices found by Moffatt, tubes of vorticity extending to infinity
and Beltrami flows. When there is a spherical obstacle we have found multiple solutions
for each set of parameters. Flows are found by numerically solving the Bragg-Hawthorne
equation using a non-Newton-based iterative procedure which is robust in its dependence
on an initial guess.

1. Introduction
Steady axisymmetric vortices with swirl as solutions of the Euler equations are of

interest for several reasons. Unlike axisymmetric flows without swirl the vortex stretching
terms do not vanish and the helical-like streamlines inside the vortex are, in general,
ergodic with associated mixing properties. Nevertheless these three dimensional flows
can be obtained as solutions to elliptic boundary value problems in two variables. We
obtain families of inviscid flows in which an axisymmetric vortex with swirl is embedded
in an external flow. The external flow may be irrotational flow which is uniform at infinity
or it may include shear. We will consider both flows past a sphere and flows in which
the vortex is the only disturbance to the flow at infinity. The solutions obtained can be
related to explicit solutions of classical interest such as Hill’s vortex and its generalization
to flows with swirl found by Moffatt (1969) and Hicks (1899).

A number of studies have indicated that under appropriate conditions inviscid flows
provide accurate models for physical flows with vorticity. The family of inviscid vortex
rings, without swirl or shear, described in Norbury (1973) have been shown to com-
pare well with numerical simulations of the Navier-Stokes equations in Wakelin & Riley
(1997), and with physically generated flows in Mohseni & Gharib (1998) and Linden
& Turner (2001). Moreover, asymptotic expansions for Navier-Stokes solutions at large
Reynolds numbers given in Fukumoto (2002) indicate the relevance of these inviscid
solutions to Navier-Stokes solutions. The vortex rings found here when there is no ob-
stacle can be regarded as an extension of the Norbury family to include swirl and shear.
As in Norbury (1973), the vorticity profile used in the present study, (1.3) below, is
that which is prescribed by the Prandtl-Batchelor model, Batchelor (1956a), Batchelor
(1956b), without vortex sheets. There have also been several studies of the significance
of the Prandtl-Batchelor model to flows past a bluff body; see Fornberg (1993) for an
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overview. That the Prandtl-Batchelor model could include flows with swirl was shown
in Batchelor (1956a), a simpler proof due to Chernyshenko being given in Wu, Ma, &
Zhou (2006). Therefore, it is not unreasonable to anticipate that inviscid flows likewise
provide good models when swirl and shear are included, although we are not aware of
any direct verifications of this.

If r, θ and z are cylindrical coordinates, a flow is axisymmetric if the velocity field is
independent of θ. It follows that there exists a stream function ψ such that
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,

and that the components of the vorticity are given by
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where C = rvθ is the swirl and
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It follows from the steady Euler equations (see Batchelor (1967) pp. 543-544) that C =
C(ψ) and that steady axisymmetric flows with swirl can be found by solving the Bragg-
Hawthorne equation

Lψ = r2f(ψ)− C(ψ)
dC

dψ
. (1.2)

The profile functions f and C can a priori be arbitrary, but a reasonable theory has
only been given when they satisfy some restrictions. Two of us, Elcrat & Miller (2003),
have given fairly general conditions on f and h = −CC ′ that lead to existence of solutions
analogous to those found here numerically. We restrict ourselves in the computations in
this paper to

f(ψ) = σ + ωH(α− ψ)
C(ψ) = λ(α− ψ)+

(1.3)

where H is the Heaviside function and s+ = s if s ≥ 0, 0 if s < 0. The constant α is the
value of the stream function ψ on the boundary of the vortex, σ is the shear parameter for
the background flow, and ω and λ will be referred to as the vorticity and swirl parameters
respectively. More general f and h could be dealt with using our methods, but we use
these in order to fix ideas and more easily make comparisons with previous work.

By (1.1)-(1.3) the vorticity of the flows we are considering satisfies
{

ω = −λv − r(σ + ω)eθ inside D,
ω = −rσeθ outside D,

(1.4)

where D = {ψ < α} is the vortex region and eθ is the unit vector in the θ direction. So
there is a jump in the vorticity at the boundary of the vortex region.

In Elcrat, Fornberg & Miller (2001) solutions for flow past a sphere were computed
when there is no shear and no swirl and the present algorithm is an extension of the one
used in that previous work. Equation (1.2) is solved using iterations patterned after

Lψn+1 = r2f(ψn) + h(ψn).

However, a key step in our previous work, Elcrat et. al. (2000) and Elcrat et. al. (2001),
was that, in order to stabilize the algorithm, ω must be adjusted to a new value ωn at
each iterative step so as to fix either the area of the vortex (for the two dimensional
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problem) or the first moment of the vortex cross-section with respect to the z-axis in the
meridional plane (for the axisymmetric problem). We employ the same procedure again
here, as described below. As in our previous work the flows are naturally divided into
classes according to whether α < 0 (vortex rings), α = 0 (attached vortices, e.g. Hill’s
vortex) and α > 0 (vortex tubes extending to infinity.)

When there is no obstacle, vortex rings with swirl were computed in Eydeland & Turk-
ington (1988) using an approach based on variational methods developed in Turkington
(1989). A modification of that approach was used in Lifschitz, Suters & Beale (1996) to
study the onset of instability of rings with swirl.

There are two cases in which the solutions we have found numerically can also be given
analytically. For non-swirling shear flow without an obstacle there is a generalization of
Hill’s spherical vortex in which the vortex boundary is a prolate spheroid. For swirling
flow, without shear, there is a generalization of Moffatt’s spherical vortex to flow past
a sphere, where the vortex boundary is a sphere concentric with the spherical obstacle.
The analytic solutions in both of these cases are discussed below.

2. Numerical Method
The vortices being considered are embedded in a background flow which may include

shear. This background flow is a perturbation of flow with uniform velocity one at infinity
by shear flow in the axial direction. Specifically, in cylindrical coordinates the background
flow velocity satisfies v ∼ (1+ σ

2 r
2)ez, as r2 +z2 goes to infinity, where σ ≥ 0 is constant.

If σ = 0 there is no shear. Let ψ0 denote the stream function, vanishing on the axis of
symmetry, for this background flow. Then ψ0 satisfies

Lψ0 = σr2, for r2 + z2 > a2

ψ0 = 0, if r2 + z2 = a2 or r = 0

ψ0 ∼ r2

2
+
σr4

8
, as r2 + z2 →∞,

(2.1)

where a is the radius of the spherical obstacle. The function ψ0 can be given analytically
(see Rubel (1986)) using spherical coordinates ρ and φ, z = ρ cos φ, r = ρ sin φ, as
follows:

ψ0 =
1
2
r2(1− a3

ρ3
) +

σρ4

8
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ρ3
)sin2φ− 4

5
(
a5
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)].

Setting u = ψ − ψ0, it follows from (1.2) and (1.3) that we are looking for solutions u
to

Lu =

{
r2ω + λ2(α− (u+ ψ0)), ψ < α

0, ψ > α.
(2.2)

Our basic iterative scheme for solving this non-linear equation is

(L+ λ2In)un+1 = (r2ω + λ2(α− ψ0))In (2.3)

where In is the characteristic function of the set Dn = {ψn < α}. We wish to solve
(2.3) using finite differences and then iterate until the set of grid points where ψn+1 < α
is identical with the set of grid points where ψn < α. However, as in Elcrat et. al.
(2000) and Elcrat et. al. (2001), this basic iterative scheme is unstable: the sets Dn

may increase without bound unless there is some constraint on the size of Dn. So we
modify the iterative scheme by requiring that a geometric quantity, either the area A
of Dn or the first moment M of Dn with respect to the axis of symmetry, have a
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prescribed value. The value of one of the three parameters ω, λ or α is then adjusted
in an inner iteration so as to achieve this. Thus there are four free parameters to the
general problem, the shear parameter σ, a geometric parameter A or M , and two of the
three parameters ω, λ and α, the remaining one of these parameters being determined as
part of the solution. We generally use M as the geometric parameter, since in the case
λ = 0, the circulation around the vortex, k = (ω+σ)M , is determined immediately from
the parameters. Which of the three parameters ω, λ and α is allowed to vary depends on
the particular flow characteristics being sought. The radius a of the sphere could be an
alternative parameter; we have generally normalized the problem by taking a = 1 when
there is a spherical obstacle.

For flow past a sphere of radius a, the stream function is defined on the region r2+z2 >
a2 in the meridional half-plane r > 0. In order to use a rectangular computational grid,
we map this region onto the strip −π < ξ < 0, log a < η <∞, as in Elcrat et. al. (2001),
via the transformation ξ + iη = i log(z + ir). We then truncate the strip at η = H, for
some H, which corresponds to truncating in the physical domain at some large sphere of
radius R = eH . Typically we take H = π. The differential equation (2.3) for u = un+1

transforms to

∂2u

∂ξ2
+
∂2u

∂η2
− (cot ξ)

∂u

∂ξ
− ∂u

∂η
+ e2ηλ2Inu = (ωe4η sin2 ξ + e2ηλ2(α− ψ0))In. (2.4)

The boundary condition on three sides of the computational rectangle is u = 0. As
explained in Elcrat et. al. (2001), a reasonable numerical boundary condition to impose
on the upper boundary η = log R is the Robin condition,

∂u

∂η
+ 2u = 0.

We discretize (2.4) using the standard stencil for a uniform N1 by N2 grid on the com-
putional rectangular. We use the sparse matrix functionality of MATLAB to solve the
resulting N1N2 by N1N2 linear system at each iteration step. We use the same method
as in Elcrat et. al. (2001) to compute the moment of M of the set Dn.

This procedure can be modified in the case when there is no spherical obstacle. In
that case the conformal mapping given above maps onto a doubly infinite strip which is
then truncated at both ends, i.e. truncating in the physical domain at a small sphere as
well as a large sphere.

An alternative approach would be to use a uniform rectangular grid in spherical coor-
dinates ρ and φ, z = ρ cos φ, r = ρ sin φ. We tested using this approach, specifically in
the case of no obstacle, the case in which this approach seems most likely to offer some
advantage since no truncation near 0 would be required. In the case of no obstacle and
α = 0 there are explicit solutions, Hill’s spherical vortex and Moffatt’s generalization
with swirl, which can be used to test the accuracy of the numerical solutions. We found
that for a fixed number of grid points, the procedure using the logarithmic transforma-
tion is more accurate than that using spherical coordinates directly, except very close to
the origin. The reason for greater accuracy using the logarithmic transformation is that
it concentrates more grid points in the region where the vortex occurs.

The computational algorithm that we have used and developed here, and which was
initiated previously in Elcrat et. al. (2000) and Elcrat et. al. (2001), is very robust.
Although it is based on the simple idea of successive iteration, it converges even for very
crude initial guesses. We believe that this is due to a smoothing property of the linear
elliptic operators involved: if a highly disconnected set is used as the set D0 in (2.3),
after one iteration the new set is connected.
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There are a few cases where our method has come up against barriers in continuing
solutions along branches; one is mentioned in the following section. We believe this is due
to numerical instability and that an algorithm with accelerated convergence is required.
The obvious choice of Newton’s method does not admit straight forward implementation
because of the discontinuities in the right hand side of (2.2). We leave the resolution of
these continuations to a future work.

Three dimensional streamline plots are given in the next section for several flows. The
following procedure was used to compute these streamlines based on the computed stream
function ψ. First a numerical arclength parametrization of a streamline ψ(z, r) = c in the
meridional plane is found. The gradient ∇ψ is also computed numerically. By numerically
integrating

dt =
r

||∇ψ||ds,
the time to go from a fixed initial point on the streamline to an arbitrary point is
determined. Then the differential equation

dθ
dt

=
λ(α− ψ)

r2

is solved numerically to determine the values of θ at those time values corresponding
to equally spaced points along the meridional plane streamline. For a closed meridional
plane streamline it is only necessary to do this calculation for one traverse of that stream-
line, since the incremental change in θ for subsequent loops around the toroidal surface
ψ(z, r) = c is the same as for the first loop. (By one “loop” of a three dimensional
streamline we mean that the values of r and z make one traverse of the meridional plane
streamline ψ(z, r) = c. In the plots we usually follow a single streamline for about 20
loops around its toroidal surface). We have found this method to be more reliable, more
accurate and more computationally efficient than solving numerically the system of three
differential equations determined by the velocity field.

3. Results
We consider first vortex rings (α < 0) and the limiting case α = 0, which we refer to as

attached vortices, discussing cases with a spherical obstacle before considering the case
without an obstacle. Vortex tubes (α > 0) are discussed last.

3.1. Non-swirling flows with shear
For non-swirling flow, without shear, past a sphere, we described in Elcrat et. al. (2001)
four different families of solutions, parametrized by α and the moment M of the vortex
cross section in the meridional half-plane. There are likewise four non-swirling families
for each value of σ ≥ 0. The four families of attached vortices can be described as (a)
trailing vortex wakes, (b) bands of vorticity around the sphere, (c) vortices that surround
the sphere and (d) symmetric pairs of vortices fore and aft of the sphere. Figure 1 shows
examples. The vortex cross-sections become increasingly elongated as the shear constant
σ increases.

There are attached vortices in family (a) for all M > 0 and σ ≥ 0, but for the other
families there are bound constaints on M , which depend on σ. For family (c), given σ
there is a minimal value of M for which we have found solutions, that minimal value
increasing with σ. For σ = 0 the minimal value of M is 0 and for each M the outer
surface of the surrounding vortex is a concentric sphere; for σ = 0.5 the minimal value
of M is approximately 6.6. As M increases the outer boundary of the vortex becomes
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Figure 1. Examples of the four types of attached vortices (α = 0) without swirl(λ = 0). Each
is embedded in shear flow. The radius of the sphere is a = 1 in each case. Each subplot shows
streamlines in the meridional plane. Streamlines are dashed except for the vortex boundary which
is solid. Flow parameters for the examples shown are: (a), the trailing vortex, σ = 14, M = 4;
(b), the vortex band, σ = 0.5, M = 0.66; (c), the surrounding vortex, σ = 0.5, M = 12; (d), the
symmetric pair of vortices behind and in front of the sphere, σ = 0.5, M(total)= 7.5.

Figure 2. Two families of vortex rings with shear and no swirl. Vortex boundaries (only) are
shown for several members of each family. The plot on the left shows a family of trailing vortex
rings with σ = 4 and circulation k = (ω+σ)M = 50. The values of α are -.002, -.31, -1.03, -2.05,
-3.45, -5.33, -7.94, -11.6, -16.2, -24.18. The plot on the right shows a family of small cross-section
trailing vortex rings with k = 50 and M = .25. The values of the shear constant σ for the rings
shown (from top to bottom) are 0, 1, 2, 4, 8, 14, 22, 30, 40 and 50.

more elliptical. For families (b) and (d) there are maximal values of M , depending on σ,
for which we have found solutions. For family (b) that maximal value of M decreases as
σ increases, while for family (d) the maximal value of M increases with σ. For σ = .5
the maximal M is about .66 for family (b) and about 8.7 for family (d). For σ = 0 the
corresponding values are about 1.55 and 4.65 respectively. For family (d) asM approaches
the maximal value the attachment points in the meridional cross-section approach the
top of the obstacle. The nature of these various bound constraints is consistent with
the observation that the vortices become more elongated in the direction of the axis of
symmetry as σ increases.

There is a family of vortex rings, extending to all α < 0, for each attached vortex. One
such family of trailing vortex rings with shear is shown in the left hand plot of figure 2.
Note that while the shear stretches out “large” vortices, small cross-section vortices are
almost circular with or without shear. The second plot in figure 2 shows the effect on a
small cross-section vortex ring as shear increases while circulation and moment are held
fixed: the radius of the ring decreases but there is little change in the position of the
center of the ring on the z axis.

It can be noted in figure 1, that for trailing vortices embedded in flows with a large
shear (σ & 7 for M = 4), there is a stagnation bubble in front of the sphere. Such
stagnation bubbles have been studied analytically by Rubel (1986) for shear flow past a
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sphere when there is no vortex. Such bubbles occur not only in the presence of attached
vortices, but also for flows with vortex rings. For example, for the family of rings shown
in the right hand plot of figure 2, there is a stagnation bubble in front of the sphere for
σ > 5, the size of the bubble increasing with σ.

3.2. Vortices with swirl
For fixed α, M and σ solutions can be found for all values of λ, 0 ≤ |λ| ≤ some maximal
value, where this maximal value depends on α,M and σ and may also be different for each
of the four families. (Note that the sign of λ determines whether the flow swirls clockwise
or counterclockwise, but the stream function depends only on |λ|). As |λ| increases, the
value of ω, which is determined as part of the solution, decreases. The maximal value of
|λ| is reached when ω + σ = 0. When ω + σ = 0, it follows from (1.4) that the velocity
and vorticity vectors are parallel inside the vortex region. Such flows are called Beltrami
flows. In other words, for fixed α(≤ 0), M and σ there are one parameter families of
solutions, parametrized by either λ or ω, such that one end of each family is a Beltrami
flow (ω + σ = 0) and at the other end of the family is a non-swirling flow (λ = 0).
Velocity and vorticity are parallel for Beltrami flow and perpendicular for non-swirling
flow. Figure 3 compares two flows from one such family of trailing vortices, one with
small swirl and the other near the Beltrami flow limit. In this figure, as is frequently, but
not always, the case, the meridional plane cross sections for the flows in the same one
parameter family are nearly identical. The main distinction is in the relative pitch of the
angle with which streamlines go around a toroidal surface ψ = c.

If there is no shear and α = 0, then there is a family of exact solutions with a sphere of
radius b as the outer vortex boundary. When there is no spherical obstacle such solutions
were given by Moffatt (1969). If there is a spherical obstacle of radius a, the analysis in
Moffatt (1969) shows that a solution to

Lψ = r2ω − λ2ψ

for a < ρ < b, where ρ2 = r2 + z2, can be given explicitly in terms of Bessel functions
of the first kind by

ψ = r2(
ω

λ2
+ C1(λρ)−3/2J3/2(λρ) + C2(λρ)−3/2J−3/2(λρ)).

The function ψ and the external flow ψe = 1
2r

2(1 − b3/ρ3) must match at ρ = b along
with their normal derivatives. This, along with ψ(a) = 0, leads to the non-linear system

ω

λ2
+ C1(λa)−3/2J3/2(λa) + C2(λa)−3/2J−3/2(λa) = 0

ω

λ2
+ C1(λb)−3/2J3/2(λb) + C2(λb)−3/2J−3/2(λb) = 0

3
2
(λb)1/2 + C1J5/2(λb)− C2J−5/2(λb) = 0

for C1, C2 and b given a, λ and ω. When this system is solvable there is a spherical
vortex.

Generally, when there is a spherical obstacle the four classes of vortices, (a)-(d), de-
scribed above also exist for flows with swirl. In fact, for Beltrami flows there are two
families of vortices surrounding the sphere, the spherical vortices and also a non-spherical
family. Figure 4 shows an example where both vortices have the same input parameters
α = 0, ω = σ = 0 and M = 14. The two families appear to merge at about M = 18.
For M < 13 solutions in the second family split into two symmetric regions of vorticity
fore and aft of the sphere. Solutions in the second family can be continued to somewhat
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Figure 3. Both flows shown are for α = −0.15, σ = 0 and M = 4, but with λ2 = 0.2 on the
left and λ2 = 6 on the right. (The Beltrami flow for this family has λ2 = 6.25). The meridional
plane cross sections of the flows are very similar, although not identical. In the three dimensional
plots the vortex core is shaded and part of a single interior streamline is shown. The streamline
is shown for 20 revolutions around the toroidal surface for the ring on the left, but for only 4
revolutions for the ring on the right, showing the increase in the variation in θ per revolution
for the flow with larger |λ|.

smaller λ (and correspondingly, ω somewhat larger than 0), but we have not been able
to continue that family all the way to λ = 0.

3.3. Rings when there is no obstacle

Rings with swirl, but no shear, were computed previously in Eydeland & Turkington
(1988), using a numerical algorithm based on the variational principle described in Turk-
ington (1989). As they note, there is a two parameter family of rings with swirl and no
shear. Figure 5 compares a vortex ring in shear flow with a ring in a flow with no shear.

In general, when there is no obstacle, by a similarity transformation one of the non-

zero parameters we are using may be set to 1. In particular, if
∼
ψ(
∼
r ,
∼
z ) is a solution for

the parameters
∼
ω ,

∼
λ ,

∼
M ,

∼
α and

∼
σ , then defining ψ(r, z) = b−2

∼
ψ(
∼
r ,
∼
z ) where

∼
r= br

and
∼
z= bz, gives a solution, also with velocity one at infinity, for parameters ω = b2

∼
ω,

λ = b
∼
λ , M = b−3

∼
M , α = b−2∼α and σ = b2

∼
σ. Therefore, instead of four independent

parameters there are now three. Without the obstacle we have found at most one solution
for each set of parameters. This is consistent with the uniqueness result proved in Amick
& Fraenkel (1988) for vortex rings without swirl or shear.

In the final section of the paper it is shown that if there is shear but no swirl, then
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Figure 4. Two attached Beltrami flows surrounding the unit sphere with σ = 0 and M = 14.
The values of λ2 are 3.64 for the spherical solution and 4.31 for the second solution. On both
plots a single streamline is shown for 30 revolutions around the toroidal surface for the stream
function value −.5.

Figure 5. Two rings with swirl; one embedded in shear flow. Normalized with M = 1, both
flows are for the parameters α = .1, λ=3. The values of σ are 0 and 16 respectively.

there is an analog of Hill’s spherical vortex in which the boundary is a prolate spheroid.
Figure 6 shows an example with M = 5 and σ = 9. The other plot in the same figure
shows the attached Beltrami flow with the same M and σ. For that flow the meridional
plane cross-section is clearly not an ellipse.

3.4. Vortex Tubes
Each attached vortex (except for the vortex bands, Figure 1b, which do not extend to
the axis of rotation), can be perturbed to a family of solutions of (2.2), with α > 0 and
having the same values of the parameters ω, λ and σ as the attached vortex. The vortex
support of these solutions extends to infinity along the axis of symmetry and we refer to
them as vortex tubes. The moment M of the vortex support in the full physical space is
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Figure 6. The non-swirling (above) and Beltrami (below) attached vortices for M = 5, σ = 9.
For the upper plot, the meridional plane cross-section of the vortex boundary is an ellipse.

not defined, so we do not use M as a parameter in discussing the vortex tube solutions.
However, we do use the moment of the truncated domain {(z, r) ∈ Dn : z2 + r2 < R2},
where R is the truncation radius as described earlier, in order to stabilize the numerical
method as before. Now there is an additional iteration level needed to vary M so as to
achieve the desired values of both ω and λ.

If λ 6= 0, then for any streamline value c, 0 < c < α, the corresponding streamlines will
have a helical shape, distorted by the sphere and the re-circulating core of the vortex.
One such streamline is plotted in each three dimensional plot of a vortex tube. For c < 0,
the streamlines stay in a bounded wake region; for c > α each streamline is non-helical,
staying in a single constant-θ plane.

Three vortex tubes, all with the same values of ω, λ, σ and α, are shown in figure 7. The
first two are perturbations of a symmetric attached vortex and a trailing attached vortex,
respectively. The third is obtained by perturbation from the background irrotational or
uniform shear flow. Figure 8 shows tubes in the same three families, but for a larger value
of α. It can be noted by comparing figures 7 and 8, that as α increases the solutions
in the first two families get flatter and more stretched out, while for the perturbations
of background flow the vortex boundary becomes higher and develops a thin wake that
grows as α increases. There is a value of α, the maximum value for which solutions exist,
at which all three families come together. This will be discussed further at the end of
this section. Figure 9 shows a solution for α near the maximal value. The recirculation
region extends beyond the margins of the plot.

There are two families of vortex tubes when there is no obstacle: perturbations of
attached vortices and perturbations from the background irrotational or uniform shear
flow. Two examples of perturbations of attached vortices are given in figure 10. Figure
10 highlights the difference in the ψ = 0 streamline profiles for a flow without swirl
compared with one in which λ is large. For flows with swirl there is a thin elongation of
the recirculation region that becomes wider and longer as α increases. This elongation is
somewhat noticable in the three subplots of Figure 8, is very prominent in figure 10, and
for the maximum α solution shown in figure 9 it dominates the flow. Figure 11 show a
blow-up of two streamlines near the point where the 0 streamline in the lower subplot of
Figure 10 intersects the axis. Physically, the swirl around the axis in the tubular region
forces the recirculation region to become more extended.
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Figure 7. Three vortex tubes for ω = 2, λ2 = 1.5, σ = 0 and α = .075. The first tube is
obtained by continuation from a symmetric, annular attached vortex with the same ω, σ and
λ; the second by continuation from a trailing vortex; the third row is a perturbation of the
background irrotational flow. In each plot two streamlines are shown: a helical streamline ψ = c,
for some c, 0 < c < α, and 20 loops of a single steamline in each wake region.

For flows with swirl and with α near the maximum value, the computed attachment
points of the ψ = 0 streamline on the axis of symmetry are very near±R, so are dependent
on the chosen grid and probably not computed very accurately. Nevertheless it is rather
apparent from Figure 9 that as the radius of the sphere goes to zero, these maximal
solutions approach a solution independent of z. Indeed, when there is no obstacle the
perturbations of irrotational flow have stream functions that are independent of z which
can be analyzed analytically. This analysis will give some mathematical insight not only
as to why the zero streamline becomes elongated when there is swirl, but also as to why
there is a maximum α for which solutions exist.

We carry out the details of this analysis only in the case of Beltrami flow without shear,
ω = σ = 0; the more general case is similar but more involved. We look for solutions to

ψ′′(r)− 1
r
ψ′(r) + λ2ψ(r) = λ2α, ψ < α

ψ′′(r)− 1
r
ψ′(r) = 0, ψ > α.
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Figure 8. Tubes in the same families as those in Figure 7 except with α = .15. As α increases
vortex boundaries in the first two families become lower near the recirculation region, while
solutions in the third family become higher. The three families merge at a solution with maximal
α, which is shown in figure 9

The first equation transforms to Bessel’s equation of order 1 and the solution is

ψ =

{
α+ C1y1 + C2y2, r < ro
1
2 (r2 − r2o) + α, r > ro

(3.1)

where y1 = rJ1(λr), y2 = rY1(λr) and C1, C2 and ro are chosen so that

C1y1 + C2y2 = 0
C1y

′
1 + C2y

′
2 = ro

(3.2)

and ψ(0) = 0. Since

sY1(s) → −2/π as s→ 0, (3.3)

ψ(0) = 0 will be satisfied by taking C2 = λαπ/2. By Abel’s identity the Wronskian
W = W (y1, y2) = cr and using (3.3) again, c = 2/π. Solving (3.2) gives

C2 =
roy1(ro)
W (ro)

=
π

2
roJ1(λro),
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Figure 9. Near the maximum α solution for the families in Figures 7 and 8. The value of α
is slightly less than 0.2. Two streamlines are shown in the lower plot. The helical streamline
ψ = c1 > 0, is printed somewhat thicker. The streamline for ψ = c2 < 0 (shown for 9 loops)
follows the helical streamline closely until a point well beyond the margins of the plot where
it is pulled into the inner part of the toroidal surface ψ = c2. That inner part of the surface
appears in the plot as a thickening of the axis of symmetry. See Figure 11 for a detail in a
comparable situation.

Figure 10. Streamlines are shown for two vortex tubes, one without swirl, the other a Beltrami
flow (λ2 = 3.5), with α = 0.17 in both cases. The ψ = 0 streamline is highlighted. The narrow
elongation of the recirculation wake in the lower plot is typical for tubular flows with swirl.

so ro is determined by

λroJ1(λro) = λ2α. (3.4)

Note that the velocity on the axis:

lim
r→0

ψ′(r)/r = lim
r→0

λ(C1J0(λr) + C2Y0(λr)) = −∞.

Since ψ′(ro) > 0, there is a flow reversal in the region of vorticity. Flows that we are
considering have a single flow reversal, i.e. there is a single positive root of C1J0(λr) +
C2Y0(λr) to the left of ro. Equation (3.4) has solutions ro for all α, but if the first
ro > 0 solving (3.4) is to the right of the first relative maximum of rJ1(λr), then there
are two positive roots of J1(λr) to the left of ro, and hence two positive roots of
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Figure 11. The three dimensional view of the Beltrami flow in Figure 10. The lower subplot
shows a close up view of two streamlines near the point where the 0 streamline intersects the
axis. The streamline that maintains its helical shape has streamline value slightly greater than
0. The other streamline, with streamline value c < 0, is in the recirculation region and as it flows
from right to left spirals very tightly around the axis on the inner side of the toroidal surface
ψ = c.

C1J0(λr) + C2Y0(λr) to the left of ro. Since the first relative maximum of J1 occurs at
the first positive root j0 of J0, it follows that the maximum possible α is

αmax = j0J1(j0)/λ2. (3.5)

For λ2 = 2.9 and ω = σ = 0 and with a spherical obstacle of radius 1, the maximum
value of α for which we could obtain solutions is α = .426. For λ2 = 2.9 formula (3.5)
gives αmax = .4305. Also the value of r in the far field on the upper boundary of the
vortex region for the computed solution is 1.42, very comparable to the value of ro = 1.41
obtained from (3.4). This numerical comparison shows, as expected, that the presence
of an obstacle does not greatly effect the flow in the far field, and also provides some
indication that our method is reasonably accurate even in this extreme case.

4. Spheroidal vortex in flows with shear
It will be shown in this section that there is an analog of Hill’s spherical vortex for ax-

isymmetric shear flow (without swirl) in which the vortex boundary is a prolate spheroid.
An explicit formula is given in Rubel (1986) for the stream function ψe for shear flow
exterior to a spheroid, with ψe = 0 on the surface of the spheroid. The stream function
ψi for vortex flow on the interior of the spheroid z2/a2 + r2/b2 = 1 can be given by

ψi = Hr2(1− z2

a2
− r2

b2
), (4.1)
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which satisfies Lψi = ωr2 if

2H =
−ωa2b2

(4a2 + b2)
. (4.2)

It is to be shown that, given ω and the shear parameter σ, the normal derivatives ∂ψe/∂n
and ∂ψi/∂n agree on the boundary of some prolate spheroid. For this it is convenient
to use elliptical coordinates µ and ζ (Lamb (1932), p 142), where for a prolate ellipse,

z = kµζ, r = k
√

1− µ2
√
ζ2 − 1. (4.3)

For constant ζ = ζ0 > 1, as µ varies from −1 to 1, z and r vary over the upper half
of the ellipse z2/a2 + r2/b2 = 1 for a = kζ0 and b = k

√
ζ2
0 − 1. The focal length and

eccentricity of the ellipse are 2k and e = 1/ζ0 respectively. The µ, ζ coordinate system
is orthogonal, so requiring ∂ψe/∂ζ|ζ=ζ0 = ∂ψi/∂ζ|ζ=ζ0 is equivalent to matching normal
derivatives on the boundary of the spheroid. Substituting (4.3) into (4.1), using (4.2) and
differentiating gives

∂ψi/∂ζ|ζ=ζ0 = k4ωζ0(1− µ2)(ζ2
0 − µ2)(ζ2

0 − 1)/(5ζ2
0 − 1).

In particular, as a function of µ, ∂ψi/∂ζ|ζ=ζ0 has the form (1 − µ2)(Ai + Biµ
2) where

the coefficients Ai and Bi depend on k, ω and ζ0. It follows by differentiating equation
(16) of Rubel (1986) that ∂ψe/∂ζ|ζ=ζ0 likewise has the form (1− µ2)(Ae +Beµ

2) with
coefficients Ae and Be depending on k, σ and ζ0. Therefore, normal derivatives match
on the boundary if Ai = Ae and Bi = Be, giving two equations which, for given ω and
σ, can be solved for k and ζ0. To be specific, using equation (16) of Rubel (1986) and
letting Qm denote the Legendre function of the second kind of order m, the equations
to be solved can be reduced to

2ζ0 − Q′′3(ζ0)
Q′3(ζ0)

(ζ2
0 − 1)− 8ω

σ

ζ0
5ζ2

0 − 1
= 0

1
4
σ(ζ2

0 − 1)(
2ζ0
ζ2
0 − 1

− 1
5
Q′′3(ζ0)
Q′3(ζ0)

− 4
5
Q′′1(ζ0)
Q′1(ζ0)

)− 2ω
ζ3
0

5ζ2
0 − 1

=
1
k2

Q′′1(ζ0)
Q′1(ζ0)

.

Thus the focal length and eccentricity of a prolate spheroid can be determined so that
the corresponding exterior and interior flows match on the boundary.

Spheroidal vortex boundaries determined by solving these equations match quite closely
those found by our general numerical procedure. In a test case with σ = 1 and ω = 6.17
and using a 190 by 402 grid, the normal distance between the computed vortex boundary
and the elliptical boundary was less than .002, i.e. to about visual accuracy for an ellipse
with major and minor axes of lengths 3.26 and 2.35. In this case the transplanted grid
spacing in the physical domain near the ellipse is about h = .02, so the error in the
computation of the vortex boundary is about one order of magnitude smaller than the
grid spacing.

Note that Figure 6 shows that when swirl is added, the analogs of the Moffatt vortices
in shear flow do not have elliptical cross-sections.

5. Conclusions
We have developed a general procedure for finding axisymmetric vortices with swirl

which are steady with respect to a background flow for which the far field velocity is
vz ∼ (1+ σ

2 r
2), σ ≥ 0 a shear parameter. There may, or may not, be a spherical obstacle

in the flow. Flows are found by numerically solving the Bragg-Hawthorne equation using
a non-Newton-based iterative procedure.
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In addition to vortex rings with swirl, we have found tubular vortices extending to
infinity, as well as vortices attached to the spherical obstacle, and when there is no
obstacle, analogues of the Hill and Moffatt spherical vortices. When there is a spherical
obstacle we have generally found multiple solutions for each set of parameters, as seen
for example, in figures 1, 4, 7 and 8.

The general effect of shear is to flatten and stretch out large cross-section vortices.
Small cross-section vortex rings have basically circular cross-sections, but increasing shear
decreases the radius of the vortex ring (see figure 2). For trailing vortices, if the shear
is sufficiently large, a stagnation bubble forms in front of the sphere. We have shown
analytically that the analogue of Hill’s spherical vortex in the presence of uniform shear,
with no swirl and no obstacle, has an elliptical cross-section.

We have found families of vortices with swirl connecting each non-swirling vortex flow
to a Beltrami flow (i.e. connecting a flow in which vorticity and velocity are perpendicular
to one in which vorticity and velocity are parallel). In each case, the swirl parameter
cannot be increased beyond the value which corresponds to Beltrami flow. For vortex
rings, as the swirl parameter increases, the cross sections in the meridional plane only
vary slightly (although the flow patterns inside the stream surface bounding the vortex
varies considerably). However, for vortex tubes there is more distinct difference between
the cross-sections for non-swirling flows and flows with large swirl, as shown in figures
10 and 11. The swirling flow around the axis stretches out the ends of the recirculating
flow region. As for non-swirling flow, there is a maximum value of α for which steady
swirling flows exist.
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